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FOREWORD 
 
 
 
Klystrons are the sine qua non of particle accelerators.  Since its dedication in 1962, the 

Stanford Linear Accelerator Center has elected to maintain its own klystron engineering and 
manufacturing facilities. This decision was certainly related to the fact that the 1950 Stanford 
Mark III electron accelerator employed the first megawatt-level klystrons in the world.  Both that 
accelerator and its 21 klystron amplifiers were built at the University’s Microwave Laboratory.       

The SLAC Klystron Department, dedicated to the design and production of increasingly 
more powerful microwave sources, has developed specialized techniques to achieve these 
purposes.  This knowledge should be permanently documented.  Consequently, we have 
attempted to include in this document the theoretical foundations, the calculations and simulation 
tools, and the manufacturing processes employed at the Department to produce unique high- 
power klystrons.  It is hoped that this material will help a new generation of SLAC engineers to 
design even more advanced klystrons for future particle accelerators, which are certain to 
challenge the state-of-the-art for microwave sources, once again.   

This is Part 1 of a 2-part report.  Most of the topics covered were presented in a series of 
lectures given at SLAC in the winter and spring of 2004, and still available on the Web in 
streaming video.  The material in Part 1 will also appear as a chapter on Klystrons in a 
forthcoming book on Vacuum Electronics published by Wiley and edited by Robert Barker of 
the Air Force Office of Scientific Research. 

Special thanks are due to several SLAC engineers who contributed to the collection of 
klystron topics, particularly in Part 2 of this report, which will appear later this year:  Bob 
Phillips, who wrote a chapter on guns and beam transport, Daryl Sprehn, the project engineer for 
the family of SLAC PPM NLC klystrons, Erik Jongewaard, the designer of the B-Factory 
klystron used in the various code examples in Part 1, and Saul Gold, whose subject will be 
testing procedures and high-voltage modulators.  The contributions of Craig Wilsen, an L3 
klystron engineer, and Aaron Jensen, a Stanford graduate student, are gratefully acknowledged.  
Both worked on the Mathcad and “Japandisk” codes used in the Appendices.  In particular, 
Aaron rewrote Japandisk in C++ and made it considerably more flexible and friendly.   

Glenn Scheitrum and I had many discussions on technical substance and on the vagaries 
of Microsoft software.  We both wish to thank Kate McMillen, who patiently did battle with both 
Word and Math Type and retained her sanity through dozens of editing iterations. 

A CD is attached and can be used to run the Mathcad and MAGIC codes. 
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Chapter 1. 
 

Klystron Historical Background, Applications, and the State-of-the-Art 
 
  The klystron was invented to overcome the transit-time effects which set the operational 
limits in triodes and tetrodes.  Klystrons are the most efficient of linear beam tubes and are 
capable of the highest peak and average powers.  They are useful over an extremely broad 
frequency range, from low UHF (200 MHz) to W-band (100 GHz).  The gain of multi-cavity 
klystrons can be very high.  Gains of 60 dB, or even higher, and efficiencies of 70 per cent are 
not unusual.  

Maximum peak power in klystrons is limited by RF breakdown, which is a function of 
the pulse duration.  At 1-2 microsecond pulse lengths, 75-MW has been attained at X-band1 and 
over 150 MW at S-band.2  Average power is a function of body cooling, since klystron collectors 
can be made arbitrarily large.  At X-Band, a CW power of 1-MW has been attained.3 

On the minus side, klystrons are narrow-band devices, compared with traveling-wave 
tubes (TWTs, see Chap. 4).  For many radar applications and for all electronic countermeasures 
(against radar), only TWTs are suitable.  Klystrons are useful for some communication 
applications, since limited klystron broad-banding is always possible.  A wide bandwidth in a 
klystron requires low beam impedance (i.e. - high perveance, and/or high power).  At very high 
powers, or high frequencies, lower perveance beams are used for better electron optics.  In those 
circumstances, a 1% bandwidth for CW klystrons may be difficult.  At a few megawatts pulsed, 
at S-band, 10% bandwidth is possible.   

Low-power klystrons, particularly reflex oscillators, lost the battle to solid-state 
replacements in radar and communication equipment some time ago.  However, millimeter-wave 
klystron amplifiers, producing several tens of watts of average power are not likely to be 
replaced by solid-state devices, which cannot produce competitive powers at these frequencies.  

It is instructive to follow the progress of klystrons and their applications in the 20th 
century.  The triode was invented in 1906 by DeForest, although arc-based Morse-code 
transmitters were still in use as late as 1912.  Wireless was available in WWI, but the 
superheterodyne receiver was not invented until 1918 (Armstrong).4  By 1930 it was clear that 
higher frequencies were desirable and that transit-time limitations would prevent triodes and 
tetrodes from providing adequate power for new applications.  The search for new RF sources 
began. 

Prior to WW II the total available RF spectrum was about 100 MHz. (approximately 10 
TV channels).  Today, RF sources exist to take advantage of a spectrum 1000 times wider. 
Klystrons are now in use, or in development, over that entire spectrum.  This is not the case with 
any other microwave power source. 

 The invention of radar sparked interest in microwaves and gave birth to the cavity 
magnetron, which made possible airborne radar and helped the Allies win WW II.  Only low-
power, mostly “reflex” klystrons were used in WWII.  High-power klystrons owe their initial 
development to particle accelerators, for which the first megawatt klystron was designed and 
built at Stanford.  Radar led to electronic countermeasures (ECM) and TWTs.  Magnetic fusion 
required millimeter wavelengths and caused gyrotrons to be invented in Russia.  
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D. A. Rozhansky

 
 

Fig. 1   D. A. Rozhansky 
 

The invention of the klystron was the work of several people, the first of whom was D. A. 
Rozhansky, a Professor of Physics at the Leningrad Polytechnic Institute.  He proposed a method 
of producing e-beams of “varying density” in 1932.  As far as we know, Rozhansky did not 
construct any apparatus to test his theory, nor did he publish.  However, he worked with a very 
bright young physicist at his Institute, Agnessa Arsenjeva, who later became Mrs. Oskar Heil.  
The Russians consider Rozhansky, along with the Heils, the inventors of velocity modulation. 

Oscar Heil studied at Goettingen University and probably met Arsenjeva there.  They 
were married in Leningrad in 1934.  The same year, Heil applied for an Austrian Patent on “A 
Procedure and Apparatus for Producing Short Waves.”  Subsequently Heil and Arsenjeva both 
studied with Rutherford at the Cavendish Laboratory in Cambridge, England.  In 1935, while 
Arsenjeva was recuperating from illness in the Italian Alps, they published the classic paper on 
velocity modulation and electron bunching.5 

 

 
 

Fig. 2  Oskar and Agnessa Heil 
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Arsenjeva returned to Russia and Heil went to work at Standard Telephone and Cables 

(STC) in England.  STC developed a line of Heil tubes, called “Coaxial-line Oscillators,” as 
shown in (Fig. 3).6 The operation of the Heil tube was based on a short beam traversing a coaxial 
line at right angles, with a transit time designed to launch the coaxial mode to a load. 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 3 The Heil velocity modulation tube 
 
 

Heil left STC the day before England went to war and continued his work at Standard 
Lorentz in Berlin.  His tubes were used in WWII.  After the war he was brought to the U.S. by 
the military and worked at Wright Patterson AFB before being hired by Eimac and moving to 
California.  He died in 1994.  Agnessa Heil never left Russia again and died in St. Petersburg in 
1991. 

During the pre-WWII period, W. W. Hansen, an Associate Professor of Physics at 
Stanford University, was investigating “a scheme for producing high-voltage electrons,” for use 
in X-ray spectroscopy.  In the process, he invented the microwave cavity (i.e.- a resonator that 
did not depend on inductors and capacitors to store energy), which made it possible to develop 
high voltages at high frequencies, with low losses.  He also developed the theory necessary to 
treat resonators as circuit elements, and derived the first analytical expressions for the 
eigenvalues in cavities of various shapes.  His resonators were named “rumbatrons,” presumably 
because of the back-and-forth travel of electromagnetic waves inside them.  The invention of the 
klystron would not have been possible without Hansen’s rumbatrons.  His original UHF resonant 
cavity survives and is shown in (Fig. 4).  Hansen published a paper titled “A Type of Electrical 
Resonator” in the Journal of Applied Physics in 1937.  His experimental cavity resonated at 380 
MHz and had a Q0 of 50,000.7  
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Fig. 4  The Hansen “Electrical Resonator” 
 

Working with Bill Hansen as Research Associates at the Stanford Physics Department, 
were the Varian brothers, Russell, a physicist, and Sigurd, a former “barnstormer” and Pan-
American Airlines pilot. “Sig” Varian believed that high-frequency transmitters could be used 
aboard airplanes to make “blind” (instruments-only) landings possible.  The missing component 
was a source of high-frequency power.  Hansen and the Varians investigated a number of ideas 
for a microwave source.  They were apparently not aware of the Heils’ 1935 paper on velocity 
modulation.  Russ Varian conceived of it qualitatively, and on June 15, 1937, applied for a 
patent. 

 

 
 
 

Fig. 5 Russell and Sigurd Varian 
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 On July 21, 1937, Russ Varian entered in his journal the sketch of a two-cavity 
oscillator, and the following month he and his brother built one.  The use of the resonant cavities 
invented by Hansen made the Varian patent much more useful than the 1934 Heil patent.  With 
help from the Stanford Classics Department, the device was named “klystron” after the old 
Greek verb (κλύζω), for waves washing on the seashore.   

 

 
 

Fig. 6  The Stanford “Model A” klystron 
 

Both Varian brothers died in the 60’s.  Varian Associates, the company they founded, 
sold its tube business to an investment concern in 1996.  It was renamed “Communications and 
Power Industries,” or CPI.  The former Varian Associates is now three independent companies, 
the largest of which manufactures medical accelerators for cancer therapy.  CPI was sold to 
another investment concern in 2003. 

Work on klystrons became very intensive during WWII.  Radar was independently 
invented in Germany and Britain before the war, and was initially implemented at UHF 
frequencies using triodes as sources.   In 1940 the development of the magnetron by Randall and 
Boot in Britain provided a powerful microwave source suitable for airborne high-frequency radar 
transmitters.  The same year, (and before Pearl Harbor) a visit by British scientists to America 
launched an extraordinary collaboration between Britain and the US, which resulted in 
magnetrons and klystrons being manufactured for the war effort in Western Electric, Sperry, and 
other American factories.  The reflex version of the klystron, perfected at Sperry and in British 
laboratories, served as the local oscillator in super heterodyne radar receivers.  Together, the 
magnetron and the reflex klystron made possible airborne S-band radar, a major factor in 
securing air superiority for the RAF.  “Power” klystrons did not exist during the war.  The 
primary reason was lack of adequate beam optics.  Klystron amplifiers were mostly of the 2-
cavity type, usually without focusing magnets, often with gridded gaps.  Beam transmission 
below 50% was common.  In these circumstances one could not expect average power above a 
few watts, and that made klystrons unsuitable for transmitter use.  In early 1944, Ed Ginzton, 
then at Sperry, visited Britain to exchange information on Doppler radar and “to become 
acquainted with the development of velocity-modulated tubes in England.”  He was very 
impressed with an EMI two-resonator, external-cavity klystron, the CV (Common Valve) 150.    
His description of this tubes performance is very interesting.  He writes:8 
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Fig. 7  A page from the Ginzton Diary 

 
“…I saw a klystron of a remarkably simple design which produced 20,000 watts of 

power, well beyond any klystron made in the United States at that time.  The fact that it was so 
simple and so beautiful impressed me enormously, and led me to develop a still bigger tube a 
few years later.  A two resonator klystron, using grids, and operating 12,000 volts has been 
designed and built for 9.1 cm.  It was intended for an airborne system but due to changing 
circumstances will probably not be used.  It differs from other pulsed klystrons developed in 
Britain in that it uses a very large beam cross-section, a very large current density and grids to 
improve the modulation coefficient of the gaps.  Although the grids are large in diameter, the RF 
losses in these are made small by using large grid spacing.  The effect of the latter are made 
small by the high acceleration voltage.  As such, this tube represents the furthest deviation from 
standard klystron design that I have ever seen.  The cathode focusing and/or grid interception 
losses are poor.  Only 50% of the current passes through the short, stubby channel and one would 
think that this should be much better.  But in spite of this, the overall-efficiency at 12kV, and 150 
kW input is 20%.  This means that the actual efficiency is about 40%, that being the highest 
efficiency for a klystron that I have ever heard of.  The tube uses a slot for coupling.  It has a 
waveguide output, and it is tunable by means of plungers over 5%.  The starting time is not 
larger than 0.1 – 0.2 microseconds.  The tube is small, light, very easy to make, is easily tunable, 
and can be used as a power amplifier.  It is this tube that makes me think that the klystron may 
yet rival the magnetrons.  The life of the tube seems to be about 250 hours at present.  It is 
thought that Ba is being evaporated from the cathode which finally ruins the tube.  Experiments 
are now being conducted with lower cathode temperatures and longer life is indicated.  The tube 
is now in preproduction stages... ”  
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Fig. 8  The EMI CV-150 Klystron 

 
Ginzton did succeed in building a much bigger tube a few years later.  Along with 

Hansen and Marvin Chodorow, he returned to Stanford University after the war, and began work 
on an S-band accelerator.  It was based on a newly invented disk-loaded waveguide slow-wave 
structure, which was much lighter and more compact than existing lower frequency accelerators.9 

 

 
 

Fig. 9  Hansen and students with the first coupled-cavity electron accelerator 
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Fig. 10   Marvin Chodorow comparing the CV-150 to the Mark III klystron 

 
 As would be the case with many others to follow, this first microwave linear accelerator 

required a power level many times higher than the klystron state-of-the-art (CV-150).  
Improvements in electron beam optics, made possible by J. R. Pierce’s work at Bell Labs, were 
essential to this endeavor.  Other components also had to be designed for the first time, such as 
high-voltage modulators and insulators.  In 1948, the Stanford klystron for the S-Band Mark III 
electron accelerator, with its three cavities and wound-on beam-focusing electromagnet, 
eventually reached a power output of 30 MW with 1-microsecond pulses.  It was the first multi-
megawatt microwave source of any kind.  In the next 50 years, there would be many more 
advances, but none as impressive or as widely imitated.  Klystrons could now be designed to 
power transmitters for radar, UHF television, and space communications.  
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The velocity modulation principle, which made klystrons possible, was explained by 

Russell Varian as follows,10 (in a book written by his wife, Dorothy):   “Just picture a steady 
stream of cars from San Francisco to Palo Alto; if the cars left San Francisco at equal increments 
and at the same velocity, then even in Palo Alto they would be evenly spaced and you would call 
this a direct flow of cars.  But suppose somehow the speed of some cars, as they left San 
Francisco, was increased a bit and others retarded.  Then, with time, the fast cars would tend to 
catch up with the slow ones and they would bunch into groups.  Thus, if the velocity of the cars 
was sufficiently different or the time long enough, the steady stream of cars would be broken 
and, under ideal conditions, would arrive in Palo Alto in clearly defined groups.  In the same way 
an electron tube can be built in which the control of the e-beam is produced by the principle of 
bunching, rather than the direct control of a grid in a triode…” 

 

 
 
 
 

Fig. 11 The Applegate diagram 
 
 This is illustrated by the “Applegate” above, showing electrons from an electron gun 

traversing a gap in the first cavity, and having their velocity modulated by the voltage across that 
gap.11 As a result, they arrive in bunches at the second, or output cavity.  Bunches form around 
the electrons crossing the first gap when the sinusoidal voltage there crosses from negative to 
positive (from decelerating to accelerating).  Bunches arrive at the second cavity with a period 
T0, which corresponds to the period of the sinusoidal power input to the first cavity.  The 
bunching action shown in the Applegate diagram is entirely ballistic (or kinematic), i.e. the 
charge of the electrons does not come into play as their trajectories come very close and actually 
cross.  In an average klystron, space charge will modify these trajectories and the interaction 
between cavities and beam will be better described by “space-charge wave theory,” which treats 
space charge as an elastic medium and describes electron motion in terms of waves. 
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Fig. 3.4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12   Bunching and harmonic generation in a klystron 
 
 

Figure 12 shows a MAGIC simulation of the build-up of RF current in a PPM klystron 
(See Ch. 5).  Bunches form gradually, but get quite pronounced as they approach the output 
cavity.  At that point they are much like mathematical “unit impulses.”   If they are idealized that 
way, they would be a train of pulses represented by the function g(t) below, spaced by T0 
seconds, where T0 is the inverse of the frequency of operation for the klystron.  That train of 
pulses has a frequency content given by its Fourier transform, represented by G(f).  It consists of 
the fundamental and all its harmonics. The resonant circuit of the output cavity selects just the 
fundamental (if it is tuned there) and power at that frequency is fed to the load. 
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Fig. 13   Progress in the development of pulsed klystrons 
 
 
Figure 13 illustrates the progress in klystron power in the 60 years since WWII.  The  

trend line for S-band pulsed CW klystrons cannot be expected to go through all the points 
represented by actual tubes, but nevertheless shows a definite pattern, where output power 
increases 10-fold every 14 years.  Notice how far ahead of its time was the Stanford MK III 
klystron.  The scaling used to put on the chart an X-band pulsed klystron recently developed at 
SLAC follows the Pf2 law, which does not strictly apply to pulse tubes since it relates frequency 
to the surfaces available for cooling, rather than to the surface gradient.  That SLAC klystron 
produces 75 MW at 11.4 GHz, with 1.6 microsecond pulses.12  It shows on the graph as 16x75 = 
1200 Megawatts (plotted as 1 GW). 

Consider now some applications illustrating how the power available from klystrons has 
made possible systems for which klystrons were usually specifically designed.  In almost every 
case, except the first one (a radar which has been replaced by an active phased array), klystrons 
remain the only practical sources for these systems, some of which have been in existence for 
decades. 
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Radar:  As a result of plans laid in the late 1950’s, three huge radar stations, each with a 
range of 3,000 miles, were built to give the US early warning of possible Soviet trans-polar 
nuclear missile attacks.  This was known as the Ballistic Missile Early Warning System or 
BMEWS.  Only one of those radars, at Clear, Alaska, was built on American soil.  The others 
were sited at Thule in Greenland and on Fylingdales Moor in Yorkshire, England.  The original 
FPS50 'billboard' radars and the FPS49 parabolic radars were replaced in the early 1990’s by 
solid-state phased-array systems which have much the same range but are far less susceptible to 
jamming.  
 
 

       
 
 
 

The first BMEWS klystrons were made by Eimac in the late 50’s and replaced the 
tetrodes that were initially designed into the system.  The Eimac klystrons (X626s) were external 
cavity tubes and did exhibit some ceramic charging problems, which led to a contract to Varian 
for a large quantity of the integral cavity klystrons (VA812s).  In the end, Litton ended up with 
most of that business, which was considerable.  Integral cavity klystrons were specified when 
Litton won the contract.  Those tubes all had modulating anodes and were operated in floating-
deck long-pulse modulators.  The BMEWS klystrons operated at 150 kV and produced 1.25-MW 
peak and 75-MW average power at approximately 450 MHz.  At that average power, those 
klystrons were the most powerful ever produced.  The term “superpower” was coined to describe 
them.  The fact that they have been replaced in the BMEWS function by transistors in a phased 
array configuration illustrates the trend of solid-state incursions in microwave transmitters 
wherever power or frequency is low, or if parabolic antennas can be replaced by phased arrays. 

