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Abstract

We introduce a symplectic method to handle a large and finite crossing angle in the

beam-beam interaction. This method has been implemented in a parallel computer

program to simulate three-dimensional effects in the beam-beam interaction. Our

simulation results are compared with the known analytical solutions, the simulations

using the Lorentz boost and experimental observations.
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1 Introduction

The beam-beam effects due to a vertical crossing angle were experimentally
and theoretically investigated by Piwinski[1]. He showed that the crossing
angle coupled the transverse and longitudinal oscillations and therefore ex-
cited the synchrotron-betatron resonances which lead to the degradation of
luminosity. Since the horizontal beam size is naturally much larger than the
vertical size in e+e− storage rings, the allowed crossing angle in the hori-
zontal plane may well be much larger than the one in the vertical plane.
This possibility was systematically studied by Hirata [2] who introduced a
transformation called “Lorentz Boost”. Using the boost, he simulated the
dynamical effects due to a large crossing angle within the strong-weak approx-
imation. His work has established the feasibility of using a crossing angle as
a realistic scheme to separate the colliding beams near the interaction point
(IP) in e+e− storage rings.

Since the birth of a new generation of high-luminosity e+e− colliders [3,
4, 5], the beam-beam collision with a finite crossing angle in the horizontal
plane has become a reality [4, 5]. The positive and successful experience
of these modern accelerators has prompted us to adopt the crossing scheme
into the designs and upgrades of the e+e− storage rings [6] and the hadron
colliders [7, 8].

Based on these recent developments, it is clear that the beam physics
related to the crossing angle has become critically important. A concern
regrading the Lorentz boost is: the violation of the symplecticity because of
the explicit use of the Lorentz boost in its composition. It is well known that
the violation of symplecticity may cause artificial growth of emittance [9]. Of
course, it was pointed out by Hirata in his paper [2] and recently by Ohmi [10]
that the net effect is symplectic if its inverse is used after the beam-beam
kick.

In this letter, we continue along the work of Piwinski and develop a
geometrical method to treat exactly a collision without use of the Lerentz
boost for a finite crossing angle. The symplecticity is preserved throughout
the collision process.
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2 Geometrical transformations

Let’s use x, px, y, py, δ, l as the canonical coordinates of a charge particle,
where x, y are the transverse displacements, δ is the relative momentum
deviation and l is the path length relative to the synchronous particle. When
two beams collide with a horizontal crossing angle, we need a transformation
that rotates the particles in a single slice (s = 0) to the head-on frame
(s∗ = 0) as illustrated in Fig 1. It is clear that the axis of the rotation is the y
axis. It is well known [11] that, in the context of single-particle dynamics, this
transformation can be generated by the Lie operator: Ry(φ) = exp(: xps : φ),

where ps =
√

(1 + δ)2 − p2
x − p2

y

φ

x

x*

z*

z

s = 0
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Figure 1: A rotational transformation.

The explicit transformation can be obtained by solving the Hamiltonian’s
equations with H = −xps and φ as the independent variable. It can be
written as follows,

x∗ =
xps

cos φ(ps − px tanφ)
,

p∗x = px cos φ + ps sin φ,

y∗ = y +
xpy tanφ

(ps − px tanφ)
,

p∗y = py,

δ∗ = δ,
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l∗ = l +
x(1 + δ) tanφ

(ps − px tan φ)
. (1)

Since it is the exact solution of the Hamiltonian’s equation, it is symplec-
tic. To treat a three-dimensional beam, there are other coordinate transfor-
mation needed. They are the horizontal displacement Dx(δx) = exp(: px : δx)
and the drift operator Dz(δs) = exp(: ps : δs).

3 Collision

For every collision, the macro particles are cast into the slices according to
their longitudinal positions. Since the beam distributions are dynamically
evolved during the collision, the sequence of the colliding slices is identical
to the time sequence.