UHF television was one of the early klystron applications.  The bandwidth required is 
relatively small, the power too high for transistors to be practical, and the most important 
requirement is high power at high efficiency.  The original klystrons were Eimac external cavity 
tubes, at about 30-kW output, mostly in GE transmitters.  Subsequently, Varian, working with 
RCA, introduced a line of integral cavity tubes.  Two interesting high-efficiency devices, based 
on the original klystrons, resulted from an eventual Eimac-Varian collaboration.  One was the 

Fig. 14   The VA-812 and the BMEWS system 
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“Klystrode,” invented at Eimac, (or the IOT when it was re-invented at EEV), in which a gridded 
gun is part of the input cavity circuit and the beam current is a function of the RF drive, as it is in 
a tetrode.   Another was an external cavity klystron equipped with a multi-stage depressed 
collector (MSDC).  The MSDC klystron had an output power of 60 kW, 46 dB gain, and a 70% 
“peak synch” efficiency.  The efficiency for the klystrode is defined differently:  Its average 
efficiency over a normal TV spectrum is 35 % higher than its peak synch efficiency.  The gain 
for the klystrode is lower, 22 dB, but the peak synch power is 80 kW. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15   UHF-TV klystrons: An integral cavity “Klystrode,” and an external cavity MSDC klystron 

 
Medicine is a major and socially important klystron application.  Shown in (Fig.16) is a 

Varian Clinical Accelerator or “Clinac.”13  In this hospital equipment an S-band standing-wave 
accelerator allows the generation of high output, stable X-ray modes at widely separated 
energies, providing a full range of treatment capability.  The accelerator is located inside a 
rotating gantry and is driven by a 5-MW pulsed klystron.  There are more than 4,000 medical 
accelerators in operation around the world.  Most are powered with magnetrons but higher 
energy modern machines require klystrons.  In societies with health-care services comparable to 
the US or western Europe, the average person has a one in eight chance of being treated on a 
linear accelerator in his or her lifetime. 
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Fig. 16   A Varian “Clinac” 
 

       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17  The DSN 220 ft. antenna, the Varian 500-kW CW S-band klystron, 
and the module at  the antenna center that houses several klystrons 
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Communications.  The NASA Deep Space Network (DSN) is an international network of 
antennas that supports interplanetary spacecraft missions and radio and radar astronomy 
observations for the exploration of the solar system and the universe.  The network also supports 
selected Earth-orbiting missions.  The DSN currently consists of three deep-space 
communications facilities placed approximately 120 degrees apart around the world:  at 
Goldstone, in California's Mojave Desert; near Madrid, Spain; and near Canberra, Australia.  
This strategic placement permits constant observation of spacecraft as the Earth rotates, and 
helps to make the DSN the largest and most sensitive scientific telecommunications system in 
the world. 

At each facility, 220-ft antennas are powered by a 500-kW, CW S-band klystron and two 
150-kW, X-band klystrons, operated in parallel.  There is also another 25-kW X-band klystron. 
S-band is used for communications with orbiting spacecraft.  The high-power X-band tubes are 
used in a radar mode.  The 25-kW klystron is actually the tube recently used to send commands 
to the Mars orbiter and Spirit.   

 All the above klystrons, except for their exceptionally high power, are more or less 
conventional.  They were designed about 30 years ago, as were the systems they power. 

It is now instructive to consider five specific examples, which represent the current state-
of-the-art for very high-power klystrons. 

The first is the Varian 3030A, an experimental X-band klystron, which in 1969 produced 
a CW output of 1030 kW.14,3 

 

 
 

Fig. 18  The Varian X-Band 1-MW CW klystron 
 
 

This tube (Fig. 18) is about 80% collector, illustrating the point that klystrons are not 
nearly as limited in their average power by frequency, as are crossed-field tubes.  They just 
require large collectors.  Nevertheless, ohmic losses in the output cavity do limit the output at  
X-Band.  Also, the surface available for cooling a single cavity is not sufficient to handle the I2R 
losses associated with the output power desired.  A circuit efficiency of 99%, associated with a 
desired output of 1-MW CW would require that 10 kilowatts watts of power dissipation be 
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removed from the klystron’s output cavity to prevent it from overheating and drifting in 
frequency.  Such a cavity would have the approximate surface of a matchbox.  

A solution to that problem was an extended interaction output cavity15 (i.e. - a larger, 
essentially overmoded cavity, designed to be “synchronous” with the beam for the mode 
chosen).  Such a cavity has not only a larger surface from which to remove the heat, but also a 
higher R/Q, which leads to a lower Qext and a higher circuit efficiency.  This concept, was 
originally demonstrated by Tore Wessel-Berg at Stanford.  Wessel-Berg’s objective was a wider 
bandwidth.  He also contributed to the design of the X-3030.  

The 3030 development project was a product of the Cold War.  Its 35-year power record 
would probably have been exceeded by now, had the interest in “Superpower” klystrons 
remained as high as it was in the 50’s and 60’s.  Today, scientific high-energy particle  
accelerators are setting the pace in the development of very high-power klystrons.  The “Next 
Linear Collider” (NLC)16 is being designed, initially, as a 500-GeV collider and ultimately a 1-
TeV e+e- machine.  Its full length will be approximately 30 kilometers (18 miles).  Current 
design for the 500-GeV version calls for as many as 4000 X-band klystrons, each delivering 75 
MW, with 1.6 microsecond pulses and an average power of 14.4 kW.17  Those 11.4-GHz 
klystrons operate at 500 kV, with a perveance of about 0.7x10-6.  Beam confinement is by 
Periodic Permanent Magnet (PPM) focusing because, given the number of klystrons, the NLC 
power budget does not permit the use of electromagnets (Fig. 19).    

 

 
 

 
Fig. 19   The SLAC 11.4 GHz, 75-MW  PPM klystron 
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Figure 20 shows the SLAC 15-ft long B-factory klystron (BFK).18  It operates at 90 kV, 
with a microperveance of 1 and produces 1.25-MW CW.  It has seven cavities which are tuned 
capacitively by moving a flexible cavity wall and changing the gap length.  Overall efficiency is 
60%, gain 50 dB and the nominal bandwidth is 10 MHz.  The collector is capable of dissipating 
full beam power.  The klystron is operated horizontally.  The BFK design was a joint 
undertaking between SLAC and Varian.  In Chapter 4, the experimental gain response of the 
BFK of the klystron will be compared to analytical calculations, as well as to 1-D and 2-D 
simulation codes. 

                   

 
 

Fig. 20 The SLAC 1.25 MW CW B-Factory klystron 
 

 
Finally, (Fig. 21a) shows the TESLA Linear Collider multiple-beam klystron (MBK), 

TH1801, produced by Thales Electron Devices (Formerly Thomson Tubes Electroniques).  
Seven beams (one of which is centered), each of micropervance 0.5 are launched into 
independent drift tubes but common cavities.  After their energy is extracted at the output, they 
are directed to a common collector.  The MBK design was adopted because of the extraordinary 
power and efficiency requirements of the TESLA Superconducting Linear Collider.  The tube 
frequency is 1300 MHz, the peak power output 10 MW, the average power 150 kW and the 
efficiency “goal” 70%.  The operating voltage is 110kV.  The pulse duration is 1.5 milliseconds 
and the PRF 10 Hz.  The long pulse places severe thermal requirements (which are exacerbated 
by an elevated voltage) and the high efficiency calls for low perveance.  The MBK design 
addresses both issues.  Thales has reported an efficiency of 65%. 
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  Fig. 21a  The Thales MBK    Fig. 21b  The CPI MBK. 

 
Shown in (Fig. 21b) is the CPI VKL-8301, which was built for TESLA to the same 

specification.19  It is also an MBK, but its design is fundamentally different and is based more on 
life cycle cost than on initial price.  It employs six beams, on a larger “bolt circle” than the 
French tube, and without a center beam.  This arrangement (which employs individual 
intermediate cavities) makes possible larger cathodes and lower cathode current densities.  
Hence the life of the VKL-8301 can be expected to be longer than the TH1801.  
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Chapter 2. 
 

Kinematic Theory of Velocity Modulation 
 
2.1 Introduction 
 

This section and the next will present the principal formulae used in the design of 
klystron amplifiers.  The analytical small-signal Mathcad code (Appendix I) contains such 
formulae and is used for the preliminary design of a new klystron.  The theory below is included 
because it is necessary for the proper treatment of coupling coefficients and beam loading in 
complex cavities.  This is important, particularly at millimeter wave frequencies or very high 
peak powers, where extended interaction cavities may be necessary.   

The AJ-Disk 1-D simulation code (Appendix II) uses a combination of analytical 
formulae and electron dynamics and is used for a quick assessment of the power and efficiency 
of the new klystron design.  Finally, the 2-D and 3-D MAGIC codes (Appendix III) simulate 
klystron performance using first principles (electron dynamics and Maxwell’s equations). 
Simulation codes contain no small-signal approximations and are increasingly more accurate as 
they proceed from 1-D to 2-D to 3-D.  In the process, they also become more time-consuming. 
They are described in the Appendices, where they are used to treat a working klystron example, 
with its actual performance compared to the results from three different codes.  This is useful 
information, since klystron design in the 21st century is being carried out almost entirely on 
computers (i.e. - with little or no “cold-testing” or “beam testing”).  

The kinematic (no space charge) analysis below follows several authors who published 
books on klystrons shortly after WW II.  The velocity modulation (or “bunching”) two-cavity 
theory below is the only large signal analytical treatment of klystrons in this chapter.  It leads to 
the Bessel function coefficients of the current harmonics and a calculation of two-cavity 
amplifier efficiency.  The subsequent derivation of the coupling coefficient and the presentation 
of the beam-loading formulae are based on small signal approximations, which are valid for all 
but the final cavities of a multi-cavity klystron.  Neither treatment takes space charge into 
account.  That is done in Chapter 3.  All derivations in this and the next section are non-
relativistic.  
 
2.2 Two-Cavity “Bunching” Theory 
 

Consider a klystron consisting of two cavities, a “buncher” and a “catcher,” both gridded, 
as shown in (Fig. 22).  Let a beam of electrons, which has been accelerated by a potential Vo to a 
velocity uo, traverse the first pair of grids, where it is acted upon by an RF voltage V1sinωt, 
reduced by a “coupling coefficient” M.  The latter modifies the voltage across the grids due to 
the finite transit time, resulting in a lower effective voltage modulating the e-beam.  Expressions 
for the coupling coefficient M (always less than 1) will be derived later.  
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Fig. 22  A two-cavity klystron (this figure, and a number of others that follow are from Reference 11) 
 

The electrons in the beam enter the gridded gap with energy 
  

 2
0 0

1

2
mu eV=  (1) 

where the e is the electron charge.  The electron energy is modified by the RF field at the gap 
and the following relationship can be written for the exit velocity u: 
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1 1
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2 2
mu mu eMV tω− =  (2) 

From the above it follows that 
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u u t
V

ω= +  (3) 

If one assumes that V1<<Vo (which is a good assumption for the first cavity of a two-cavity 
klystron), then 

  

 1
0

0

1 sin
2

t
MVu u

V
ω
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⎜ ⎟
⎝ ⎠

≅ +  (4) 

 
Consider first the case for which the first interaction gap is very narrow, such that the 

finite transit time of the entering electrons can be neglected.  (Later, the activity within both 
interaction gaps will be discussed.)  The electrons then enter, and leave the first gap at time t1, 
then drift for a distance l, and arrive at the center of the second gap at time t2.  Then (invoking 
again the small-signal assumption V1/V0<<1) 
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or, in terms of phase 2 1 0 1sint t X tω ω θ ω= + −
 (6) 

where,  θ0 = ωl/u0, and the dimensionless quantity X = MV1θ0/2V0 is called the “bunching 
parameter.” When X>1, 2tω  is a multivalued function of 1tω , and there is electron overtaking. 

The quantity of charge leaving the buncher in the time interval t1 to t1 +dt1 is Iodt1, at t1 = 
0, where Io is the beam DC current entering the buncher.  This charge, after drifting, enters the 
catcher in the interval t2 to t2+dt2.  If It (total current, DC and RF) is the current transported by the 
beam to the entrance to the catcher, then through conservation of charge, 

 
 1 2o tI dt I dt=  (7) 

Differentiating  Eq. (6) yields  

 2
1

1

1 cos
dt

X t
dt

ω= −  (8) 

which can be combined with Eq. (7) to give  

 
1(1 cos )

o
t

I
I

X tω
=

−
 (9) 

For X = 1, the current at the catcher becomes infinite (Fig. 23), since the finite charge 
transported from the buncher at t1 = 0 arrives at the catcher in a zero time interval (dt2/dt1=0).  To 
calculate It, one must then sum the absolute values of all current contributions to It from time 
segments t11, t12, etc, at the buncher as follows, 
 

   

 0
11 12

1 1
....

1 cos 1 costI I
X t X tω ω

⎡ ⎤
= + +⎢ ⎥

− −⎢ ⎥⎣ ⎦
 (10) 

  

The current waveforms at the buncher are shown in (Fig. 24).  Note that at the lower values of X 
they are almost sinusoidal, but they become rich in harmonics at X = 1 and above. 
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Fig. 23    Electron vs. arrival departure phase in a two-cavity klystron, 

 as a function of the bunching parameter X. (Ref. 11) 
 
 

 
Fig. 24   Bunching waveforms as a function of X (Ref. 11) 

 
 

Since It is clearly a periodic function of ωt2, it can be expanded in a Fourier series, as 
follows, 
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with coefficients given by 
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and  
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Substituting Eq. (6) and Eq. (7) into (12) and (13) above, these become 
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Note that bn is identically equal to zero, since the integrand is an odd function of 1tω .  It turns out 
that the expression Eq. (14) for the an coefficients is also a representation of the Bessel functions 
of the first kind and nth order as in 

    
 02 ( )n na I J nX=  (16)         

 
Therefore, the catcher RF current It can be written as the following series 

 
  

 0 0 1 0
1

2 ( )cos ( )t nI I I J nX n tω θ
∞

= + −∑  (17) 

The n = 1 harmonic (the fundamental) is simply 
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When X<1, the series in Eq. (17) converges for all values of t2.  For X=1, and X>1, there are 
discontinuities at various t2 values as was shown in (Fig. 24) (which would disappear if space 
charge were taken into account).  The harmonic amplitudes correspond to the peaks of the Bessel 
functions (Fig 25).  If the current It were a series of δ-functions (as in the example in Fig. 12), 
then all harmonics would be equal.  In this case, they are almost equal.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 25 The first 5 Bessel functions of the first kind.  (Ref. 11) 
 

 
One can now calculate the output power from the fundamental (n = 1), using Eq. (18) and 

the maximum value of J1(X), which is 0.582 and occurs at X = 1.84.  The output power is the 
product of the RF current I1 and the maximum voltage that can be developed across the output 
gap without reflecting electrons, which is the beam voltage V0.  Both are peak values, so 
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1.16
0.58 0.58

2 2
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Io Vo
P x I V P= = =  (19) 

Consequently, for the two-cavity klystron, without space charge and with sinusoidal 
voltage modulation, the maximum efficiency is 58%.  The above derivation is completely valid, 
even when there is electron overtaking.  The small-signal approximation, used to formulate the 
expressions used in launching the velocity-modulated beam into the drift space is not employed 
beyond the buncher in arriving at the above result.   

However, as will be seen in the following sections, the effects of space charge and a 
number of other issues force a much lower efficiency in the two-cavity klystron case.  On the 
other hand, it has been shown by simulation and experiment in multiple cavity klystrons that the 
use of a 2nd harmonic cavity, or multiple cavities properly arranged, can produce I1/I0 ratios as 
high as 1.8.  In one case, a multi-cavity experimental klystron efficiency of 74% has been a result 
of such optimum bunching,20 which incidentally relies on space-charge forces, as discussed in 
the next section.  

The velocity modulation kinematic treatment above was first published (in the US) by D. 
L. Webster,21 a collaborator of Hansen and the Varians at Stanford.  His 1939 Journal of Applied 
Physics article included, in addition to the “bunching” theory, a brief theory of “debunching” 
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(i.e. - an accounting of the effects of space charge on the velocity modulation process).  Eugene 
Feenberg, a member of the wartime Sperry Gyroscope “Tube Development Laboratory,” 
developed the Webster theory into a considerably more detailed mathematical treatise, which 
included the addition of a third cavity to the original two-cavity klystron, and the first formulae 
for coupling coefficients and beam-loading in gridded and ungridded klystron cavity gaps.  The 
Feenberg “Notes on Velocity Modulation”22 are not easy reading and were never published.   
 
2.3  Small-Signal Analysis for the Coupling Coefficient 

 
The Feenberg theory and most of the books on klystrons published in the 1940’s and the 

early 1950’s developed formulae for the design of klystrons that included the assumption that 

0u c<< .  However, with the previously mentioned original Ginzton/Chodorow megawatt 
Stanford klystron, relativistic beams have become rather commonplace in radar and accelerator 
klystrons and relativistic corrections are necessary in the design.  The derivations that follow are 
not relativistic, but the table in Appendix V provides correction factors for all pertinent klystron 
parameters and variables.  
 The objective is to define a coupling coefficient M and to derive expressions for it under 
different assumptions for the geometry of the interaction gap and the beam.  A strong magnetic 
confining field is assumed, with no radial electron motion allowed.  Initially, the calculation will 
consider electron motion only on-axis.  Subsequently, M will be averaged over the assumed 
cylindrical beam.  

 The coupling coefficient M is probably the most important parameter used in the design 
of a klystron because the klystron gain is a function of M2n (where n is the number of cavities), 
and because it is very sensitive to the beam diameter, which is never known precisely.  Hence, 
discrepancies in the calculated or simulated gain of a klystron can usually be traced to 
inaccuracies in the evaluation of the coupling coefficient. 

 We begin with the equation of motion of an electron in a gridded gap field E(z) defined 
as 

 ( , ) ( ) j t
z mE z t E f z e ω=  (20) 

Where f(z) is a “field shape factor,” and the quantity Em is related to the rf voltage V1 
across the gap by the equation 
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 A parameter, α (for small-signal α<<1), will be used to define the depth of modulation in 
relation to the DC beam voltage  
 

 1 0/V Vα =  (22) 
 
Now, the acceleration of electrons entering the gap field is given by 
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We multiply both sides of Eq. (23) by 2dz to obtain the square of the derivative of the velocity u  
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If the field in the gap is small, (α<< 1) the electron position at time t would be approximately 
    

 0 ( )u t z h zα≈ +  (25) 

We introduce
0

e u

ωβ = , “the beam propagation factor.” Multiplying both sides of Eq. (25) by βe, 

we obtain, approximately 
 

 et zω β=  (26) 

 

Replacing ωt by βez and integrating Eq. (24) 
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where u the velocity of the electrons exiting the gap and u0 the velocity corresponding to the 
beam voltage V0.  Thus, the change in electron kinetic energy as it traverses the gap is effected 
through an “effective voltage”   
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We form a ratio of the effective voltage to the integral of the applied field and define the ratio as 
the coupling coefficient M  
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The coupling coefficient is seen to be a dimensionless quantity, dependent only on the field 
shape factor.  If the field is constant, as it is across a gridded gap, the integral in the denominator 
is trivial.   
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Equation (29) can be generalized by extending the integration over the entire z-axis.  It can then 
be applied to a gridless gap, such as that in (Fig. 26).  A more general expression for the coupling 
coefficient is then  
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 (30) 

 
In words, M is equal to the “convolution” of the axial electric field E(z) with the exponential 
ejβez, divided by the voltage V1 (integral of the field) across the gap.  
 
 

 
 

Fig. 26   A gridless klystron cavity and the electric field at the axis 
 
Note also, that if the field Ez(z) is a piecewise-continuous function of z, it can be written 

in terms of the inverse Fourier integral 
  

 
1

( ) ( )
2

ej z
e zg E z e dzββ

π

∞

−∞

= ∫  (31) 

which means that M can be also written in terms of the Fourier transform of the electric field 
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When the field is an even function of z, as in most cases, a very simple expression results  
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                                               (33) 

Applying Eq. (33) to the case of a gridded gap with a constant field of magnitude Ez =V1/d 
between –d/2 and d/2 (and shifting the origin), one obtains  
 

 ` (34) 
 
The above calculation demonstrates the use of a simplified form for the coupling 

coefficient when the field of interaction is an analytic function of z.  In computer simulations, the 
field of an extended interaction cavity can be determined by simulation, listed in a spreadsheet 
with cos(βez) and computed using Eq. (33) for symmetrical fields, or Eq. (30) for arbitrary field 
distributions.  This is a much better method for calculating M, if the cavity interaction field is 
known in detail.  

Since klystron cavities are no longer gridded, engineers generally do not rely on Eq. (34). 
Rather, they employ more accurate, 2-D models.  To derive a 2-D expression for the coupling 
coefficient in ungridded cylindrical drift tubes (as in Fig. 26), one must assume a certain electric 
field at the edge of the gap (r = a) computed from the detailed nature of the drift tube tips, or 
determined by simulation, and calculate the coupling coefficient M(a,βe)  at r = a. From that 
boundary condition, M can then be calculated as a function of r throughout the interaction 
region. 

The gap field is defined as before, this time with an r-dependence 
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and at r = a 

 ( , , ) ( , ) j t
z mE a z t E f a z e ω=  (36) 

 
Various authors have amused themselves over the years computing coupling coefficients for 
round tips, knife-edge tips, square tips, etc.  Warnecke & Guénard 23 assume drift tubes ending in 
knife-edges to obtain the expression below for the field at a gap with an rf voltage V1 across it, at 
the drift tube radius a. 
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Inserting this into Eq. (30) yields 
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With a good table of integrals, one obtains the most commonly used coupling coefficient for 
gridless gaps at r = a, namely  
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 (39) 

 
With this as the boundary condition, we shall now calculate M anywhere in the gap and average 
it over the beam. 

In the absence of space charge and for a field varying sinusoidally with time in a vacuum, 
Maxwell’s equations reduce to the wave equation 
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where c is the velocity of light.  Since 
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one obtains 

 2 2
,r z z zE k E∇ = −  (42) 

     
where k = ω/c.  If the variation with z is as ejβz, then 
 
 

 2 2 2( )r z zE k Eβ∇ = −  (43) 
 
Since, unlike in a closed waveguide, the axial electric field cannot be zero on axis at the center of 
the gap, the solution to Eq.(43) has the form 0 ( )I rγ , with 
 

 2 2 2kγ β= −  
 
And kβ > .  Since the axial field is completely specified at the surface r = a, it can be described 
by the Fourier integral 
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At r = a 
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Let us now find the effective potential (integral of the field) experienced by an electron 

traveling with the beam velocity u0 at a radius r along a line parallel to the axis.  Using Eq. (30) 
and Eq. (44) 
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We now use the following identity 
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where the “delta function” δ(βe−β) has the property that, when multiplied by another function of 
β, and integrated over β from minus to plus infinity, it returns that function evaluated at βe. 
Consequently, using Eq. (48) with Eq. (47) yields 
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Then 
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where 
 2 2 2

e e kγ β= −  (51) 
 

For simplicity, drop the “e” subscript from γ from this point on, with the understanding 
that γ will always be represented by Eq. (51) and will always be real, where klystrons (or TWTs) 
are concerned.  On the other hand, it is conventional in most textbooks to keep the subscript “e” 
in βe = ω/u0.  Now, at r = a, Eq. (50) becomes 
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Comparing with Eq. (39), we conclude that 
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Hence, the general expression for the coupling coefficient anywhere in the gap is, from Eq. (50)   
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It is now appropriate to average the coupling coefficient over the beam.  Note, however 

that, as long as there is a strong magnetic field and laminar beam flow, we should be averaging 
not M but M2, since M2 is what appears in the expression for the voltage gain between two 
cavities (the coupling coefficient for coupling voltage from circuit to beam is the same as that for 
coupling current from beam to circuit).  Therefore, assuming drift tubes and filling factors to be 
the same for the two cavities, we can form an expression for the averaged square of the coupling 
coefficient as follows: 
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From a table of integrals 
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We denote by Ma the coupling coefficient at r = a, and by M  the averaging factor in the 
equation below, we can choose to write 
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We shall use this expression for the coupling coefficient of a single cavity. 
 Instead of obtaining the equation above analytically, one could simulate the electric field 
by one of several codes, calculate Ma numerically, and multiply the result with the calculated 
M .   Some typical klystron parameters are βed =1 radian, γa = 1 radian and b/a = 0.6.  For such 
values, one obtains Ma = 0.765, M  = 0.69 and M = 0.53.   For comparison, the “gridded” 
coupling coefficient of Eq. (34) would yield: M = 0.959.  Obviously Eq. (34) is quite useless for 
gridless gaps.  On the other hand, for a much lower γa (the BFK has γa = 0.594, b/a= 0.65 and 
βed= 0.987), we obtain M = 0.885 (Ma = 0.974, M = 0.935, and sin(βed /2)/ βed /2  =  0.96).  
This is much closer, but it would still seriously overstate the gain of a multicavity klystron. 
 
2.4 Beam-Loading 
 

To conclude this section, one needs to provide a formula for the beam-loading 
conductance, Gb.  The early large-signal bunching theory of Webster required the assumption of 
closely spaced gridded gaps.  This is unacceptable for high-power klystrons, (because of grid 
interception), as well as for the “extended interaction” cavities discussed later, where the electric 
field is far from constant across the gap.  Fremlin, Gent et al,24 were probably the first to present 
a detailed analysis of beam-loading in 1946.  At the time, klystrons were mostly two-cavity or 
reflex oscillators, and the calculation of start-oscillation current was critical to their design.   

The original analysis was Gent’s, simplified by Branch in a 1960 paper.25  It is important 
to define the coupling coefficient, M, as a function of the electric field, as we have done.  The 
calculation of the related beam-loading parameter Gb, proceeds along similar lines, but the 
derivation is rather cumbersome and will not be reproduced here.  The result can be stated as 
follows 
 

 
2

0 4
b e

e

MG

G

β
β

∂
= −

∂
  (60) 

 
Equation (60) is quite general and applies to all gap shapes, as well as to the “extended” 

or “sheet beam” cavities that will be discussed later.  Its meaning is that the ratio of the beam 
loading conductance Gb to the beam conductance G0 = (I0/V0) is entirely determined by the 
coupling coefficient M and its variation with the dc beam voltage.  Beam-loading formulae using 
space-charge theory will be restated later, and it will be shown that the kinematic treatment 
leading to Eq. (60), and an analysis based on space-charge theory arrive at the same important 
result, for small signals.    
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 The next section, on space-charge waves, will also show that the magnitude of the 
coupling coefficient M in extended cavities is optimized by synchronizing the phase velocity (of 
the forward wave) in an extended cavity, to the beam velocity.   

Using Eq. (34) with (60), along with a little differential calculus, will verify the beam 
loading formula for plane gridded gaps. 
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If, in the same way, Eq. (54) for M for a gridless cylindrical geometry is squared, differentiated 
with βe according to Eq. (60), and averaged over the beam to obtain Gb/G0, a very complicated 
expression for beam loading results.  It is used in the Mathcad small-signal code (in Appendix I) 
since it is a closed expression and does not require a simulation of the field, and assumes the 
same gap geometry as Eq. (59) does.  It takes the form, 
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 (62) 

 
where M  is given by Eq (58). 
 

 
Fig. 27  Equivalent circuit for a klystron output cavity 

 
A klystron cavity equivalent circuit, including the beam loading conductance (and 

susceptance) is shown in (Fig. 27).  Calculation of the susceptance is even more onerous than the 
conductance calculation.  A formula for a gridless gap is provided by Feenberg26 but only for the 
beam filling the drift tube, and an infinitesimal gap.  

 Figure (28) shows both beam conductance and susceptance for a gridded gap to indicate 
the general relation of these quantities to the gap width.  Note that Gb/G0 becomes negative when 
the transit angle exceeds 2π, while the susceptance becomes inductive after π.  In the gridless 
case, Gb/G0turns negative at about 4.6edβ >  radians. 
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Fig. 28 Normalized beam loading conductance and susceptance for a gridded gap, as a function  
 of transit angle 
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Chapter 3. 
 

Space-charge Theory 
 
3.1  Introduction 

 
In kinematic theory, which was the earliest mathematical treatment describing beam 

interaction with microwave fields, the fields due to the beam’s space charge were ignored and 
calculations were based only on the effects of the fields in the interaction gap.  Energy between 
cavities was transmitted through ballistic electron motion.  Kinematic theory does not provide 
the tools necessary for a satisfactory analysis of multicavity klystrons.  For this, a small-signal 
space-charge wave theory is necessary. 

This section develops the space-charge wave formulation and employs it to derive 
expressions that are useful in calculating the gain and bandwidth of multicavity klystrons, and of 
linear beam tubes, in general.  It also derives an equation for beam loading that is consistent with 
Eq. (59), but is cast in a form that is both more informative, and useful for computer calculations.  
The theory below follows Chodorow,27 Zitelli,28 and Wessel-Berg.29  Derivations are 
abbreviated.  The objective, as in Chapter 2, is to expose the student or engineer to the origins of 
design equations and highlight the assumptions that are involved in their derivation.  These 
equations will be subsequently used in an example of actual klystron designs.                                                    

The initial basic assumptions are: 
• No electron motion or current is assumed to exist along any dimension, other than the 

z-dimension.  This requires the presence of a strong magnetic field, which is usually 
the case with modern klystrons. 

• The analysis assumes small-signal RF variables.  Products of RF quantities will be 
neglected.  

• This will be a non-relativistic analysis.  Relativistic correction formulae are provided 
in Appendix V.  

All electrical quantities will be written as sums of the DC and AC terms, the AC term 
being small compared to the DC term (as per the definition of “small-signal”).  Cross products of 
AC terms will be neglected.  The unit system is MKS throughout this section. 

Equations (63) below provide the equations for total velocity, current density and charge 
density, respectively, DC terms are denoted by the subscript 0.  The AC terms u, i and ρ will be 
functions of the coordinates transverse to the electron motion (x and y in Cartesian coordinates) 
and the z-dependence is exponential, indicating a traveling wave. 
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Note that in Chapter 2, the symbol used for the total current was It, and for the RF current I1. 
These were not necessarily small-signal currents. Here, only lower-case letters will be used, 
except for voltage.  Naturally, i0 is identical to I0. 
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3.2  Fundamental Space-Charge Wave Analysis 
  

Expressions for space-charge waves will be derived from three general equations:  a) the 
wave equation for the electric field (derived from Maxwell’s equations), b) the continuity of 
charge and c) the force equation.  Equations, initially in Cartesian and finally in cylindrical 
coordinates, will be derived for the quantities above and manipulated to find expressions for the 
wave motion of current between klystron cavities.  This is expressed by the factor ej(ωt-γz), 
representing a traveling wave with a propagation constant γ, the value of which will be 
determined.  It is intuitively obvious that γ will be a function of the space charge, the voltage, the 
frequency and the geometry of the drift tube.  Furthermore, one should be able to derive an 
expression for the rf current imparted to the beam through velocity modulation by a cavity gap 
voltage V1, with the small-signal condition V1<<V0, and with space charge taken into account.  
 The effect of the space charge is to act as an elastic medium between the concentrations 
of electrons (bunches) which form as a result of velocity modulation. The result is the formation 
of waves of charge similar to those formed in spring-weight systems.  In the early days of 
klystrons, the RF current calculated as in Eq. (18) was reduced by a “debunching factor”30  
sin(hz)/hz, where z is measured from the center of the cavity gap (with the V1 modulating 
voltage) where the current was calculated, and h/2π was designated as the “wave number.”  In 
the derivations which follow, h will be replaced by its modern equivalent the plasma frequency 

ωp (
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e
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ρω
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= ), a function of the charge density ρ.  Ιt will be further  modified by a reduction 

factor R, which will take into account the effect of the drift tube walls in reducing the effects of 
the space charge between bunches (hence increasing the rf current which was reduced by the 
“debunching factor”). 
 The large-signal expression for the fundamental current in a beam which has been 
modulated by a klystron cavity was given by the first line of Eq. (18) in terms of the “bunching 

parameter,” 1 0

02

MV
X

V

θ= .  The series representing the Bessel function in that equation reduces as 

follows, for X<<1 
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Hence, the magnitude of small-signal current, reduced by the “debunching factor,” would then 
be, empirically 
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The mathematics that follows will now derive the above formula and show that βp must be 
modified by the presence of a drift tube.  

 
The electric field in the drift tube is  
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r r

   (66) 
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where, as discussed previously, γ is the unknown propagation constant.  The starting point is the 
inhomogeneous wave equation (i.e., a differential equation containing “sources,” involving the 
charge and the current to the right of the equal sign).  It is this equation that governs the 
operation of every electron device: 
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where c is the velocity of light, ε0  and µ0 the permittivity and permeability of free space, and k = 
ω/c is the wave number in free space.   It is only necessary to work with the z-components of the 
vectors E, i, and ∇, since the other components can all be derived from Ez.  One then has 
(initially in Cartesian coordinates, and omitting the subscript z for the current and velocity, since 
no motion is allowed, except in the z-direction).  
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The objective in what follows is to eliminate ρ and i from Eq. (67) and to obtain an 

equation in Ez alone.  The equation of continuity is  
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which can be written, using Eq. (63), as 
 

 0j i jγ ωρ− + =  (71) 
 
Products of rf current and rf charge may be neglected.  This yields 
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and    

 0 0i u uρ ρ= +  (73) 
 
Neglecting the term u B×  (which is negligible, except for relativistic velocities), the force 
equation is  
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where η is defined as e/m.  The total velocity derivative with time in the equation above should 
not be confused with the partial derivative used to observe the behavior of the beam at a fixed 
point.  The total derivative of u(z,t) is equal to the sum of changes, both with time and distance, 
or 
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In order to eliminate ρ and i from Eq. (68) and reduce it to a homogeneous form, two 

more relationships are required.  From Eq. (71) and Eq. (73), we can obtain ρ and i in terms of u 
and then use Eq. (74) to relate them to Ez 
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and 
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Replacing u, using Eq. (76) in both equations above, one obtains 
 

 0
2

0( ) zE
j u

ηγρρ
ω γ

=
−

 (79) 
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Substituting these into Eq. (68), while omitting much of the arithmetic, and using  
c2 = 1/ε0µ0 (velocity of light), yields  
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Eq. (81) then becomes a homogeneous wave equation of the form 
 

 2 2 0z zE T E⊥∇ + =  (82) 
Where 
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With βp = ωp/u0. The propagation constant, γ, continues to be the unknown and is be determined.   
 
 
 



 41

 
3.3  Determination of the Plasma Reduction Factor 
 

To solve Eq. (82) one must specify appropriate boundary conditions.  Depending on the 
coordinate system, the solutions will be trigonometric or Bessel functions.  They will be 
summations over the Tn’s, with four separate βn’s to be calculated from each Tn, since Eq. (81) is 
quartic in γ.  Before deriving a useful solution, first consider the case of an infinite beam, with no 
transverse dimension variations.  Then, Eq. (82) becomes 
 

 2 0zE⊥∇ =  (84) 
 
which requires T = 0 and results in the following values for the propagation constant from Eq. 
(83).  The first pair of roots is 
 

 1,2 kγ = ±  (85) 

 
The second pair is  

 3,4 e pγ β β= ±  (86) 

 
The first two solutions are plane waves in free space, traveling with the velocity of light.  

The second two are plasma waves with propagation velocities above and below the beam 
velocity (fast and slow space-charge waves).  There are no transverse boundary conditions to be 
considered since the transverse space is infinite.  The overall solution of equation Eq. (84) must 
include all four solutions, properly matched to the initial conditions at  z = 0.  If one writes for 
the velocity 
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then from Eq. (78) 
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And hence 
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where the Λn’s (lamdas) are constants to be determined from the boundary conditions for 
velocity and current at z = 0.  At the boundary z = 0, the total velocity is based on the 
approximation first used in Eq. (4) and the current is zero.  Using the definition for the βn’s 
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and 
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The equations above have the solutions 
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The RF current in the beam can then be found to be 
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This is close to the desired result in Eq. (65), except that what is ultimately needed is an 
expression for a cylindrical or sheet beam, not one of infinite dimensions. 

For a pencil beam, not filling a cylindrical drift tube, the solution in cylindrical 
coordinates contains ordinary Bessel functions (Jo) within the beam (Region 1) and modified 
Bessel functions (I0, K0) in the Region 2 between the beam and the drift tube wall.  

The solutions have the form:31 
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where B, C and D are arbitrary constants to be determined by the boundary conditions.  These 
are, Ez1 = Ez2 and 1 2/ /z zE r E r∂ ∂ = ∂ ∂  at r = b (for continuity of the tangential electric and 

magnetic fields respectively), and Ez2 = 0 at r = a.  The wave numbers Tn and τn are, 
 
 In Region 1:   
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 In Region 2:      
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 The quantities τn correspond to waveguide modes in Region 1; and the Tn’s to space-
charge waves, as well as waveguide modes in Region 2.  Equation (95), as a quartic in γn, has 4 
solutions.  We shall make the assumptions that in Region 2, the space-charge wave modes have 
velocities almost equal to the velocity of the beam making n eγ β≈ , and hence n >>k γ .  We can 

then use βe instead of γn in Eq. (95) (except in the denominator term), with the result, 
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If the small difference between the electron wave number and “reduced” plasma wave number is 
denoted by βq, we write 
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And, finally 
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Where, as before the + sign corresponds to the slow space-charge wave.  The ratio between βq 

and βp  is the “Plasma reduction factor,” which we set out to determine.  It is  
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To obtain the Tn’s we need to match boundary conditions at r = b.  When this is done, and by 
substituting βe for γ, we can obtain the transcendental equation   
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Using the lowest root T0 and omitting the subscript, we obtain for the plasma reduction factor R
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    Equation (100) can be solved graphically as shown in (Fig. 29).  (It is quickly solved in 

Mathcad, using the same approach).   Branch and Mihran32 have published solutions and graphs 
for a number of geometries.  For the pencil beam in a cylindrical drift tube where a and b are the 
drift tube and beam radii, the plasma reduction R = ωq/ωp is plotted as a function of the beam 
radius in (Fig. 30).  

Using a similar procedure as in the case of no drift tubes, it can be shown that the current 
is the same as in Eq. (92), with βq substituted for βp.  The drift tube is assumed to be cut off. 
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Fig. 29   Graphical solution of Eq. (99) 
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Equation (102) is the fundamental small-signal transconductance relating the modulating cavity 
voltage V1 to the RF current a distance z downstream.  
 

An equation similar to Eq. (100) can be used to determine the plasma reduction factor for 
a sheet beam of thickness t centered between parallel plates spaced by a distance W.  In 
rectangular coordinates, the transcendental equation is  
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Fig. 30  Plasma reduction factors (Ref. 11) 

 
 
3.4   Small-Signal Beam-Loading Analysis 
 

Having derived expressions for the plasma reduction factor R, one can now proceed to 
analyze the interaction between beam and RF circuit in one dimension, using plasma theory.  We 
shall consider only the z-dimension, along the path of the e-beam.  This is not restrictive, 
because formulae exist, e.g. - Eq. (59), which average beam parameters over the beam, when 
transverse dimensions matter; and computer simulations do the same thing, even more 
accurately.  Higher-order modes in the drift tubes or in the circuits with which the beams interact 
are also neglected.  Drift tubes are cut off below the operating frequency.  Beams are assumed 
“cold,” with no thermal velocities.  The mathematical treatment follows Wessel-Berg but it will 
be followed only long enough to demonstrate the method, before jumping to the final, very 
useful, beam-loading derived in Chapter 2.  The objective is to derive equations relating gap 
fields to the voltage, current and plasma density of the beam interacting with these fields.  
Although the mathematics are similar to those employed in the kinematic theory of Chapter 2, 
the concept of positive and negative energy space-charge waves provides an important insight to 
the operation of the klystron. 
 One begins as earlier in this section by using the equations for continuity, 
 Eq. (70); current, Eq. (73); and force, Eq. (74).  Wessel-Berg defined the “kinetic voltage,” U(z), 
as  
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Again, the z-subscripts are omitted since z is the only dimension.  One can then write, after some 
algebra 
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where Es is the field due to the space charge and Ec is the circuit field.  These will be used to 
relate the detailed gap fields to electron motion and eventually to derive expressions for energy 
transfer and beam loading. 

Notice that Es can be related to the current i through one of the Maxwell equations  
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Taking the divergence, which is zero, one obtains for the truly 1-D case (infinite beam cross-
section), where there are no transverse fields and the z-dependence of field and current are the 
same 
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Integrating this equation yields 
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which relates the space-charge field to the current in an infinite beam.  Recall that in the earlier  
3-D derivation, where there Ez was the only electric field component, but where the beam was 
bounded, Ez was equivalent to the present Es, and Eq. (80) was obtained.  It is reproduced (and 
re-numbered) here 
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This can be rewritten as 
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Then, in the case where the beam does not fill the drift tube e qγ β β= ± , as before, which leads to 
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Comparing Eq. (112) with Eq. (110) shows that for a finite beam, the effect of the radial 

field leakage to the walls of the drift tube is to reduce the longitudinal space-charge field Ez by 
R2, a number less than unity, as previously derived.  The effect of the walls is illustrated in the 
(Fig. 31), which shows how the fields between bunches are weakened by the drift tube wall. 
Fields resulting from electron bunches are shown for, a) an infinite beam; b) a finite beam in free 
space; c) a finite beam in conducting cylinder.  These fields are considered to be the net change 
in space charge (as a result of bunching) from the space charge of the unmodulated beam.11  
 

 
 

Fig. 31   Weakening of the fields between bunches due to the presence of the drift tube.  (Ref. 11) 
 
 

Wessel-Berg then defines a quantity W as the “beam characteristic impedance,” 
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Then, after manipulating Eq. (112) and the expressions for pω and R, one finds 
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Furthermore, Eqs. (105) and (106) become 
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These equations are analogous to transmission line equations and can be used to further develop 
details of the space-charge theory.  Combined, they form a second-order equation for the current 
i.  Dropping the partial signs, since the only variable is z, we obtain 
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Consider now a two-cavity klystron, as illustrated in (Fig. 32), with interaction Regions 1 and 2, 

centered at z = 0 and z = l12, with lengths  1

2

d±  and 2

2

d±  (these are not gridded gaps, only 

regions with z-varying axial electric fields).  We shall calculate the current at 12 2z l ξ= +  in the 
second cavity.  Using Laplace transforms, Eq. (117) can be integrated subject to the initial 

conditions, (0) 0i =  and (0) 0
di

dz
=  to give 
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Fig. 32   Two-cavity gridless klystron formalism 
 

The integration only needs to be performed over the two regions where the circuit fields 
are Ec1 and Ec2.  The fields are zero elsewhere.  First, we introduce some shorthand to make the 
equations that follow manageable.  Define 
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It can then be shown that 
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Also define coupling coefficients for the slow and fast space-charge waves, respectively, as 
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Fast wave ( )e e qβ β β+ = −     
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There should be no confusion about the plus and minus signs above, since a lower propagation 
constant indicates a higher velocity and hence a fast wave.   
 