For a given pair of colliding slices at z± = −l±, we need to compute where
the collision actually occurs: s± = (z± − z∓)/2 and drift the particles in the
slices to the collision point by the operator D±

z (s±) = Dz(s
±) so that the

hourglass and phase-average effects due to a finite bunch length are properly
included in the simulation.

IP φ

-2 s+ sinφ

Z+

Z-

X+

X-

Figure 2: Two slices of beam colliding at their actual collision point with an
angle 2φ.

As illustrated in Fig. 2, if there is a crossing angle, we need to make
the transformation R±

y (φ) = Ry(±φ). After the rotations, there is still a
displacement of two coordinate systems in the horizontal plane as shown
in Fig 2; we use operator: D±

x (s±, φ) = Dx(−2s± sin φ) to transform the
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coordinates of the particles to the coordinate system in which the beam-
beam force from the opposing beam is calculated so that the force can be
applied to the particles. After the beam-beam kick, we applied the reverse
operation in the inverted order to move the particles in the slice back inside
the beam.

The whole process can be summarized and written as

T ±(s±, φ) · O∓
BB(x±, y±, φ) · T ±(s±, φ)−1, (2)

where
T ±(s±, φ) = D±

z (s±) · R±
y (φ) · D±

x (s±, φ), (3)

and O∓
BB(x±, y±, φ) represents the operator for the beam-beam kick.

Here we use the following convention in the map operation: The operator
on the left acts on function of the canonical coordinates first and the dot
represents the concatenation of two maps.

Using the particle distributions at the collision point, we obtain the beam-
beam force by solving the two-dimensional Poisson equation [12]. Because of
the crossing angle φ, the integrated beam-beam kick by a slice needs to be
modified to

∆p±x = − e

E±
0

cos φ
∫

slice
E∓

x ds,

∆p±y = − e

E±
0

∫
slice

E∓
y ds,

∆δ± = − e

E±
0

sin φ
∫

slice
E∓

x ds, (4)

where Ex and Ey are the transverse electric fields and E0 is the energy of
the synchronous particle. Here we have assumed that the particles are ultra-
relativistic and E0 = cp0.

4 Geometrical effect

The geometric degradation of luminosity due to the hourglass effect and the
crossing angle is given by Hirata [2]

RL =
L

L0
=

√
2

π
aebK0(b), (5)

a =
σ∗

y√
2σ∗

zσ
∗
py

, b = a2[1 + (
σ∗

z

σ∗
x

tan φ)2],
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where L and L0 is the luminosity with or without the hourglass effects and
crossing angle and K0 is a modified Bessel function.
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Figure 3: The circles represent the simulation results using 50,000 macro
particles on a mesh of 128×256×31 and the solid is the plot of Eq. (6) with
σ∗

x = 110.84 µm, σ∗
y = 1.16 µm, σ∗

py
= 181.14 µrad, and σ∗

z = 7.9 mm.

Since this is a purely geometrical and single-turn effect, we do not need to
compute the electric and magnetic field during the collision. The simulated
luminosity is calculated from the summation of overlapping beam distribu-
tions on the transverse head-on grids over all possible pairs of the colliding
slice. The result of the simulation is shown in Fig. 3 for the symmetrized
KEKB parameters. The excellent agreement between the simulation and the
analytical analysis over a large range of the crossing angle provides an inde-
pendent check of the accuracy of using these geometrical transformations.

5 Parallel computing

To achieve the required numerical convergence in the three-dimensional sim-
ulation forces the use of parallel supercomputers. One of the most impor-
tant aspects of parallel computing is how to minimize the communication
among processors. Each application may have a different optimal solution.
For beam-beam simulations, we have developed an efficient strategy utilizing
dual processors. Macro particles are evenly distributed across many proces-
sors. The processors are divided into two groups, one for the positron beam
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and the other for the electrons. Before the collision, the beam distribution
on the grid is summed within each group, and the resulting distribution is
distributed back to all processors in the group. Then the total distribution is
exchanged between the groups. That allows us to solve the Poisson equation
and compute the force on the macro particles in every local processor.