Now, we write for the fields in the two regions 

 
 1,2 1,2 1,2 ( )cE V f ξ=  (123) 

 
and normalize them as in the equation below 
 

 
2

1,2 1,2

2

( ) ( ) 1

d

d

d f f dξ ξ ξ∗

−

=∫  (124) 

It then follows that 
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where the asterisks signify complex conjugates.  Eq. (125) clearly represents the square of the 
magnitude of the gap voltages.  
 Beginning with Eq. (118), and after a considerable number of steps, but no further 
assumptions, it can be shown that the current in region 2 can be written as shown below.  The 
reader is referred to another Wessel-Berg text33 for the details.  
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Expanding the first part of Eq. (126), one obtains 
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which can be rewritten as 
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The significance of the above equation is the following:  The current in the interaction Region 2 
is composed of a superposition of fast and slow space-charge waves originating within Region 1, 
as a result of the voltage V1 there, plus currents originating within Region 2.  The complex 
power imparted to, or extracted from the beam at Region 2, is given by the following expression  
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This, and a great deal of additional algebra is used to arrive at the final result 
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Now, compare the result above to Eq. (60), repeated (and renumbered) below 
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This equation, which was first derived by kinematic theory by Tomlin, can be shown to be 
equivalent to Eq. (130) for no space charge ( ( )0qβ →  by recognizing that 
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Equation (130) is fundamental to the design of extended interaction klystrons, since it can 
be used not only for determining beam loading but also for testing a circuit for stability, a 
practice that is highly recommended in the design of extended interaction klystrons.  A negative 
value for Gb can imply a “monotron” instability.  This is a condition where the exchange of 
energy between beam and circuit is such that net energy flows to the circuit, which can then 
develop excessively high fields (i.e. - an oscillation) unless it is sufficiently loaded or sufficiently 
lossy.  

In the case of single, cylindrical, gridless gaps, the values for Gb/G0 calculated by Eq. 
(130) or by the kinematic formula Eq. (131) are almost identical for realistic values of the beam 
perveance.  However, Eq. (130) is more general and can be evaluated for single and extended 
gap geometries by the same methods as the calculation of the coupling coefficient M (i.e. - by 
using Eq. (30) and numerical integrations of tabulated Ez values from a SUPERFISH simulation 
of the cavity fields). 
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 Chapter 4. 
 

Gain-Bandwidth Calculations 
 
4.1  Introduction 
 

The previous two sections developed most of the fundamental theory necessary to make 
the formulae used in practical klystron design credible and to help in applying them correctly.  
These dealt with electron-bunching in the beam and in the interaction between beam and circuit, 
and were largely based on small-signal approximations.  This section will describe the use of the 
theory in practice and will illustrate it with numerical examples and with the design of a practical 
klystron. 

The classic klystron circuit, with which a pencil beam interacts, is a direct descendant of 
the Hansen “rhumbatron” and consists of a cylindrical cavity operating in the TM01 mode, 
providing an axial field in the direction of the beam traversing the cavity.  In order to concentrate 
the electric field and enhance coupling to the beam, the two drift tubes are usually (but not 
always) reentrant.   More complex interaction circuits are in use supporting multiple modes in 
the axial direction (extended interaction) or in a transverse direction (sheet-beam klystrons), or 
both. Those will require special treatment.   The analysis in this section will only cover the 
performance of multi-cavity klystrons employing simple cylindrical cavities. 
 
4.2. Small-Signal Stagger-Tuning Theory  
 

A klystron cavity can be usually treated as single-tuned resonant circuit consisting of a 
parallel combination of a capacitance, an inductance and a resistance across the interaction gap, 
and driven by the RF current in the beam.   That was illustrated earlier in (Fig. 27).  The cavity is 
driven by a “constant current generator,” representing the fundamental component I1 in a beam 
that has been bunched by preceding cavities.   This current produces a voltage V across the gap.  
If I1 is high enough, and V is comparable or higher than the beam voltage V0, power will be 
extracted from the beam.  Such a circuit is fully determined by its resonant frequency, the total 
Q, and the “R/Q.”  The following relations apply 

 

Resonant frequency 0

1

LC
ω =  (133) 

Total Q 
0

1 1 1 1

T b eQ Q Q Q
= + +  (134) 

R/Q (ohms)  
0

1R L

Q C Cω
= =  (135) 

 
The beam-loading conductance and susceptance defined in Chapter 2 were shown in (Fig. 

27) as an admittance Gb+jBb.   The three Q’s above correspond to beam loading losses, cavity 
ohmic losses and the external load, respectively, and correspond to resistances with similar 
subscripts.  The calculation of R/Q must use matching values of R and Q.  The physical 
description of R/Q is that it is the ratio of the square of the voltage V across the interaction gap 
of a klystron cavity and the energy W stored in the cavity, as follows: 
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Q Wω
=  (136) 

 
The two definitions are equivalent (see Appendix IV). 

Klystrons are resonant, narrowband devices.  Nevertheless, they are usually required to 
have some limited bandwidth.  This bandwidth is primarily set by the R/Q of the output circuit, 
although the front end of the tube is required to produce sufficient fundamental-frequency RF 
current (I1) to drive the output circuit over the band of interest.  Note that in previous sections, 
lower case letters were used to indicate small-signal quantities and capitals were reserved for 
large-signal currents.  In this case, and in the formulae which follow, the current I can be either. 
It can also be the fundamental component I1 of the RF current driving the output cavity.  It will 
be made clear in the text which is the case. 

 In what follows, the current-producing part of the klystron is analyzed.  It will usually 
consist of two or more “gain” cavities, tuned within the band of interest, and one or more 
“penultimate” cavities tuned above the band.  The function of the penultimate cavities is to 
present an inductive load to the beam, which has the effect of shortening the length the electron 
bunches, thus increasing their content of RF current I1.  The importance of the R/Q parameter is 
most apparent when it is considered that the output circuit must present a total impedance RT to 
the RF current, such that the product I1RT is approximately equal to the beam voltage V0, a 
necessary condition for removing RF energy from the beam.  If the output circuit is the simple 
resonant circuit described above, its half-power bandwidth is 
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The output voltage and the overall klystron gain G  are proportional to RT  and since RT is 

usually almost equal to RL, the following relation usually holds 
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indicating that the gain-bandwidth product of a klystron is proportional to the R/Q of the output 
cavity.  More generally, if the output circuit is more elaborate, for instance a maximally-flat filter 
circuit presenting to the driving current an impedance RT, there is a circuit theorem34 for driving-
point impedances with a capacitive input, which states 
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C Q

ω π π
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∆ ≤ =  (139) 

 
Or, in words, if the required load impedance for best efficiency at the output cavity of a klystron 
is RT, then the maximum bandwidth attainable with a single-gap output is equal to the cavity R/Q 
multiplied by π/2 and divided by RT.  The single-gap distinction is important because as will be 
shown, extended interaction (multiple-gap) output circuits do not obey this rule and make 
possible wider bandwidths than Eq. (139) indicates. 

To describe this process analytically, we begin with the final expression for the driving 
current at a cavity n, resulting from the voltage across the gap of a preceding cavity m, namely, 
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Eq. (102).  Both that current and the voltage are measured at the circuit (in this case In can be an 
either small or large-signal quantity) and are linked to the effective voltage on the beam and the 
RF current in it by the coupling coefficient M.  The ratio of In to Vm is called the 
“transconductance” gmn. 
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The two coupling coefficients above are assigned to the two cavities and lmn is the drift distance 
between them. 

The gain cavities of a wide-band klystron are usually stagger-tuned in a manner similar to 
low-frequency cascaded amplifiers.35  However, feed-forward currents make calculation more 
complicated.  The amplification mechanism begins with the velocity modulation being imparted 
on the e-beam by the RF voltage across the interaction gap in the input cavity.  In the drift spaces 
beyond, electron bunching produces RF currents, thereby exciting subsequent cavities and 
introducing an additional, amplified velocity modulation on the beam.  The original modulation, 
however, persists and RF currents originating from all previous cavities are finally summed at 
the output gap.   A graphical rendition of the process is shown in the (Fig. 33). 

 

 
 

Fig. 33    Feed-forward currents in a 5-cavity klystron 
 

The overall current gain function can be treated as a lumped constant network problem. 
The analysis proceeds as follows:   The current gain between cavities m and n is 
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where, the expression for the lumped equivalent circuit for the nth cavity (at the operating TM01 
mode) is 
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For the five-cavity klystron in (Fig. 33), the overall current gain can be written as 
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The first term in the brackets involves currents only between adjacent cavities.  The remaining 
terms represent feed-forward currents skipping two, three and four cavities.  

Equation (143) is rather daunting, but when programmed on the Mathcad analytical code 
that will be described later (Appendix I), it presents no difficulties.  However, some additional 
insight can be gained by rewriting Eq. (142) in complex notation and reexamining the gain 
function Eq. (143) on the complex frequency plane.  This is standard network theory36 that need 
not be explained here in detail since the results will be fairly easy to understand intuitively. 

The new (complex) variable is p = σ + js.  Its imaginary part s is normalized to ω0 and 
shifted in origin with respect to ω0 according to the relations below.  Here, ω0 is the center of the 
klystron passband, which is assumed to be narrow (less than 10%).  This is written as 
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With the above approximation, Eq. (142) becomes 
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With 

 
0

0

1

2n n
n

n
n

p js
Q

s
ω ω

ω

= − +

−=
 (146) 

The above impedance function, Z(p), is now a much simpler expression and the position of the 
root, pn  on the complex frequency plane is shown in (Fig. 34). This root, known in network 
theory as a “pole” of the Z(p) function (marked by an “X”) has an imaginary part equal to the 
normalized resonant frequency, ωn , and a real part equal to -1/2Qn.  The distance from the origin 
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to the pole is the absolute value of the impedance, Z(p), and the angle to the js-axis is the phase.  
It is evident that the approximation and the change in variables have not changed the magnitude 
of Z.  At ω = ω0, Eq. (145) reduces to Z = R, as does Eq. (142) 
 
 

 
 
 

Fig. 34   The normalized complex frequency plane and the cavity impedance Zn 
 

Using the new variables we obtain the following expression for the absolute value of the 
power gain  
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where A is a constant that embodies various circuit and beam parameters, the pn’s are the poles 
of the five resonant circuits, and the zn’s are the complex frequencies at which the gain function 
goes to zero.  This happens because of the feed-forward terms. Consider the previous (Fig. 33).  
The various ways in which the feed-forward currents can produce zero gain do not depend on the 
input and output cavity tuning.  All feed-forward currents from the input cavity are in phase, 
irrespective of its tuning, and the output cavity is the end of the line.  Hence only the complex 
frequencies of the three middle cavities affect the position of the zeroes.  This, besides algebra, 
accounts for the three zeroes in the G(p) function.  In general, the gain functions of multicavity 
klystrons with single-tuned cavities have two less zeroes than poles. 

It is useful, and mathematically correct, to consider the poles and zeroes as positive and 
negative line charges into the complex frequency plane, and the logarithmic gain as the value of 
the electric potential due to these charges, measured along the js axis.  It is easy then to visualize 
the effect of poles and zeroes on the shape of the gain response of the klystron.  There will be 
gain peaks opposite poles and gain depressions opposite the zeroes.  The steepness of both will 
depend on the distance of the pole or zero from the js axis.  For the poles that distance is 
inversely proportional to the QT of the cavity concerned, hence the lower QT is, the less 
pronounced the gain peak.  The problem then is to arrange the resonant frequencies of the 
cavities so that the gain is reasonably flat within the band of interest.  Since the gain will be 
depressed in the vicinity of the zeros, the pole arrangement must be such that a zero is either 
moved outside the band or else is canceled by an adjacent pole.  For drift lengths below a quarter 
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space-charge wavelength, the nearest zeros will be distributed toward the high frequency end of 
the band and will move closer towards band center as the drift angle is decreased.  Consequently, 
tuning arrangements for the shorter drift angles will have more cavities tuned above band center 
to counteract the effect of the zeros.  The klystron frequency response will generally fall off 
more sharply at the high end of the band, due to the presence of zeroes there. 

The bandwidth for a given number of cavities will be rather closely related to the 
bandwidths of the individual cavities.  It is frequently desirable to reduce the cavity quality factor 
by resistive loading.  In the early stages where the power extracted thus from the beam is not a 
problem, this is satisfactory, in principle.  It is, however, often mechanically inconvenient.  The 
simplest Q factor reduction is accomplished through using the power required to velocity 
modulate the beam.  The beam loading parameter is a function of gap geometry, and in general, 
the beam loaded Q of a cavity is reduced when the gap spacing is increased. 

A simple example, that does not require a computer, is in order.  A three-cavity klystron 
example will be used to illustrate the process. For n = 3, Eq. (143) becomes 
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and the power gain is 
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which is a three-pole, one-zero function.  To calculate the zero, assume for simplicity that the 
three cavities have identical gap geometries and R/Qs, and that they are equally spaced along the 
beam.  One would then obtain 
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Setting ( )pG = 0, leads to the following expressions for the numerator “zero” 
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To illustrate the pole-zero technique for calculating the logarithmic current gain, it is 
worthwhile to work out a numerical example.  A three-cavity klystron operating at 3 GHz, at 
about 25 kW power output could reasonably have the following set of parameters: V0= 28 kV, 
I0= 3.6 A, βql12 = βql23 = 60o, |g12| = |g23|  = 0.0003, (R/Q)1 = (R/Q)2 =(R/Q)3 = 120, Q1 = 150, Q2 
= 350, and Q3 = 50.  It can be shown that the power gain can be written, in terms of the poles and 
zeroes as 
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See (Fig. 35), which shows the changes in the gain response with the single zero position.  As the 
cavity spacings change from 15o to 30o, to 60o, to 90o, the zero z1 goes to infinity and has no 
longer any effect on the shape of the passband.  That also maximizes the gain at the center 
frequency js = 0. 
 
Taking the log of both sides yields the power gain in db as 
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 (153) 

One can make a rough estimate of the bandwidth of a single gain cavity in order to gain 
some insight to the design of broad-band klystrons. The maximum beam loading conductance 
that can be attained for ordinary gaps (βed ≈ 1, γa ≈ 1) is equal to about 0.15 times the DC beam 
conductance 
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If one assumes a commonly encountered R/Q = 100 ohms, then 
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For an example that follows (the BFK 1.2 MW klystron), where V0 =83 kV and I0 = 24 

A, a Qb of about 240 can then be expected from Eq. (155).  That, together with ohmic losses 
would produce an approximate 3-db bandwidth 0.4% for that gain cavity.  If there are three 
cavities in the gain section of the klystron, it should be possible to stagger-tune these cavities 
with as much as a 2% bandwidth in the current driving the output cavity.  That cavity, however, 
must have that bandwidth by itself, at the correct impedance, in order for the saturated klystron 
bandwidth to be that wide. 
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Fig. 35   Effect on zero and overall response of changing drift angle 
 in a 3-cavity klystron 

 
A comprehensive theory does not exist which would allow direct design for a specified 

gain bandwidth product.  Optimization is obtained by trial-and error stagger-tuning through the 
use of an analytical Mathcad code such as the one described below.  Alternatively, the zeroes can 
be calculated by solving for the roots of the numerator polynomial.  A graphical method can then 
be used to obtain the logarithmic gain response directly from the locations of poles and zeroes on 
the complex frequency plane. 

Qualitatively, one can say that the gain-bandwidth product of the driver section can be 
improved almost indefinitely by adding cavities.  This can, however, lead to an excessively long 
klystron.  The usual design procedure is to determine the bandwidth that can reasonably be 
expected of the output stage, and then design a driver section having adequate bandwidth with 
the required total gain.  In doing so, one must remember to allow 3 to 5 dB reduction in gain due 
to saturation. 

 
4.3 Large-Signal Methods 
 

This discussion now turns to the output circuit, which, as explained earlier, must have 
adequate impedance and bandwidth to take advantage of the RF current provided by the driver 
section of the klystron.  Analytical treatments of the problem, although in existence37 are simply 
not accurate enough to bother with, given the availability of codes that are capable of simulating 
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the physics in 1-D, 2-D, or even 3-D.  Simulation codes first became available in the mid-50’s, 
when computers became powerful enough to handle the quantities of data involved.  Some of the 
first results were published by Webber,38 who was followed by Rowe39 in treating klystron 
bunching through an iterative process involving an analytic description of the fields and a 
simulation of the beam by charged disks.  The Webber and Rowe codes were the forerunners of 
modern one-dimensional codes, of which the “AJ-Disk” is an example now in use at SLAC.  
Such codes involve a relatively small number of disks, usually 64 or less, but can quickly assess 
the frequencies and spacings of the penultimate and output cavities, as well as the input power to 
drive the klystron to saturation.  They can therefore be used for design, as opposed to design 
verification, which comes later in the development of a new klystron.  For this phase, the codes 
usually employed are of the “particle in cell” variety.  These rely on the simulation of the actual 
electric and magnetic fields by tracing the outlines of cavities, drift tubes and magnetic 
polepieces on closely spaced grids, “pushing” thousands of simulated electrons clumps 
(generating their own space charge)  through these simulated fields, and iterating to convergence.  

These methods will be examined in detail in the Appendices, where a high-power 
klystron will be analyzed and simulated by a variety of codes, and the results compared to the 
tube’s actual performance.   

For now, a simple formula is proposed for determining the loading required for a single-
gap output cavity, since that sets the bandwidth of the klystron. 

Assume that the RF current driving the output cavity is estimated to be I1 and that the 
R/Q and the coupling coefficient M are known.  Then the current induced in the output circuit 
will be M × I.  That current will develop a voltage V1 across the parallel-resonant equivalent 
circuit, whose impedance is Qt×R/Q.  In a general and rather simplistic way, that voltage must be 
sufficient to bring beam electrons to a stop, extracting the kinetic energy they acquired by being 
accelerated by the beam voltage V0.  If a voltage across the circuit capacitance (the cavity gap) is 
to produce a voltage V0 at the beam, one must have V1M = V0.  Expressing the foregoing in an 
equation, yields 
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which, rewritten in a more convenient form, provides a value for the desired Qext 
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In Eq. (157), Qe has been substituted for Qt, since in most cases the coupling will be sufficiently 
strong (and Q0 will be sufficiently high) to make the approximation Qe≈Qt valid.  Equation (157) 
is intended only as a guide for the approximate value of the output cavity external Q.  It is, as the 
gain is, very sensitive to the value of the coupling coefficient at the output gap, which in turn is 
very sensitive to the beam size. 
 
4.4 Design of the SLAC “B-Factory” Klystron 
 

The tools are in place now to illustrate the foregoing theory with an example making use 
of the methods actually used at SLAC for klystron design.  These are the small-signal analytical 
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Mathcad gain-bandwidth calculator, the “AJ-Disk” 1-D simulation code, and 2-D and 3-D 
MAGIC codes. (Note that the AJ-Disk is named after Aaron Jensen, a Stanford University 
graduate student, who rewrote the original “Japandisk” code40 in C++ and rendered it user-
friendly.)  Because of its complexity and the time required to run it, MAGIC is considered as a 
check on the other two codes, rather than as a design tool. 

The example below is for a klystron currently in production at SLAC for use in the PEP-
II (B-Factory) electron-positron asymmetrical storage ring collider.  The original specifications 
for this tube (B-Factory klystron, or BFK) were as follows: 

 
Frequency = 476 MHz 
Output power = 1.2 MW CW 
Beam Voltage = 83.5 kV 
Beam Current = 24 A 
Efficiency > 60%, 
Gain > 43 dB 
Bandwidth (1-dB) = 6 MHz 
Group Delay <100 nsec (in ± 0.5 MHz) 
 
A mechanical drawing of this klystron is shown in (Fig. 36).  For reasons of linearity 

(necessary because of feedback systems in the PEP-II rings) the klystron was to be operated at 
drive levels well below saturation.  The linearity specification required good efficiency and a 
collector designed to accept the full 2-MW beam power.  The delay specification was found in 
simulation to be attainable as long as the specified bandwidth was realized.  

It was decided to design a klystron with three gain cavities, followed by a second 
harmonic cavity to improve bunching and efficiency, followed by two “penultimate cavities” (to 
limit the total voltage necessary for the final bunching), and an output cavity with loop coupling 
and a coaxial output window.  For the purposes of the Mathcad calculations, this is a total of six 
cavities (the 2nd harmonic cavity does not affect the small-signal calculations). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 36   Mechanical design of the BFK 
 

The perveance of 1x10-6 was chosen as a compromise between good efficiency and a 
reasonable DC voltage.  The gun does not present a serious challenge, since at this frequency, 
reasonable choices of beam and drift tube diameters do not require a large beam convergence.  
The electron gun was designed for a maximum current density of 0.3 A/cm2.  Computer 
simulations predicted a beam diameter of 0.45 cm and the beam tunnel was chosen at 7 cm.  This 
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resulted in a γa = 0.6, which produced good coupling coefficients and hence good gain 
bandwidth.  None of the cavities were loaded, but the first two had wider gaps for a lower Qb and 
improved bandwidth.  Notice that the empirical calculation Eq. (157) gives Qe6 = 33.  However, 
the operating value of Qext = 38.9 was determined by a more accurate large-signal simulation. 

All cavities except the output are made of stainless steel cylinders and end plates that are 
copper plated.  The output cavity is all copper for good circuit efficiency and cooling.  All 
cavities except the output are tunable over approximately 3 MHz by deforming an end wall 
slightly, thus changing the gap length (capacitive tuning).  The 2nd harmonic cavity can be tuned 
over twice that range. 

It is now highly instructive to compare the actual performance of the above BFK klystron 
to the small-signal Mathcad calculations, the “A-J Disk” 1-D simulation, and a 2-D MAGIC 
simulation.  The CD Appendices afford the opportunity to follow the step-by-step klystron 
design process currently in use at SLAC.  As a preview, the results of the various small-signal 
calculations/simulations for the BFK gain are compared in (Fig. 37) below.  The drive power is 
the same for all traces except for Mathcad, where it is not pertinent. 
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 Fig. 37  Simulation results and experimental performance of the BFK 
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Chapter 5. 
 

Advanced Klystron Configurations 
 
5.1  Introduction 
 
 Unlike the previous three, this chapter deals more with work in progress than with 
established theory and designs.  Previous chapters provided the basic theory and the computation 
and simulation tools necessary for the design of “classical” klystrons, consisting of a single 
pencil beam interacting with several single-gap cavities.  For many years, such klystrons served 
well the purposes of radar, communications, and accelerator applications.  Eventually, however, 
the combined needs for wider bandwidth, higher frequencies and higher power, have led to a 
number of klystron variants in which beams become multiple or flat, and single gap cavities 
become multiple-gap, or “extended-interaction.”  At SLAC, Extended Interaction Klystrons 
(EIKs), Multiple Beam Klystrons (MBKs) and Sheet-Beam Klystrons (SBKs), as well as 
permutations of them, have been studied extensively, and this research continues.   
 
5.2 Extended Interaction Klystrons (EIKs) 

 
  Because of the high-peak power needs of a future e+e- linear collider, which if funded 

will require thousands of 11.4 GHz, 75-MW klystrons, both solenoid and PPM-focused EIKs 
have been designed at SLAC.  They have also been manufactured, and put into service. 

Extended interaction theory is no more than a generalized theory of klystrons, where the 
restrictions of single and/or gridded gaps are removed and beam interaction takes place with a 
generalized field.  Such a field may consist of several discrete regions, corresponding to cavities 
placed closely together, or it may be the continuous field of a shorted helix or a coupled cavity 
structure.  Most of the published theory is due to Wessel-Berg, who began his work at Stanford 
and continued it in Norway.  The theory is 1-D, but can be applied to 2-D situations by the 
averaging methods discussed earlier in this chapter.  More often than not, however, numerical 
simulations are necessary to complete the design process and to avoid expensive cold-test 
procedures.  

The Wessel-Berg theory is based on the assumption that as long as the cavities are 
resonant with high Qs, the extended cavity (or standing-wave structure) fields are unaffected by 
the RF fields of the bunched beam.  The EIK cavities can be analyzed independently of the 
beam, using the methods described earlier to calculate coupling coefficients and R/Q 
analytically, or through simulation.  Overall EIK small-signal frequency response can be 
calculated using the analytical Mathcad program by treating the extended cavities as simple 
resonant circuits, as in the case of single-gap cavities.  However, the AJ-Disk 1-D code cannot be 
used because it does not simulate accurately the large signal behavior of extended cavities.  The 
use of PIC codes is mandatory (see Appendix III).  

Extended interaction cavities offer several advantages:  The most important is that they 
make possible R/Q values that cannot be attained with single-gap cavities.  This is a direct result 
of the fact that these circuits are no longer driving-point impedances as single-gap cavities are 
and hence not subject to the bandwidth limitation described by Eq. (139).41  Hence EIKs can 
attain bandwidths modestly superior to ordinary klystrons.  High R/Q output circuits also imply 
low external Qs, and higher circuit efficiency.  Extended interaction output cavities made 
possible the 1-MW CW X-Band klystron built at Varian in the 60’s.42  Finally, extended 
interaction cavities can distribute the necessary retarding RF voltage at an output cavity over 
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several gaps, thereby reducing the RF gradient and the danger of RF breakdown.  This is the 
principal reason for the use of extended cavities in the SLAC pulsed klystrons, though circuit 
efficiency was also a consideration. 

The original Wessel-Berg research on extended interaction at Stanford43 involved shorted 
sections of ring-bar structures, which are relatively low-voltage (and low power) circuits.  The 
SLAC high-power EIKs operate at 400-500 kV and their output circuits are ordinary accelerator 
structures (i.e. iris-loaded round waveguide).  In the SLAC EIKs, these circuits are usually 
operated in the π-mode and consist of three to five sections.  The detailed design of the XP-3, a 
SLAC PPM 75-MW klystron is described in Part 2 of this report, but it is useful to present here 
an example of an earlier SLAC EIK, in which the design of a four-section output cavity proved 
to be unstable.  It should have been predicted to be so, had the detailed simulation of the beam 
loading conductance been performed.  This example will also illustrate the method of obtaining 
the R/Q, coupling coefficient and Gb/G0 for an extended interaction cavity. 
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Fig. 38 ω-β diagram for the XC-8 

 
In the early 90’s, SLAC research for NLC X-band klystron sources was centered on 

extended interaction klystrons which could be operated by existing modulators to reach an output 
of 100 MW.  This approach required a microperveance of 2 and was soon to be abandoned 
because it did not produce a satisfactory efficiency and was not compatible with PPM beam 
confinement.  The last klystron in this series, designated as XC-8, suffered from a fatal 
oscillation at a lower than operating frequency, corresponding to the 2π mode.  Figure 38 shows 
the ω-β diagram for the disk-loaded waveguide used.  The four-cell output cavity of the XC-8 is 
shown to be operating at the π mode, with the intersection of the ω-β diagram and the light line 
at 11.4 GHz.  The light-line at the 2π mode has an intersection at about 8.4 GHz, which would 
occur in operation as the beam voltage was raised through about 200 kV.  A SUPERFISH 
simulation of the cavity was performed and the four modes, 0 (2π), π/3, 2π/3 and π, are shown in 
(Fig. 39). 
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Fig. 39  Field patterns for the four modes in the XC-8 extended cavity 
 

 A Mathcad program shown in Appendix IV was used to calculate coupling coefficients 
and R/Qs for each of the four modes, as well as the Wessel-Berg M+ and M- coupling 
coefficients which, together with the other parameters in Eq. (130) are used to calculate Gb.  
From the Gbs and R/Qs of the four modes the beam-loaded Qs of the four modes were plotted in 
(Fig. 39) as a function of the beam voltage. 
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Fig. 40 Beam-loaded Q vs. beam voltage for the XC-8 EIK 

 
The problem with the cavity is immediately evident.  The beam-loaded conductance Q at 

the 0 (or 2π) mode is negative, and quite low.  Since there is a window matched at 11.4 GHz 
between the cavity and the matched load, there is no simple way to evaluate the loading of the 
cavity at the much lower frequency of the 0-mode.  The loading was light at 8.5 GHz and the 
cavity oscillated as the voltage was raised, and continued oscillating at higher voltages. 
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The NLC EIKs, strictly speaking, are not klystrons but “twystrons.”  No mention of these 
devices has been made so far in this report, largely because they have not been at the forefront of 
device development in recent years.  The term is a composite of “TWT” and “klystron.”  Both 
the word and the device were invented at Varian in the 60’s, when some very high-power radars 
being deployed at the time required more bandwidth than a conventional klystron could deliver. 
At Varian, an engineering team of klystron coupled cavity and klystron engineers used the front 
end of a megawatt-level klystron and the output section of a cloverleaf TWT to make the first 
Twystron, with a bandwidth of 12 to 15 per cent.  Subsequently, a number of classified 
“superpower” Twystrons were developed and put into production.  Subsequently, some of the 
original, lower-power, twystrons were replaced by EIKs which were easier to manufacture since 
they did not require the distributed Kanthol loss that the cloverleaf output of the twystrons 
employed. 

The output circuit design of the NLC EIKs was initially a 4-cell resonant cavity, along 
the lines described above.  After a series of 8 unsuccessful microperveance 2 klystrons, the 
perveance was reduced to 1.2x10-6 and two solenoid-focused 50-MW klystrons were built, 
successfully.  At that point, since the beam voltage had been increased due to the lower 
perveance and because of concerns about RF breakdown, it was decided to migrate to a disk-
loaded waveguide output circuit that would be specifically designed to divide the RF voltage 
developed across it equally among its 4 cells.  This was accomplished with the aid of a little 
computer code, which provided dimensions of the cells such as to decrease the impedance of the 
circuit as seen by the beam by a factor of 2 as one proceeded from the first cell to the 4th cell, 
which coupled to the output waveguide.  The idea was due to Symons and Begum44 and was 
based on the assumption that, since additional RF current was fed to the output circuit at each 
gap, the impedance there should be decreased to keep all gap voltages equal.  The result of this 
operation was that, the final gap, the impedance required was so low that the last cell was 
effectively matched to the output load, making the output a TWT section.  The difference from a 
twystron output circuit is that there is no loss and no reverse termination.  This is definitely not a 
resonant cavity, which means that there is the additional benefit that bandwidth and circuit 
efficiency are both improved for the EIK. 

 

 
 

Fig. 41.  A sectioned copper XP output circuit (collector to the right). Note the expanding iris openings, decreasing 
the circuit impedance toward the output. The last of three “penultimate” cavities is visible on the left. This 
and all other cavities are made of stainless steel. Larger iron polepieces are shown on either side of the 
output cavity. 



 66

A total of thirteen EIKs (XL4s), producing 50-MW, 1.2 µs pulses with a 60 Hz repetition 
rate were built at SLAC and have been in operation for a number of years in several 
experimental installations.  These are all solenoid-focused klystrons and hence not suitable for 
the NLC.  For that future machine, a number of PPM-focused klystrons were also designed and 
built, to more demanding specifications.  These are the following: 

 
Power output: 75 MW 
Pulse length: 1.6 µs 
Pulse repetition rate: 120 Hz 
Beam voltage: 515 kV 
Beam current: 260 A 
Efficiency: 56 % 
Gain: 60 dB 

 
At this writing, the output circuit for these EIKs (designated as XPs and requiring 5 cells 

at the output) must be designed on the computer, using the MAGIC code.  The “little code,” 
which provided approximate circuit dimensions for the XL4s falls short for the XPs and requires 
drastic revisions.  
 The experimental performance of XP4, the latest in the series of PPM NLC klystrons is 
described in the figures below.1 
 
  
 
 
 

120Hz 
506kV 
75MW 
1.62µs RF 
53% efficiency 
60dB gain 
1.3% current notch 

 
 
 
 
 

 
 

 
Fig. 42.  Oscilloscope traces of XP4 experimental data. “Current notch” refers to  beam interception  
 at full power, as measured by reduced collector current 
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Fig. 43  XP4 output power vs. voltage 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 44  Detail of XP4 construction showing polepieces and cavities at the output end.  
The tube has a double output for symmetry in the output cavity fields, and to  
reduce window power. The magnets are not yet in place 
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Fig. 45.  MAGIC simulation of the RF current at the output end of the XP4, showing three “penultimate” 
cavities and an extended output circuit. The RF current shown is approximately 1.6 times dc beam 
current. The last two cells of the output are not visible. The plot axes are for radial and axial (z) distance. 

 
 
It should be pointed out that PPM focusing of 500-kV klystrons is surprisingly forgiving, 

assuming of course that gun and beam optics are very good.  Unlike TWTs, whose PPM stacks  
often require shunting on the test bench, the XP klystrons PPM stacks do not require any 
“tuning.”  This is fortunate, since these klystrons are operated behind several inches of lead on 
test, and their PPM stacks are completely inaccessible.  This performance is partly due to the fact 
that the ratio of plasma wavelength to the PPM period in the XP4s is about twice that of typical 
TWTs. 

 
5.3  Multiple Beam Klystrons (MBKs) 
 

In Russia, where tube development followed different paths than the West during the 
Cold War, MBKs have been in production for 30 years or more and are used for two reasons:  a) 
because they make possible lower voltages, particularly in airborne applications and b) because 
the lower beam impedance of the MBK results in a wider bandwidth.  The Russians appear to 
have opted for MBKs rather than coupled-cavity TWTs for applications requiring 10-20% 
bandwidth.  Their designs call for as many as 60 beams.  The principal shortcoming of the 
Russian MBKs is that the large number of closely-spaced “beamlets” allows little room for focus 
electrodes around the multiple cathodes of the electron gun.  This results in very low area 
convergence for the beamlets and often requires high-current densities at the cathodes. As a 
consequence, one can speculate that Russian-style MBKs may have lower life expectancies than 
conventional pencil-beam klystrons.   

In 1998, an experienced Russian MBK designer, Yuriy Besov from Svetlana Electronics 
in St. Petersburg, Russia, was invited to work at SLAC for several months.  The motivation was 
for SLAC klystron engineers to gain some insight into Russian MBK technology.  Besov worked 
out a paper design of a 1-MW, 12% bandwidth klystron at S-band.  The idea was to compare this 
MBK design to that of a conventional klystron used in a military system.  
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Besov patterned his design after a lower power MBK that he had previously built in 
Svetlana.  He used 19 beams, and extended interaction cavities at the input and output, with 
seven cavities in total.  The output cavity operated in the 2π mode was also part of a filter circuit 
in the output waveguide.  The design was accomplished with the aid of a Russian disk-model, 
large-signal program called “KLYSTRON.”45  It predicted 50% efficiency for the TUBE, a 
reasonable result given the individual beams perveances (0.33 x 10-6 each beam, total perveance 
6.25x10-6).  The voltage was only 40 kV, the current 50 A. 

This particular MBK is offered here only as an example of the Russian technology, not as 
a tutorial on this technology.  There are no details available on critical parameters used in the 
Besov design, such as R/Q and the coupling coefficients.  Besov’s sketches of the MBK and the 
response simulated by the KLYSTRON are shown on (Figs. 41 and 42) respectively.  The gain-
bandwidth of the tube is impressive and requires an in-line filter circuit, in addition to a two-gap 
extended output cavity. 

 

.     
 
 
 
 

Fig. 46  Besov MBK and beam bundle cross section 
 

The Russian approach of forming a tight bundle of drift tubes and beams at the center of 
common cavities is simply a way to employ a quasi-high-perveance beam for low voltage and 
bandwidth, without incurring the penalty of the potential drop that would exist in the center of a 
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single high-perveance beam.  However, the price paid is a very low beam convergence, higher 
cathode current densities and a shorter tube life.  A better approach may be to use a higher 
(TM02, instead of TM01) mode in the cavities and place cathodes and beams on a larger “bolt 
circle.”  This allows some room at the guns for individual focus electrodes, and therefore more 
convergence.  However, with this approach, the axes of the beams are farther from the central 
axis of the tube and its solenoid.  This necessitates extensive magnetic polepiece shaping to 
provide symmetrical magnetic fields around the individual beam axes.  

 
 
 
 

Fig. 47  Frequency response (power and gain) of the Besov MBK 
 
A novel form of MBK was investigated at SLAC, under the following circumstances:  

For the past 30 years or more, high-power microwave (HPM) researchers in a number of US 
government and university laboratories have been attempting to develop L-band microwave 
sources capable of generating 1-kilojoule, one-microsecond pulses.  Since a 500-kV beam 
voltage was considered the maximum practical, which forces the required beam current to be in 
the thousands of amperes, the HPM community approach has been to employ field emission 
cathodes, capable of very high current densities.  For this and other reasons the devices which 
have been built (MILOs, “Relativistic klystrons”) have operated with a poor vacuum, a condition 
not consistent with the necessity to hold off the very high RF and dc gradients encountered at 
these power levels.  As a result, the microsecond/kJ goal has never been attained.  Although in 
some cases several gigawatts have been generated, pulse durations have been limited.  This 
condition has been known as “pulse shortening.”  

As a participant in an HPM Air Force research program, SLAC addressed the kilojoule 
problem with a periodic permanent magnet focused (PPM) MBK.  This was an outgrowth of 
work performed at SLAC for the NLC klystrons.  It finessed the need for extensive magnetic 
field shaping and substantially reduced the weight of the device.  The new tube, dubbed GMBK 
for “Gigawatt Multiple Beam Klystron” was entirely within the state-of-the-art and depended 
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only on good vacuum practice to perform to its specifications.  It would have employed 
thermionic cathodes, loaded to about 30 A/cm2, a current density which was consistent with 1-
microsecond pulses, and with the expendable character of the device. 

The proposed GMBK is pictured in (Fig. 48).  It was to consist of ten 1.4-micro-
perveance beams.  The beams traversed four common cavities and ten individual second 
harmonic cavities, to enhance efficiency.  Each beam would have been focused in a periodic 
magnet stack, with magnetically compensated openings to accommodate the cavities.  
Neodymium iron boron magnets were to be used.  Unlike ordinary multi-beam klystrons, where 
a single solenoid is used to focus several beams, each GMBK beam would have occupied the 
axis of symmetry of the field focusing it.  The first three cavities were toroidal (hollow) and 
operated in the TM01 coaxial mode (which would be a TM02, if the cavities were not toroidal).  
The last cavity was to be full and support the TM02 mode.  It coupled to a circular waveguide in 
the TM01 mode, which terminated in a quarter-wave ceramic window.  

 

 
 
 

Fig. 48  A PPM-focused MBK  
 

The two examples above illustrate the two principal reasons for using MBKs (i.e. broader 
bandwidth or higher power than conventional klystrons).  In a current accelerator application, the 
German TESLA linear collider at DESY, two different tube companies, Thales in France and 
CPI in the US, used the Russian and US approaches respectively to design a 10-MW peak, 100-
kW average, 2-millisecond-pulse MBK, at L-Band.  In this case, the principal reasons for opting 
for an MBK were the expectation of higher efficiency with lower perveance beams, and a more 
favorable distribution of beam and circuit losses.  The French design (see Fig. 21a) calls for 
seven beams at the center of its TM01 cavities, which are common to all the beams.  The CPI 
design (see Fig. 21b) is very similar to the GMBK design above, and places its six beams on the 
periphery of TM02 common input and output cavities.  All other cavities, including those at 2nd 
harmonic are individual to each beam.  The beams of both MBKs are focused with single 
electromagnets.  Since, in both tubes, the beams are off the electromagnet axis, the pole-pieces 
must be properly shaped in order for the beam trajectories to be straight inside the individual 
drift tubes. 

Small-signal calculations for an MBK do not present any new problems compared to 
those for pencil-beam klystrons, although a number of papers have been published suggesting the 
need for new design techniques.  If all the cavities (input, gain and output) are common to the 
beams, one simply uses the same transconductance and cavity impedance equations Eqs. (140 
and 142) as if there were a single beam.  The currents In/Im and I0 in Eq. (141) should be the total 
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currents, and the R/Q in Eq. (142) the total cavity R/Q. The ωq and βq beam parameters, 
however, are calculated for a single beamlet.  The use of 3-D codes is necessary to explore 
competing modes in common cavities, to design solenoid pole-pieces, and for overall large-
signal tube performance.  