In this scheme, the macro particles always remain confined to the same
computing processor. The division into two groups essentially allows us to
double the speed without much penalty.
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Figure 4: Simulated luminosity as a function of number of longitudinal slices.
The circles represent the results of using equal-spacing slices, the crosses for
equal-area slices, and the starts for equal-area slices with linear interpolation
between the slices.

A linear and stochastic map [13] that includes the betatron and syn-
chrotron oscillations, the radiation damping, and the quantum excitation is
used in the arc to track the particles. The map also properly gives the effects
of the dynamical beta and dynamical emittance [14] near the horizontal half
integer.

Using 32 processors on a parallel computer at NERSC [15], we are able
to achieve the required convergence with five linearly interpolated[10] and
equal-strength slices[13] as shown in Fig 4. For a typical simulation, we use
160,000 macro particles for each beam with a mesh 128 × 128 × 5. The
area of the mesh has to be large enough to retain the particles in the tail of
beam, especially in the vertical plane. In practice, we choose it so that the
accumulated loss of the particles beyond the mesh during the whole run is
less than a few percent even at the peak of the beam intensities. To reach
an equilibrium of the beam distributions, each simulation takes about eight
hours on the supercomputer.
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6 Dynamical effect

The dynamical degradation of the luminosity from a finite crossing angle
can be more severe than the geometrical reduction because of the synchro-
betatron coupling introduced from the angle. To study this effect, a simula-
tion is carried out for the present parameters, tabulated in Table 1, at KEKB
to benchmark against a well-known code [16] based on Hirata’s work. The
results of the two simulation are shown in Fig. 5.

Parameter Description e+ e−

E (Gev) beam energy 3.5 8.0
N (1010) bunch population 7.36 5.28
β∗

x (cm) beta x at the IP 59.0 58.0
β∗

y (mm) beta y at the IP 5.8 7.0
εx (nm-rad) emittance x 18.0 24.0
εy (nm-rad) emittance y 0.18 0.24
νx x tune 0.506 0.513
νy y tune 0.545 0.586
νs z tune 0.0249 0.0207
σz (mm) bunch length 8.7 7.1
σp (10−4) energy spread 7.26 6.67
τt (turn) x, y damping time 4000 4000
τs (turn) z damping time 2000 2000

Table 1: The present parameters of KEKB. The crossing angle is ±11mrad.

The equilibrium luminosities obtained from the simulations and the mea-
surement agree within 5%. The measured luminosity is nearly at the middle
of the two simulations. The equilibrium beam sizes agree within a few per-
centages between the two codes. At the peak beam intensities, the total
luminosity reduction due to the crossing angle of φ = ±11 mrad is 58%,
which is significantly higher than its geometric degradation 17%.

The success of reaching its design luminosity at KEKB has clearly demon-
strates many advantages of the design with the crossing angle. Still, the sim-
ulation shows that its luminosity could be doubled if one simply compensates
the crossing angle with crab cavities [17]. However, this result also implies
that the head-on collision has a potential to produce twice the luminosity at
extremely high intensities of beam compared to the collision with an angle.
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Figure 5: The simulated bunch luminosity is compared with the result obtained
by Ohmi and Tawada for the present KEKB parameters at the peak beam
currents and the measurement on May 3, 2003.

In additional to these simulations, we also benchmark the two codes at
the current PEP-II working point and the super KEKB parameters. The
results in agreement or disagreement are similar. Since they are all head-on
collisions, the results are not shown in this letter.

7 Discussions

We have demonstrated that this geometrical method works just as well as
the traditional method using the Lorentz boost in e+e− storage rings. Since
the method is based entirely on the Lie operators during the collision, it is
manifestly sympletic. Moreover, it has a geometric interpretation at each
step of the operation.
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