 
5.4  Sheet-Beam Klystrons (SBKs) 
 

As stated previously, as many as 4000 X-Band klystrons, each delivering 75 MW, may 
be required for the projected Next Linear Collider (NLC).  The extraordinary requirement of 
mass-producing such complex klystrons has led to an investigation of lower cost and/or higher 
power alternatives.  Since it is considered impractical to increase the beam voltage much above 
500 kV the beam current must be increased.  Higher perveance beams were ruled out since the 
low perveance employed in the 75-MW prototypes (0.7 µP) is essential to both good efficiency 
(50-55%) and to effective PPM focusing, without which the power budget for the collider could 
not be met.  MBKs were investigated, but were provisionally excluded because the multiplicity 
of parts they require is not consistent with low manufacturing costs.  It appeared that a Sheet 
Beam Klystron (SBK) could be produced with many fewer parts than the current SLAC 75-MW 
pencil-beam prototypes (See Appendix VII).  At the same time the beam current density and 
focusing magnetic field could be substantially reduced.  Those improvements over the present 
prototypes should result in both lower acquisition and operating costs.  Most importantly, the 
SBK should be more reliable since the surface area from which waste average power must be 
removed would be higher by a factor of approximately five compared to the pencil-beam 
prototype.  As a consequence, the SBK is currently the object of intensive research at SLAC, 
with the goal of eventually designing a PPM-focused Double Sheet-Beam Extended Interaction 
Klystron (DSBK) capable of an output of 150 MW.  This would reduce by a factor of two the 
number of tubes in the collider.  Furthermore, assuming that improved pulse compression 
methods are developed in the future, and since average power would not be an issue with the 
DSBK, a doubling of the pulse length to 3.2 microseconds would further reduce the collider 
klystron requirement by a total factor of four to a total of perhaps as few as 1000 klystrons.  The 
design of a single sheet beam version of this tube is presented below as a work in progress, not a 
completed design.    

In an SBK, the central design issue is to form a beam that is as thin and as wide and with 
as much current as is consistent with: a) the optics of the electron gun which forms it, b) the 
method used to confine it, c) an appropriate M2R/Q of cavities which interact with it.  Those 
requirements are often conflicting, and must be reconciled in 3-D.  This perhaps explains why, 
without the 3-D codes now available, SBKs were not extensively investigated in the past.   
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Fig. 49  Comparison of pencil-beam and sheet beam klystron parameters 

 
The proposed NLC SBK is being designed for the same voltage and current as the XP-3 

so that can be “plug-compatible” in the XP-3 sockets.  Comparing the pertinent parameters of the 
two tubes, their most striking difference is in their current densities (Fig. 49).  The consequences 
are:  a) a very low magnetic field required for beam confinement and; b) very weak debunching 
forces.  Both are beneficial effects.  Even more important, however, are the thermal and 
mechanical benefits from the flat, overmoded cavities of the SBK.  These are:  a) much larger 
surfaces on which to dissipate beam interception and I2R losses and; b) a considerably simplified 
fabrication of the klystron RF circuits, resulting in many fewer parts than the manufacture of the 
XP-3 will require.  

A serious penalty would be incurred in choosing the SBK approach if one were interested 
in wideband performance.  This is not the case for the NLC klystron application.  The single cell 
SBK cavity is essentially a TE10 rectangular waveguide positioned transverse to the direction of 
beam transport.  The broad dimension of the waveguide cross section, (the ‘a’ dimension), is 
chosen so the waveguide is cutoff at the SBK operating frequency.  The electron beam traverses 
the narrow dimension of the guide.  Since the waveguide section is cutoff, the electric field seen 
by the beam is constant across the width of the cavity.  The cutoff waveguide is terminated at 
both ends by quarter wave matching sections to produce a resonant structure.  The R/Q of such a 
cavity, which in the NLC case has an aspect ratio of 10:1, is about 50 ohms, and the coupling 
coefficient is about 0.5.  Those values are to be compared to 80 and 0.8 respectively for an XP-3 
“gain” cavity.  Even if bandwidth were not an issue, these single-cell SBK cavity parameters are 
still dismal.  The solution is to use extended cavities, synchronous with the e-beam.  These 
greatly enhance the critical parameter M2R/Q by increasing both M and R/Q.  A quarter-
symmetry MAGIC model of a three-cavity SBK, showing a single-cell input, and two three-cell 
cavities, all with matching networks to external waveguides is shown in (Fig. 50). 
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Fig. 50  A 3-cavity SBK quarter-block  
 
 

The design of a sheet beam electron gun presents the usual 3-D problems.  For the NLC 
SBK, the gun design was developed using two codes, 3-D MAGIC and the Russian 3-D code, 
“TOPAZ.46  The gun has a 10:1 convergence in one dimension only, and a cathode current 
density of  3.2 A/cm2 (Fig. 51). 

 
 

 
 

Fig. 51  A sheet beam gun design 
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Fig. 52  MAGIC simulation of sheet beam transport 

 
 
As indicated above, the current density in the sheet beam is quite low.  Simulations 

have shown that a 490-kV, 257A beam artificially launched into the drift tube expands very 
little laterally, even when no magnetic field is applied (Fig. 52).  Furthermore, with a 250-
Gauss wiggler field at the center and 350 gauss at the beam edges, the beam is well confined.  

The SBK overmoding problem manifests itself with the formation of mode “forests” for 
one, three and five-cell sheet beam cavities (Fig. 53).  Cavity TE and TM modes in the 
extended interaction waveguide structures are a result of coupling between all structural 
components—resonant waveguide, matching elements, and guard cavities. (“Guard cavities” 
are off-frequency cavities added at the two ends of an extended interaction cavity to prevent 
field spreading into the drift tube and to improve the coupling coefficient).  The waveguide TE 
modes are seen by the beam as TM modes, which velocity-modulate the beam.  The operating 
frequency is 11.4 GHz and the desired mode is the TE01 (N=0).  All TM drift-tube modes 
below 11.4 GHz are cut off in the drift-tube; TE cavity modes, if converted to TE drift tube 
modes by a displacement in z of symmetrical components, can propagate in the drift tube but 
do not readily couple to the beam.  Note that in every one of the three cases simulated above, 
mode-free 100-MHz bands were achieved on either side of the operating frequency.  This is the 
bandwidth required in the NLC for phase switching in pulse-compression. 
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Fig. 53  Mode “forests” for one, three, and 5-cell cavities 
 
 

 
It is important in general to obtain agreement between the analytical formulae in Mathcad 

and MAGIC PIC simulations.  For the SBK studies, Gb was calculated from a MAGIC 
simulation, and used subsequently to “plug” the reduction factor R (=βe/βq) so that the 
MAGIC-simulated Gb agreed with the Gb calculated from Eq. (130).  The reduction factor R 
calculated from Eq. (103) is 25% lower than the MAGIC calculation.  That, of course, is not a 
satisfactory process and the issue will be settled when MAGIC 3-D simulations are refined 
further.  To obtain Gb from MAGIC and subsequently Qb, an eigenmode solution was done in 
MAGIC, with a port plane in the WR90 waveguide external load to the cavity (Fig. 54).  That 
plane acted as a magnetic field boundary during the simulation.  A Q0=6897 was determined in 
the above example, and the fields saved for the next calculation.  This consisted of loading the 
cavity with the eigenmode field solutions and allowing the fields to decay through the external 
waveguide, with the port plane set for zero reflections.  From the time constant, a Qext=550 was 
determined.  In a third step, the previous calculation was repeated with the beam present.  A 
Qt=327 was then determined.  Those Q’s were then used to calculate a Qb=900. 
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Fig. 54 Calculation of Qb 
 
 
Figure 55 shows a small-signal 3-D MAGIC simulation of the three-cavity front end of 

an SBK (Fig. 50), using a 256A artificial beam in a strong, straight magnetic field.  The input 
cavity was loaded to Qext=150, and the two gain cavities were loaded to 1200 and centered at 
the operating frequency.  An input signal of 1 kW was applied to the input waveguide of the 
first cavity.  The RF current in the beam was shown to grow to about 25A after the 3rd cavity. 
The fields in third cavity represented an overall power gain of about 30 db.  A Mathcad 
calculation of the same SBK section (Fig. 56) predicts a comparable (32.3 dB) gain with the 
same parameters, if the length lmn between cavities entered in Mathcad is taken as the length 
from the end of one interaction region to the beginning of the second interaction region, and 
the extended cavities was thus located at single points.  In the Mathcad model the extended 
interaction region’s parameters, (R/Q and M) were averaged over a beam cross-section.   
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Fig. 55  Simulation of RF current and small-signal gain 

 
 
 

 
 

Fig. 56  Mathcad calculation of small-signal gain 
 
 

 
As a proof-of-principle of SBK potential efficiency, a pre-bunched beam was simulated 

using MAGIC with I1/I0=1.8 exciting a five-cell output cavity.   The cavity was loaded to a Qext 
of 163, which is close to the value required by the empirical formula.  The efficiency predicted 
was 40% (Fig. 57). 
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Fig. 57 Large-signal simulation with pre-bunched beam 

 
 
 

In order to obtain a preliminary frequency response for the six-cavity SBK, cavities 
with one, three, and five cells were simulated with the GdfidL code and their R/Q and M 
parameters were calculated by averaging over the beam cross-section (Fig. 58).  The Qbs were 
determined independently from MAGIC runs as above.  The results were fed into a small 
signal Mathcad calculation using an overall length for the SBK of about 75 cm (plus the length 
of the interaction regions). The small-signal gain was found by Mathcad to be about 42.7 dB 
(Fig. 59). 
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Fig. 58  SBK parameters obtained by simulation for use in Mathcad calculation 
 
 
 
 

 
Fig. 59  Mathcad calculation for 6-cavity SBK 
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Fig. 60  Conceptual double sheet beam klystron 

 
 
It should be possible to design a double power SBK, using a single middle rack of 

magnets.  A cartoon of such a 150-MW Double-Sheet Beam klystron is shown in (Fig. 60) 
above. 

 Note that the entire RF portion the tube (and the collectors) can be machined from four 
copper plates, with the cavity circuitry on one side and water-cooling passages on the other. 
The focusing magnets can be pre-assembled in four (or three) racks and attached to the rest of 
the tube.  This design is obviously entirely preliminary.  A great deal of development will be 
required before this DSBK can be produced, but it is considered that, largely because of the 
considerable reduction in the number of parts, the production cost of this 150-MW klystron 
should be lower than a pencil-beam klystron of half that power. 
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Appendix I:   
 

The Mathcad Small-Signal Code (A. Jensen, C. Wilsen) 
 

Below is a complete description of the code, as it applies to the BFK design.  A working 
7-page listing is provided as an attachment.  It can be followed using the text below.  The content 
of the code is largely self-explanatory, with Mathcad (Version 8 or later) displaying the 
operational equations in an easily readable format.  Key equations used in Mathcad and derived 
in the main text are numbered as in the text (in blue).  The “input file” is located on page 6 of the 
listing.  The following variables, defined in the Mathcad code, should be initialized: 

 
• Vo  – DC beam voltage (V) 
• Io – DC beam current (A) 
• f0  – operating frequency (GHz) 
• a  – tunnel radius (m) 
• b  – beam radius (m) 
• npoints – the number of frequency points within the bandwidth  
• BW  – the bandwidth over which the frequency response is calculated 
• N  – the number of klystron cavities   

The number of rows at the bottom of the page (containing variables RQ, 
Qe, Qo, etc.) should be changed to match this input. 

• RQn  – the cavity R/Q’s  
• Qen  – the external Q’s (set to ∞ for those cavities with no external coupling) 
• Qon – the ohmic Q’s 
• fn  – the cavity center frequencies (GHz) 
• Ln  – the gap-to-gap spacing, from center to center (m) 
• dn  – the gap width (m) 
• Man  – the coupling coefficient at r = a 
 

The major elements of the code are now outlined on a page-by-page basis, with reference 
to the highlighted text equations.  

Page 84 of the code defines constants and contains the calculation of some basic 
quantities, such as the perveance.  Some other equations on the first page include the “depressed 
beam voltage” (voltage at 0.707 * b, the beam “center of mass”) and the Brillouin field. 

Page 85 includes the calculation of the reduced plasma frequency.  The method of Branch 
and Mihran is followed.  The variable R1 is an initial guess required by the Mathcad solving 
routine.  The value of R1 is used in the highlighted equation (100), from which the reduction 
factor is calculated.  The result is in the blue background box. After computing the reduced 
plasma wavelength, the remainder of the page is devoted to initializing several matrices to be 
used in the gain calculations that follow. 

Page 86 contains calculation of the coupling coefficient, in equation (58), and beam 
loading, in equation (62). 

The calculation of the klystron’s frequency response is critically dependent on the 
evaluation of the coupling coefficient.  There are three possible approaches: The first is to use 
Eq. (59), which can be done by Mathcad alone and is the quickest approach.   

 
This yields, 
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Another method, which does not rely on the approximation involved in equation (37), is 

to simulate the cavity field by HFSS or Superfish (Superfish is available at 
http://laacg1.lanl.gov/laacg/services/psann.html), and use equation (29), evaluated at the r = a to 
calculate Ma(βe).  This yields 

 
Ma(βe) = 0.8334  and,   M = 0.7788 

 
Finally, in order to compare the Mathcad calculated result with the AJ-disk simulation 

(which follows) we use the HFSS or Superfish simulation above and match the Ez field variation 
with z to the Gaussian assumed by AJ-disk (see below).  We then calculate a coupling coefficient 
at r = 0.707 * b (rather than average it over the beam), which is how AJ-disk evaluates M. This 
yields, M = 0.7333.  Since M appears in the gain equation in powers as high as 10, the above 5% 
spread in the calculation of M produces substantially different frequency responses for the 
klystron.  These are compared in Figure I-1 on page 90. 

 The beam-loading conductance represents the energy transfer from the cavity to the 
beam.  In Equation (62), this is calculated using the formula for the field in a knife-edge gap as 
was used to calculate a coupling coefficient.  The beam-loaded, Qb is determined from Gb and the 
cavity R/Q.  An alternative calculation is to use equation (130), which requires that the fast and 
slow-wave coupling coefficients be calculated by using equation (59) with βe replaced by 

e qβ β± , and γ by ( ) /e q eγ β β β± .  In this case, equation (62) of Mathcad is used.  This calculation 
results in a slightly different value for Gb, which makes little difference to the klystron frequency 
response.  Equation (62), however, is important in determining the stability of extended 
interaction cavities, which must have a positive total Q, when it is calculated as a parallel 
combination of Qb, Qe and Q0.  A Qb with a low negative value may lead to a cavity monotron 
oscillation. 

On Page 87 is the definition of the gap impedance:  the highlighted equation (142).   The 
definition of the total klystron transconductance is shown in Equation (140).  Finally, the 
klystron power gain is computed in the highlighted Eq. (147). 

Page 88 includes curves of the gain response at each cavity, allowing the evolution of the 
klystron gain to be monitored.  The remainder of this page is programming to determine 1-dB 
and 3-dB bandwidths. 

The input fields on Page 89 have been discussed previously and are highlighted in green.  
Equation (157), which is highlighted in yellow, is an empirical expression for the desired Qe of 
the output cavity.  If the reader wishes to use the optimal Qe value, the second column of the 
cavity inputs at the bottom of the page should be modified.  The blue fields contain the 
maximum gain, the gain at the center frequency, and the 3 dB bandwidth.  The 1 dB bandwidth 
is also calculated.  

The program concludes with a listing of beam-loading conductance (ohms), beam-loaded 
Q, gap location (m), total coupling coefficient, the reduced gap-to-gap transit angle (degrees), the 
gap transit angle (radians), and the unloaded Q (Qe in parallel with Qo) on Page 90.  
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Figure I-1.  Small Signal Code Comparison 
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Appendix II: 
 

The AJ-Disk 1D Code (A. Jensen) 
 
Introduction & User’s Guide 
 
The following is an introduction and user’s tutorial for AJ Disk.  Each step necessary to open AJ 
Disk and simulate a klystron will be discussed in detail. 
 

• To get started, first, double click on the AJ Disk executable in the CD.   
 

• Next, select “file” from AJ Disk’s menu, and from within the “file” menu select “open.”  Now, 
select the BFK.dsk file and press the “open” button.  AJ Disk should now display the window 
shown in Figure II-1. 

 
Figure II-1   AJ Disk’s Input Deck 
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The input parameters seen in Figure II-1 are for the B-Factory klystron.  Now, click the “OK” 
button. At the top of the window a number is counting upwards.  This number represents the number of 
iterations (the number of times a set of disks has been sent through the klystron in an attempt for cavity 
voltage convergence).  AJ Disk should now display a plot similar to that shown in Figure II-2. 

 

 
 

Figure II-2   AJ Disk’s Simulation Results 
 

 
Figure II-2 can be broken down and described section by section as follows: 
 

• Text Block:  The text block at the top of Figure II-2 shows what the user input as well as some of 
the numeric results of the simulation, such as, gain, cavity voltage, and output power. 

• Phase Diagram:  Shows the disks in one period and how their phase changes as a function of axial 
distance. 

• Current Diagram:  Shows the fundamental and second harmonic components of the beam current 
as a function of axial distance. 

• Velocity Diagram:  Shows the velocity spread as a function of axial distance. 
• Energy Distribution:  The energy distribution of the spent beam. 
• Irf/Io Diagram:  The fundamental and second harmonic of the induced current at the output cavity 

as a function of time. 
•  Electric Field Diagram:  The approximated Gaussian distribution of the electric field at the 

output gap. 
• Applegate Chart:  Disk position as a function of time in the vicinity of the output cavity. 
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Figure II-2 is the primary display used for analyzing the results of each simulation.  The next step is to 
further explore AJ Disk and how it works: 
 

• Select “view” from the menu.  From within this menu select “plots.”  Select “current.”  This same 
procedure may be used to view the velocity and phase diagrams as well.  AJ Disk should be 
displaying something similar to Figure II-3.  This is a good way to view the plots in greater detail. 

 

 
 

Figure II-3.  A Larger Version of the Current Diagram 
 

• Next, close the window containing the current diagram. 
• Select “update” from the “file” menu.  AJ Disk should now be displaying a window similar to 

Figure II-1, again.  Using, the “update” option allows the user to update input variables from the 
last simulation without actually saving the changes to the original file. 

 
At this point it is appropriate to discuss the inputs used in Figure II-1.  Following is a line by line 
discussion: 
 

• The 1st line contains the project’s title and the author’s name. 
• The 2nd line contains, 

Vo ( kV )  - the beam voltage in kV 
Io ( A )   - the beam current in Amps 
f ( MHz )  - the drive frequency in MHz 
f ( Carrier )  - this variable is no longer used (set to zero) 

• The 3rd line contains, 
Drift Tube Radius ( m ) - the radius of the drift tube in meters 
Beam Radius ( m ) - the radius of the beam in meters 
Beta   - the radial coupling coefficient (set to one) 
Pin ( W )  - the drive power in watts 

• The 4th line contains,  
# Disks   - the number of disks 
# Steps   - the number of integration steps per RF cycle 
Max Iter.  - the maximum number of iterations  
# Cavities  - the number of klystron cavities 

• The 5th line contains the cavity type which is, 
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1 for fundamental mode cavities 
2 for 2nd harmonic cavities 

       -1 for output cavities 
0 for unused cavities 

• The 6th line contains the Qe’s ( the external Q’s ) 
• The 7th line contains the Qo’s ( the ohmic Q’s ) 
• The 8th line contains the R/Q’s 
• The 9th line contains the gap widths in meters, d ( m ) 
• The 10th line contains the distances of the cavities from the input gap in meters, z ( m ), and is 

measured from gap center to gap center. 
• The 11th line contains the cavity frequencies, if  “Cavity Frequency” has been selected 

       or cavity detuning from the drive frequency if  “Delta Frequency” has been selected. 
• The 12th line contains the parameter “k,” which determines the shape of the electric field 

distribution across the klystron gap, according to the following Gaussian equation,   
 

2 2( )( ) centerk z zk
f z e

π
− −=  

      
Where, f(z), represents a normalized field shape as a function of z.  In practice, k has been found 
by using a program called SUPERFISH (use SF7) to simulate the field at 0.707 times the beam 
radius (one method of averaging).  SUPERFISH may be downloaded at 
http://laacg1.lanl.gov/laacg/services/psann.html (the use of SUPERFISH and SF7 is 
briefly discussed in appendix IV).  The field can then be loaded into AJ disk by selecting the 
“import Gaussian k” button as shown in Figure II-1.  AJ disk will prompt the user for the center 
of the cavity (if the cavity is symmetric then only half of the cavity can be simulated and the 
center can then be input as zero).  AJ Disk will then supply a value for “k” which can be used in 
line 12 of Figure II-1. 

 
The last topic to cover is the concept of sweeping data.  AJ Disk can sweep gain as a function of 
frequency or power out as a function of power in.  In the following exercise gain will be swept as a 
function of frequency. 
 

• First, select “sweep data” from Figure II-1. 
 

• Next, enter values for start, stop, and step.  For the BFK example the starting frequency will be 
470, the stopping frequency is 484, and the step is 1.  This tells AJ Disk to sweep from 470MHz 
to 484MHz and to sample the gain at every 1MHz step.   

 
• Press “OK.”  The simulation may take a few moments since it must simulate the klystron at 

several different frequencies. 
 

• Once the simulation is complete, select “view>>plots>>sweep” to see the results of the sweep.  
The result is shown in Figure II-4. 
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Figure II-4  Frequency Sweep of the B-Factory Klystron 
 

The main features of AJ Disk have now been covered.   However, on a final note, to save a file, 
use the checkboxes in the lower left hand corner of Figure II-1.  *.dsk corresponds to the input 
file, *.plt corresponds to the output file with all the plotted data, and *.out corresponds to a file 
which contains data about the simulation.  These boxes must be checked prior to simulation for a 
file to be saved. 
 
 
The AJ Disk Algorithm 
 
The algorithm for AJ Disk is fundamentally simple.  To show this, AJ Disk, in its simplest form, 
can be broken into the following procedures: 
 

1) Prompt the user for input.  
2) Initialize data such as beam loading, gap impedance, etc. 
3) Calculate the input gap voltage based on the desired input power. 
4) Set all other cavity voltages close to zero. 

 
After the first four steps, AJ Disk is ready to move the beam through the tunnel.  To do this the 
electron beam is sliced into a set of charged disks.  The motion of each disk is governed by the 
space charge from other disks and/or the electric field associated with each cavity.   
 
The equations for these fields are: 
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where Es is the space-charge field from all the other disks and Ec is the circuit field associated 
with a cavity.  It should also be noted that µi is the ith zero of the J0 Bessel function and γ is the 
radial propagation constant. 
 
The space-charge field can be broken down.  The first part of the equation before the summation 
corresponds to the magnitude of the space-charge electric field at the location of the disk (the 
maximum value).  The second summation, simply corresponds to an exponential decay with 
axial distance (the magnitude is equal to one at the location of the present disk).  The first 
summation just sums the fields from all the other disks.  For further discussion see Rowe39. 
The cavity field is much simpler to understand.  The field is described by multiplying the gap 
voltage by the shape of the field and by an oscillating term.  The field oscillation is represented 
by the cosine term and the field shape is given by the Gaussian approximation: 
 

2 2( )( ) centerk z zk
f z e

π
− −=

 
 

where k can be found as described in the previous section. 
 
Next, returning to the algorithm: 
 

5)   Evaluate the equation of motion based on the field E = Es + Ec 
6) Calculate the induced current for each cavity, 
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where rho is the one dimensional charge density, v is the velocity found in step 5 and f(z) 
is used to represent coupling. 

7) Calculate the fundamental component of the induced current using a Fourier expansion 
and the induced current from step 6. 

8) Calculate the induced voltage in each cavity, where the induced voltage is the gap 
impedance times the fundamental component of the induced current. 

9) Repeat steps 5 through 8 until the resulting voltage from the last iteration is the voltage 
from the present iteration to within some predefined percentage error. 

10)  Calculate gain & efficiency. 
 
 
 
The kinetic efficiency is: 
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where vexit is the velocity at the end of the output region and vinlet is the velocity at the beginning 
of the output region.  A simple way to look at this equation, is to break it down, into the form 
(KEinlet – KEoutlet)/KEinlet. 
 
 
The electronic efficiency is: 
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where N refers to the output cavity and * denotes the complex conjugate.  This equation finds the 
percentage of the beam power which is converted to RF power in the output gap. 
 

11)  The final step is to display the results. 
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Appendix III. 
 

Magic 2D Simulation of the B-Factory Klystron (L. Ludeking, D. Smithe) 
 
 
To begin double click on MugSetupDemo.exe in the CD to install Magic on your computer.  
MugSetupDemo.exe and associated files are also available for download at 
http://www.mrcwdc.com/Magic/toolsuite.html.  Some users may also need to place the two *.dll 
files from the CD into the directory “C:\Program Files\Magic Tools” for Magic to operate.   
 
Once the Magic Tool Suite is installed open Mugman.exe as follows:   

 
➾ Begin with the Windows START menu button, 
➾ Select the PROGRAMS menu,  
➾ Select the Magic Tool Suit folder,  
➾ Click on “Mugman.exe” 
 

The magic start file for the klystron template is located on the CD under the name 
BFKlystron.m2d. 
 
Open this file with MUGMAN.   You should see a screen that looks like the following, 
 

 
 
 This file includes the user modifiable input and tuning parameters. Once these are set the 
file calls the internal coded klystron template embedded in MAGIC2D.  This document indicates 
the procedure and order in which the various tuning parameters should be used.  You do not need  
modify any of this text file.  This file and the template are setup to allow you to interactively 
respond to several screens to select the type of simulation and modify elements of the klystron 
geometry.   
 
 
 
 
 
 
 
 
 
Click on the Magic2d Button to start the template. The next screen that looks like this, 
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The Magic klystron template automatically saves the results from each run in a results file with 
the name “BFKResults.txt.”   By default it reloads this file. The previous results file contains a 
record of all the parameters used for each run in sequence. Thus all changes (and pertinent 
results) are recorded in this file.  You may delete this file (or change its name in the template text 
file, see first figure) when you are starting a new design sequence.  If this is your first time 
through then you may choose any of the three options.  Otherwise select 
“IGNORE_PREVIOUS” to ignore the results from the last run or “DELETE_PREVIOUS” to 
permanently  delete the results from the last run.  
 
The next screen allows you to review various elements of the cavity definitions, 
  
 

 
 
At this point the demo will branch in one of four possible directions.  Each of these possibilities 
will be discussed one a time.  Once you have selected an option, read through the associated text 
and then skip ahead to the dialog box which allows you to choose between HOT_TEST, 
COLD_TEST, and EIGENMODE_TEST. 
 
 
SKIP_GEOMETRY_REVIEW 
 
Normally, once the geometry and resolution have been set this option should be selected to skip 
directly to the main simulation.  If you have selected this option you may now proceed to the 
dialog box labeled, “select simulation type.” 
 
 
 
 
 
SET_RESOLUTION 
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Selecting any of the geometry options, including “SET_RESOLUTION,” leads to the following 
screen, 
 

 
 
This screen allows you to select a spatial mesh resolution. The default is “STANDARD,” this is 
the value used for the best results. It is also the most costly of computer time and resources.   
Using the “VERYCOARSE” setting allows you run individual cold tests in about a minute each.  
And the hot test will typically take about 90 minutes on a 2 GHZ PC.    In the “VERYCOARSE” 
setting, the frequency tuning has a greater discretization error because of the larger cells.   At this 
point select “VERYCOURSE” for a quick simulation.  You may now proceed to the dialog box 
labeled, “select simulation type.” 
 
 
BASE_GEOMETRY_REVIEW 
 
“SET_RESOLUTION” will automatically be chosen for you before proceeding to the 
“BASE_GEOMETRY_REVIEW.” 
 
“BASE_GEOMETRY_REVIEW” allows you to review and change the geometry.  Once the 
geometry is set the first time, you need not repeat this for the individual cavity tuning.  There 
will be a sequence of screens that go through the various design elements.  They will look like 
the following: 
 
The first screen is not geometry, but the selection of cavity design frequencies. 
 

 
 
The next set of screens allows you to set the cavity gaps and the gap-to-gap spacing. 
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COMPLETE_GEOMETRY_REVIEW 
 
“SET_RESOLUTION” will automatically be chosen for you before proceeding to the 
“BASE_GEOMETRY_REVIEW.” 
 
In this option you will go through the same steps as the “BASE_GEOMETRY_REVIEW” but 
there will also be additional screens for cavity radius, tube radius, and the shape for the gap 
edges. 
 
 
The “Select simulation type” Dialog Box 
 
At this point the review/geometry portion of the demo has been completed and the simulation 
type must be selected. 
 

 
 
This screen allows you select the type of simulation that you will be running. There are three 
choices.  
 
They are: 
1. COLD_TEST – in which you test the geometry and tuning effects on the frequency, Q, and 
R/Q of individual cavities.  
2.  HOT_TEST – in which you run all the finalized geometry settings, and select a hot test set of 
parameters.  The primary output from these runs will be the measurement of gain. 
3. EIGENMODE_TEST – in which you can examine the field structure after solving for an 
eigenmode.  This would normally be used after a major geometry revision to identify the base 
frequency.   
 
At this point we will again branch between the available options.  In this case only the 
“COLD_TEST” and “HOT_TEST” option will be discussed. 
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COLD_TEST 
 
Once COLD_TEST has been selected the next screen allows you to select which cavity to test. 
 
 

’ 
 
 
The next screen provides an opportunity to adjust the cavity tuning elements. 
 
 

 
 
The TUNELEFT and TUNERIGHT elements are used to fine tune the frequency response of the 
cavity.  The SIGMALOAD value is used to tune the effective Q of the cavity.    
 
At this point when you finish the tuning parameters, the simulation will begin to run.  The next 
screen will show the geometry that will look something like the following.  The driver in the 
cavity gap will be used to excite that cavity at the design frequency, once that cavity has “rung-
up” it will be allowed to decay and we can measure the Q, the relaxation (natural) frequency, and 
the R/Q of  the cavity.  Please remember that R/Q is basically determined by the geometry of 
gap. We normally do not make additional adjustments to the value obtained.  The only tuning is 
for the load (Q) and the tuners (frequency). 
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Once you have reviewed the geometry press the play button until the simulation begins. 
 
Once the simulation is complete there are several temporal diagnostics that can be examined, if 
the “GRAPHICS PAUSEON TSYS$LAST;” is enabled (this option may be modified in the 
BFKlystron.m2d file).  The first figure is a measure of the energy in the cavity.  It will look 
something like the following figure. 
 
 
 

 
 
The next figure is a measurement of the effective Q, measured from the decay of the energy in 
the cavity.  We measure Q by directly looking the energy in the cavity and the rate at which it is 
decreasing in time.  Thus we use Q = -2πf W(t)/(dW(t)/dt).  In the measurement of Q, we start 
with total energy in the simulation, evaluate the derivative, and we know the driving frequency.  
The final value of Q is extracted automatically and entered in the results file.  
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The next measurement of interest is the voltage across the gap. There are several diagnostics 
associated with this measurement.   An additional evaluation of Q, (although this determination 
is prone to greater error as the Q is very large.)  The most significant value measured from this, 
however is the relaxation frequency.  This is determined by a zero-crossing analysis, starting 
from the design frequency.  

 
The final value of the frequency is extracted and added to the results file.  
 

 
Some additional measurements are made from which we can extract the R/Q both in the gap and 
on the axis. To obtain R/Q we use MAGIC to measure <Vaxis

2>(t), the integral of the Ez(z,r=0), 
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averaged over 1 RF period, and to measure <WE>(t), the electric field energy in the cavity, 
averaged over 1 RF period.   The ratio of these measurements gives us a measure of R/Q, as 
follows.    
 

<R/Q>(t) =  <Vaxis
2>(t), / (2πf <WE>(t)). 

 
 
The following figure illustrates the typical result.  Again the end value is automatically extracted 
and added to the results file.   
 

 
 
 
The results file, “BFKResults.txt,” will look a bit like the following, (you can use Mugman to 
examine this file or a text editor).  Please note that the error in the frequency is about 0.15%.  
The template automatically calculates an adjustment for the tuners.  In addition, the error in the 
Q is over 100%.  The template also automatically calculates an adjusted value for the sigma to 
apply on the next simulation.  
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At this point we can rerun the template and select LOAD_PREVIOUS to include these 
corrections (or we enter them by hand at the appropriate screen).  When the cavity tuning screen 
is displayed we will see that the adjusted parameters are being used.  
 
 

 
 
 
We can reload the results file in Mugman and examine the frequency and Q measurements. We 
notice that the frequency error is 0.03% and the Q error is about 0.08%.  At this point for this 
resolution we would declare ourselves satisfied and move on the next cavity, and so forth.   
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The 4th cavity is a second harmonic cavity, and is much smaller in size.  Thus for the coarse 
resolution simulations, we have much less control of the frequency.  
 
 In general, a few cycles of cold test per cavity is required to achieve a tuned result.  Once all the 
cavities are tuned we can proceed to the hot test.  
 
HOT_TEST  
 
 

 
 
 
At this point you will need to rerun the simulation and select “LOAD_PREVIOUS” and 
“SKIP_GEOMETRY_REVIEW” when prompted to do so.  Once the simulation type has been 
selected as “HOT_TEST” the next screen allows you set the hot test parameters.   In general, you 
will be mostly changing the drive frequency and the power in, for the hot test. 
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In addition, you may alter the confining magnetic field, the beam voltage and the beam current.  
The next screen allows you select how many of the cavities to include in the hot test.  
 

 
 
Assuming that you select all the cavities, then you will get a display of the geometry that looks 
like the following.  At this point you start the hot test simulation. 
 
 

 
 
 
 When the simulation completes, you can see several phase space figures. The following 
is a sample of the kinetic energy versus z of the beam. 
 

 
This shows the beam in the entire device. 
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This shows a close up view of the beam at the 6th and 7th cavities.  You will note the bunching of 
the beam is quite evident. 
 

 
 
The following figure is beam power versus axial position.  
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The following figure is the beam current amplitude versus z at the drive frequency of 476 MHz. 
 
 

 
 
 
The following figure is the beam current amplitude versus z at the 2nd harmonic frequency of 952 
MHz. 
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This figure is the gap voltage in cavity 1.  It is examined for amplitude, frequency and FFT. The 
same information is available for the other cavities as well. 
 

 
 
 
The following figure is the power in the output load of cavity 7.  From this and the input power 
we can evaluate the gain.  
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The next figure is the gain.  The end value of the gain is automatically extracted and written to 
the results file. 
 

 
 
Finally, look at the results file with Mugman or a text editor. We see that the gain is 51.35 dB. 
 
 

 
 
At this point, one can start another hot test, and vary the input power or the drive frequency. 
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Appendix IV. 
 

Determining R/Q, coupling coefficient, beam loading and stability 
(G. Scheitrum, A. Jensen) 

 
Overview 
 
 The details of the determination of shunt impedance R/Q, coupling coefficient M, beam 
loading Qb, and a method for determining stability for various cavity modes are presented in this 
Appendix.  The Los Alamos SUPERFISH program group is used to illustrate the calculation of 
R/Q and M although any electromagnetic field code can be used. SUPERFISH is available and 
may be downloaded from Los Alamos at  http://laacg1.lanl.gov/laacg/services/psann.html.  The 
beam loaded Q that is needed for a cavity stability analysis is computed from a Wessel-Berg 
formulation using a Mathcad worksheet.  The results of the Qb calculation are then used to do a 
detailed stability analysis for the XC8 klystron output structure.  The primary calculations and 
key equations are the same as those found in the Mathcad file for gain calculations (see 
Appendix I).    

This document has six sections.  The first section provides the analysis for a method used 
to measure R/Q using the perturbation of cavity fields using a dielectric rod.  This method was 
used regularly before electromagnetic field simulation became commonplace.  The second 
section illustrates the calculation of R/Q using SUPERFISH.  The third section describes the 
calculations of R/Q for an extended interaction cavity.  The fourth section shows how the 
coupling coefficient M can be obtained using the same SUPERFISH model.  The fifth section of 
this document discusses the calculation of Qb and the setup of the Mathcad file to determine the 
stability of individual cavity modes.  The last section is a step by step analysis of the zero-mode 
in the XC8 output structure.  This same approach may be applied to any output structure or mode 
by simply changing the input variables in the Mathcad worksheet. The SUPERFISH and 
Mathcad files which accompany these calculations can be found in the attached CD. 
 
1.  Measuring R/Q using a dielectric rod and Slater’s perturbation method 
 

Next to the coupling coefficient M, the cavity R/Q is the most important parameter to be 
determined in the design of a new klystron (see Ch. 4).  Before computers became commonplace, 
cavity R/Qs were determined by constructing cold-test models of the cavities and performing 
perturbation measurements based on the well-known Slater perturbation formula47 to calculate 
R/Q.  This procedure may still be of interest to the reader since it provides considerable insight 
on the function of a klystron cavity and its gap.  For that reason it will be described in this 
Appendix, along with a simulation-based R/Q calculation that does not require cold test. 

R/Q is the ratio of the shunt impedance R of a cavity (defined as, 
2

VVV
R

W W

∗

= = ,   i.e. 

the ratio of the square of the voltage across the gap to the power lost in the resonator walls); and 

the cavity Q (defined as 
U

Q
W

ω= , i.e. 2πf  times the energy stored in the cavity divided by the 

power lost in the resonator walls).  
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Combining the two equations above, gives, 
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where the cavity is assumed to be gridless and the field Ez is assumed to extend beyond the 
actual gap. 
 Now, if a dielectric rod of radius b and a relative dielectric constant ε is inserted at the 
center of the cylindrical cavity, the Slater perturbation theorem is reduced to,  
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Taking into account that the frequency of the cavity will be reduced by the dielectric 

insertion (∆ω<0), and the ε = εrε0, and using the definition for R/Q above, we can write a 
formula for R/Q in terms of the frequency shift measured in the perturbation cold test, 
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Using ε0 = 8.85x10-12 farad/meter, we have the following formula in MKS, 
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The quantity I(d/a), where a is the interior radius of the drift tube, and d is the length of 

the gap, is plotted in the graph below, with the assumptions that the thickness of the drift tube is 
1/5 of its radius a  and that the gap tips are blunt.  Note that this procedure, which involves using 
an actual klystron cavity for cold test, together the graph that is based on the above assumptions, 
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is only approximate. The actual shape of the gap tips, as well as the thickness of the drift tube 
will influence the value of the R/Q calculated. 

 

Gap-Factor as a Function of Gap Spacing
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2.  Determining R/Q for a resonant structure using computer simulation 
 

The best example to use to become familiar with the process of calculating R/Q using a 
field simulation program is a pillbox cavity since its R/Q can be determined analytically.  A 
pillbox cavity is a simple cylinder of radius “a” and length “d”. 
 

  
For the TM010 mode in a pillbox cavity, the electric fields are all in the z 
direction and vary radially as the J0 Bessel function.  
 

0 0 ( )zE E J kr=  

The radial propagation constant k is defined by requiring that Ez = 0 at r = a therefore 
J0(ka) = 0 and k= p01/a where p01 = 2.4048 is the first zero of J0.  Since the electric field is 
constant in z, the integral of |Ez|dz is just (E0*d).  The stored energy is 
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Substituting into the equation for R/Q, the field magnitude drops out and the result is: 
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R/Q is a function of geometry but not frequency or wall losses in the cavity.  A W-band 

cavity that is a scaled copy of an L-band cavity will have exactly the same R/Q. 
For a pillbox cavity with a TM010 mode at 10 GHz, a = (p01*c)/(2*π*f) = 0.0115 m.  Setting        
d = a, the analytic calculation of R/Q gives a value of 185. 
 Now, let us calculate the R/Q for the same cavity using a computer simulation of it fields.  
This can be done with any electromagnetic simulation software that solves for cavity fields given 
the cavity geometry.  This includes SUPERFISH, MAGIC, MAFIA, HFSS, etc. SUPERFISH, 
written and maintained by Los Alamos National Laboratory, will calculate electromagnetic fields 
for 2D cylindrically symmetric structures but there are some pitfalls that must be avoided. 
Caveat:  SUPERFISH was written by accelerator physicists.  They have a different definition of 
R/Q than the one used by tube engineers.  In SUPERFISH, the postprocessor SFO will report a 
“Shunt Impedance” and an “r/Q”.  Neither one is the R/Q used by tube engineers.  The shunt 

impedance used in SUPERFISH is (E02L)/P, an impedance per unit length and r/Q = 

2(V0T)2/ωU, where T (called a transit time factor – more on this in a subsequent section) is 
equivalent to the klystron engineer’s coupling factor M.  If everything in the simulation is set up 
correctly, so that SUPERFISH integrates the voltage along the correct path, the cavity center is at 

z = 0 and the correct beam velocity has been used, then the R/Q = (r/Q)/(2T2).  The factor of ½ 
converts the peak voltage values to RMS values.  If everything is not set up correctly, the voltage 
along the axis (or other desired path) can be calculated by the SF7 postprocessor and the internal 
integration routine in TABLPLOT.  The stored energy is already reported in the SUPERFISH 
output file *.SFO where the * represents the filename assigned by the user to the input datafile. 
In the example below the input file would be PILL10.af and the corresponding output file would 
be PILL10.SFO. 
 
PILL10.af     SUPERISH input file listing 
10-GHz TM010 Short Pillbox Cavity 
reg kprob=1, ; SUPERFISH problem 
dx=.02, ; X mesh spacing 
freq=10000., ; Starting frequency in MHz 
xdri=1.,ydri=1.14741 $ ; Drive point location 
$po x=0.0,y=0.0 $ ; Start of the boundary points 
$po x=0.0,y=1.14741 $ ; r = 1.14741 cm 
$po x=1.14741,y=1.14741 $ ; z = 1.14741 cm, r = 1.14741 cm 
$po x=1.14741,y=0.0 $ ; 
$po x=0.0,y=0.0 $ ; note closed structure has same 
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; entries for first and last point 
; In SUPERFISH cylindrically symmetric problems  x= z, y= r  
 
To run AUTOFISH, double click on the “PILL10.af” filename.  It will output several files. 
PILL10.T35, PILL10.SFO, OUTAUT.TXT, OUTFIS.TXT, etc.  If the AUTOFISH program 
fails to complete, read the two input text files to find the error.  Correct the error and rerun 
AUTOFISH. 
 
Last page of PILL10.SFO 
SUPERFISH output summary for problem description: 
10-GHz TM010 Short Pillbox Cavity 
------------------------------------------------------------------------------- 
All calculated values below refer to the mesh geometry only. 
Field normalization (NORM = 0): EZERO = 1.00000 MV/m 
Frequency = 10000.09011 MHz 
Particle rest mass energy = 938.271998 MeV 
Beta = 0.7654765 Kinetic energy = 519.886 MeV 
Normalization factor for E0 = 1.000 MV/m = 5187.058 
Transit-time factor Abs(T+iS) = 0.0000031 
Stored energy = 5.65182E-06 Joules 
Using standard room-temperature copper. 
Surface resistance = 26.08934 milliOhm 
Normal-conductor resistivity = 1.72410 microOhm-cm 
Operating temperature = 20.0000 C 
Power dissipation = 20.4561 W 
Q = 17360.0 Shunt impedance = 560.912 MOhm/m 
Rs*Q = 452.910 Ohm Z*T*T = 0.000 MOhm/m 
r/Q = 0.000 Ohm Wake loss parameter = 0.00000 V/pC 
Average magnetic field on the outer wall = 1376.86 A/m, 2.47293 W/cm^2 
Maximum H (at Z,R = 0.96624,1.14741) = 1376.85 A/m, 2.47291 W/cm^2 
Maximum E (at Z,R = 1.13735,1.14741) = 1.00356E-04 MV/m, 1.2215E-06 Kilp. 
Ratio of peak fields Bmax/Emax = 17240.6426 mT/(MV/m) 
Peak-to-average ratio Emax/E0 = 0.0001 
 

After running SUPERFISH, the stored energy is available in the *.SFO file.  The 
integrated electric field is obtained by running the postprocessor ‘SF7’.  This program is used to 
output the field data stored in binary in the *.T35 file.  The data will be interpolated along the 
line, arc or rectangular area specified with equal spacing for a user defined number of steps.  
To execute the program, right click on PILL10.T35 and choose (Interpolate SF7).   
 
 
The dialog box shown below is used to select the start and stop points for a line along the axis of 
the cavity.  When run, it creates a TABLPLOT file named PILL1001.TBL which contains 
electric field data for Ez and Er along the specified line.  Since the electric field is constant along 
z the plot produced is just a straight line. 
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One of the drop-down menu choices 
from the TABLPLOT file is “Integrate”. 
Clicking on it opens the dialog box on the right. 
The dialog box lets you define the limits of 
integration and field value to be integrated (Ez, 
Er, |E|, H).  In this case the normalization done 
in SUPERFISH produced an Eo value of 1 
MV/m.  Since the electric field is constant vs z, 
the integral is just Eo*(z2-z1) 
Integrated Voltage = 11.4741 kV 
Resonant frequency = 10 GHz 
Stored Energy U = 5.65182E-06 J 

R/Q = V2/2ωU = 185.37 Ω 
 
The calculated value of R/Q from the 
SUPERFISH simulation is 0.2% larger than the 
analytic value.  
 
3. R/Q for an extended interaction cavity 
 

A little more complex example is 
provided by the 3 gap output cavity from 
SLAC’s XL-1 klystron.  The XL-1 was the first of a series of 11.424 GHz 50 MW klystrons for 
the NLC.  It used a 3 gap standing wave cavity to reduce the electric field gradient in the output 
cavity.  The numbers in the figure below correspond to the points defined in the input file for 
SUPERFISH. 
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The input file for SLAC’s XL1 three cell standing wave output cavity is listed below.  The 
numbers on the right are not part of the input file.  They were added to make it easier to identify 
the features in the cavity geometry.  The input file name is  “XL-1_3gap.af”. 
 
11.4-GHz XL-1 3gap standing wave output cavity 
$reg kprob=1, ; SUPERFISH problem 
dx=.010, ; X mesh spacing 
freq=11424., ; Starting frequency in MHz 
xdri=1.5,ydri=0.5792, ; Drive point location 
conv=2.54 $ ; Dimensions are in inches 
$po x=0.0,y=0.0 $ ; Start of the boundary points     1 
$po x=0.0,y=0.1875 $ ; drift tube radius = 0.1875 in     2 
$po x=1.0,y=0.1875 $ ; drift tube length = 1.0 in, r = 0.1875 in   3 
$po nt=2,x0=1.0,y0=0.2661,r=0.0786,theta=360 $ ; radius of cavity edge  4  
$po x=1.0786,y=0.5792 $ ; left cavity backwall radius = .5792 in   5 
$po x=1.1693,y=0.5792 $ ; spacer width = .0907 in     6 
$po x=1.1693,y=0.47 $ ; start of radius      7 
$po nt=2,x0=1.2945,y0=0.47,r=0.1252,theta=360 $ ; 180° arc for disk aperture 8 
$po x=1.4197,y=0.5792 $ ; center cavity backwall radius = .5792 in  9 
$po x=1.56,y=0.5792 $ ; spacer width = .1403 in     10 
$po x=1.56,y=0.47 $ ; start of radius       11 
$po nt=2,x0=1.6852,y0=0.47,r=0.1252,theta=360 $ ; 180° arc for disk aperture 12 
$po x=1.8104,y=0.5384 $ ; right cavity backwall radius = .5384 in   13 
$po x=1.9507,y=0.5384 $ ; spacer width = .1403 in     14 
$po x=1.9507,y=0.2661 $        15 
$po nt=2,x0=2.0293,y0=0.2661,r=0.0786,theta=270 $    16 
$po x=3.0293,y=0.1875 $ ; drift tube       17  
$po x=3.0293,y=0.0 $         18 
$po x=0.0,y=0.0 $ ;  
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The plot on 
the right 
shows the 
electric field 
for the π-mode 
in the three-
gap output 
cavity.  Note 
that the field 
changes sign 
where the field 
lines intersect 
the axis. 
Below is the 
SFO summary 
for problem 
description: 
 
 
 
 
 
 
 
 
11.4-GHz XL-1 3gap standing wave output cavity 
------------------------------------------------------------------------------- 
All calculated values below refer to the mesh geometry only. 
Field normalization (NORM = 0): EZERO = 1.00000 MV/m 
Frequency = 11452.31327 MHz 
Particle rest mass energy = 938.271998 MeV 
Beta = 1.0000000 
Normalization factor for E0 = 1.000 MV/m = 94181.405 
Transit-time factor Abs(T+iS) = 0.6550239 
Stored energy = 0.0012806 Joules 
Using standard room-temperature copper. 
Surface resistance = 27.91950 milliOhm 
Normal-conductor resistivity = 1.72410 microOhm-cm 
Operating temperature = 20.0000 C 
Power dissipation = 20.0765 kW 
Q = 4589.74 Shunt impedance = 3.833 MOhm/m 
Rs*Q = 128.143 Ohm Z*T*T = 1.644 MOhm/m 
r/Q = 27.567 Ohm Wake loss parameter = 0.49591 V/pC 
Average magnetic field on the outer wall = 23025.5 A/m, 740.11 W/cm^2 
Maximum H (at Z,R = 1.4197,0.5288) = 26129.9 A/m, 953.134 W/cm^2 
Maximum E (at Z,R = 1.57952,0.402874) = 9.92618 MV/m, 0.113264 Kilp. 
Ratio of peak fields Bmax/Emax = 3.3080 mT/(MV/m) 
Peak-to-average ratio Emax/E0 = 9.9262  
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On the right is a plot of the 
axial electric field for the π-
mode in the three-gap XL-1 
output cavity. The integral 
of |Ez| vs z is obtained by 
taking the absolute value of 
the Ez data in the 
TABLPLOT file and 
integrating over z. This can 
be done by hand or the 
TABLPLOT input file can 
be edited to change all the 
negative field values to 
positive and then integrated 
using TABLPLOT. 
 
 
 It is important to note that 
the integral has mixed units 
in the TABLPLOT dialog 
box. 
Ez is in MV/m but z is in inches.  This will depend upon the units used for the input geometry 
file.  Converting all units to MKS,  
V = 3.0293 MV-in/m * .0254 m/in  = 
76.9 kV.  The stored energy U from SFO 
is   0.0012806 J. 
Then, 
 

R/Q = V2/2ωU = 64.25 Ω 
 
Since the voltage in the gap varies 
radially as I0(γr), the effective shunt 
impedance depends on both filling factor 
and γa.   If γa is 2 the electric field at the 
edge of the beam can be 40% higher 
than on axis.  This is partially 
compensated by the reduced fringing of 
the cavity field into the drift region at a 
larger radius.  See the plot of Ez vs z for 
r = 0 and r = b at the end of this section. 
 
For the XL-1, γa = .74 a relatively small 
value.  Calculating R/Q at beam edge 
and at r = .707rb (assume 60% fill 
factor) and using SF7 to obtain 
integrated voltage at each radius gives the following values of R/Q at different radii. 
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R/Q(r=0) = 64.25 Ω, R/Q(r=.707rb) = 64.62, R/Q(r=rb) = 65.26 Ω 
For this small γa, the difference in integrated voltage from axis to beam edge is small and can be 
neglected. 
 

 
 

Ez vs z for r=0 and r=rb
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4. Determining the coupling factor M using SUPERFISH 
 
The coupling factor M is a measure of the effective voltage seen by an electron transiting a 
resonant cavity compared to the peak voltage produced across the gap when the electric field is 
at its maximum value. 
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This accounts for the fact that the electron has a finite transit time across the resonant cavity 

gap. In SUPERFISH the “transit time factor – T” is the microwave tube engineer’s coupling 
coefficient M except that the integration limits are defined by the ends of the simulation 
geometry.  In order to get the coupling coefficient directly from SFO, the problem inputs must be 
set up correctly.  First, the default particle in SUPERFISH is a proton with a rest mass energy of 
938 MeV.  The input parameter ‘RMASS’ must be set to the correct value for electrons, either -1 
or .511.  The minus sign indicates that the particle is identified from a table of particle-types 
shown below.  A positive value of rest mass gives the particle’s rest mass energy in MeV. 
 

Table X-20 from SUPERFISH Manual SFPOSTP.DOC 
Particle RMASS Rest-mass energy 

(MeV) 
Uncertainty 

(eV) 
e± −1 0.510998902 0.021 
H+ −2 938.271998 38 
H− −3 939.2939815 ~38 
D+ −4 1875.612762 75 
D− −5 1876.634745 ~75 

3He2+ −6 2808.39132 110 
4He2+ −7 3727.37904 150 

µ± −8 105.6583568 5.2 

 
The beam velocity must be specified in order to determine βe for the integration.  

SUPERFISH uses the variable name BETA= v/c to define beam velocity.  DO NOT confuse this 
with βe = w/v, which is the electronics propagation contact.  In the example below, BETA is set 
to 0.5, which corresponds to a beam voltage of 80kV. 
 

If the cavity geometry is not centered at z = 0, the variable ZCTR must be included in the 
input file to give the correct result from the transit time integral.  For klystron cavities where the 
cavity fields extend into the drift tube, sufficient drift tube length must be modeled to allow the 
on axis fields to decay to <1% of the peak field. 
 
The modified PILL10_M.af file used to calculate the coupling factor M for the pillbox cavity is 
listed below. 
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10-GHz TM010 Short Pillbox Cavity with modifications for calculating M 
 
 
$reg kprob=1, ; SUPERFISH problem 
BETA=.5    ; v/c normalized particle velocity 
RMASS=-1,    ; rest mass (particle-type - electron) 
KMETHOD=1,    ; use beta to compute wavenumber 'k' 
ZCTR=0.5737   ; center of cavity  
dx=.02,    ; X mesh spacing 
freq=10000.,   ; Starting frequency in MHz 
xdri=1.,ydri=1.14741 $  ; Drive point location 
 
$po x=0.0,y=0.0 $  ; Start of the boundary points 
$po x=0.0,y=1.14741 $  ; r = 1.14741 cm 
$po x=1.14741,y=1.14741 $ ; z = 1.14741 cm, r = 1.14741 cm 
$po x=1.14741,y=0.0 $  ; 
$po x=0.0,y=0.0 $  ; note closed structure has same 
     ; entries for first and last point 
 
     ; In SUPERFISH cylindrically symmetric problems 
     ; x= z, y= r 
 
 

The last page of the SFO output file for this case is listed below. 
 
SUPERFISH output summary for problem description: 
10-GHz TM010 Short Pillbox Cavity 
Problem file: C:\LANL\MYFILES\R_OVER_Q\PILL10.AF 8-13-2004 9:04:16 
-----------------------------------------------------------------------------
-- 
All calculated values below refer to the mesh geometry only. 
Field normalization (NORM = 0): EZERO = 1.00000 MV/m 
Frequency = 10000.09011 MHz 
Particle rest mass energy = 0.510999 MeV 
Beta = 0.5000000 Kinetic energy = 0.079 MeV 
Normalization factor for E0 = 1.000 MV/m = 5187.058 
Transit-time factor Abs(T+iS) = 0.2793658            “Coupling coeff M” 
Stored energy = 5.65182E-06 Joules                   calculated in  
Using standard room-temperature copper.              SUPERFISH 
Surface resistance = 26.08934 milliOhm 
Normal-conductor resistivity = 1.72410 microOhm-cm 
Operating temperature = 20.0000 C 
Power dissipation = 20.4561 W 
Q = 17360.0 Shunt impedance = 560.912 MOhm/m 
Rs*Q = 452.910 Ohm Z*T*T = 43.777 MOhm/m 
r/Q = 28.934 Ohm Wake loss parameter = 0.45450 V/pC 
Average magnetic field on the outer wall = 1376.86 A/m, 2.47293 W/cm^2 
Maximum H (at Z,R = 0.96624,1.14741) = 1376.85 A/m, 2.47291 W/cm^2 
Maximum E (at Z,R = 1.13735,1.14741) = 1.00356E-04 MV/m, 1.2215E-06 Kilp. 
Ratio of peak fields Bmax/Emax = 17240.6426 mT/(MV/m) 
Peak-to-average ratio Emax/E0 = 0.0001 
 

The results of the coupling coefficient calculation can be checked by using the transit time factor 
and r/Q to calculate R/Q. From the previous section: 
 

 
2 2

/ 28.934
/ 185.4

2 2(0.27936)

r Q
R Q

T
= = =  
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which gives the same result as the original R/Q calculation. 
 
So, using SUPERFISH and resetting the default values for BETA and RMASS, the ‘on-axis’ 
value of the coupling coefficient M can be read from the value listed in the SFO output as 
“Transit-time factor.” 
For coupling coefficients that are off the beam axis, the fields required for the integrations can be 
obtained from the postprocessor SF7 and then integrated to find the value at any desired radius. 
 
5. Calculation of beam loaded Q and cavity stability using Mathcad 
 
 To begin using the stability file in Mathcad, several variables must be supplied on page 5 
of the Mathcad worksheet.  They are listed below for reference, 
 

• Vo   - DC beam voltage (V) 
• Io  - DC beam current (V) 
• f0  - Operating frequency (GHz) 
• a  - Tunnel radius (m) 
• b  - Beam radius (m) 

 
 The above variables are typical cavity parameters and may be entered as in the Mathcad 
small signal gain worksheet in Appendix I. 
 To run the Mathcad file, a cavity or output structure must first be simulated in 
SUPERFISH to obtain the field distributions at r=a and on the axis.  The process for importing 
this data into Mathcad is discussed in detail on the 5th page of the Mathcad file and in the next 
section of this file.  The process must be repeated for every mode (since only one mode or 
frequency can be examined at a time and each mode is associated with a single input file from 
SUPERFISH).   

The following variables must also be entered, 
 

• conv  - Units/cm (from SUPERFISH AF input file) 
• symmetry  - 0 for even symmetry and 1 otherwise 
• npoints  - Plot resolution (# of points on the abscissa) 
• U  - Cavity stored energy (from SUPERFISH SFO output file) 

 
“conv” is the unit conversion factor used in the SUPERFISH input file (*.af).   If “conv” 

was not used in SUPERFISH it is set to 1.  The variable “symmetry” is set to 0 if only half of the 
cavity is simulated (since the cavity may be symmetric about its center), otherwise it is set to 1.   

The final variable, U (stored energy), is used as an input to calculate the R/Q of the 
cavity.  After simulating the cavity in SUPERFISH, the value for the stored energy can be found 
in the *.sfo file associated with the original input file.  Once U has been found, it is necessary to 
run SF7 (as described in the next section) to evaluate the field distribution on axis and at r=a.  
Next, the names of the files generated by SF7 must be entered on page 5 of the Mathcad 
worksheet and the files themselves must be relocated to the same directory as the Mathcad 
worksheet.  At this point Mathcad is ready to simulate the output structure. 

The remainder of the Mathcad file is used for displaying the results.  On page 5, the 
yellow highlighted areas display the key results of the simulation.  Page 6 presents a plot for the 
field distribution (for fields at both r=a  and on axis) versus distance and a plot of the beam 
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loaded Q versus voltage.  These results may then be updated by changing the variables on page 5 
and recalculating the simulation. 

 
 

XC8 Output Structure in the 0-Mode (Tutorial)  
 

 The Mathcad stability file may be used to evaluate the beam loaded Q, Qb, for any output 
structure and mode.  In this section, the Mathcad stability file will be used to evaluate the output 
structure for the XC8 klystron, in the zero-mode.  The same approach may then be used for the 
remaining three modes or other structures, as desired. 
 To begin, open the Mathcad file by double clicking the file labeled “XC8 Stability.mcd,” 
which is located in the CD.  Once the document has been opened, scroll down to the 5th page.  
The first half of the page should be the same as Figure AIV-1. 
 

 
 

Input Variables on Page 5 of XC8 Stability.mcd 
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A step by step process for simulating the zero-mode is studied next. 
 
The XC8.af file, in Appendix IV, is an input file for the program, SUPERFISH.  All the files that 
are about to be generated have already been simulated and are located in the appendix.  
However, the process for generating each file is discussed next. 
 
► Open XC8.af in a word editor such as Notepad. 
► In the first section of the file is a variable labeled “freq.”   SUPERFISH will search for the 
closest mode to this frequency.  Since the zero-mode is close to 8000MHz, replace 14000, after 
the variable “freq”, with 8000. 
► Save the file and close it. 
► Double click the file to simulate it in SUPERFISH (this generates the solution file 
“XC8.T35”). 
► Run the Program SF7 by right clicking on the “XC8.T35” file and selecting “Interpolate 
(SF7)”. 
► A dialog window for the SF7 program should now be displayed.  This program will find the 
field along a given line.  In this case the field along the axis is required, so Y2 is changed to from 
0.6523 to 0.  Press run. 
► After pressing run the field is tabulated in the XC801.TBL file, which has been renamed 
0axis.tbl in the appendix. 
► Open XC801.TBL in notepad.  The file contents should be similar to that shown below, with 
the, “…”, replaced by several lines of text and or data.  Delete the highlighted regions shown 
below and save the file as 0axis.txt and close it. 
 

 

 
 

► Right click on the XC8.T35 file and select “Interpolate (SF7).”  Now instead of finding the 
field on axis, the field is now interpolated at the drift tube radius.  This is done by changing Y1 
to 0.1785 and Y2 to 0.1785.  Press Run. 
► As in the method of finding the R/Q, open the generated TBL file and delete the text above 
and below the data.  This file is saved as 0.txt in the Appendix. 
► Right click on the XC8.T35 file and select “Postprocess (SFO).” 
► Open the file XC8.SFO or the file in the appendix 0mode.SFO.  Scroll to the bottom of the file 
and find the line labeled Stored energy, 
 
Stored energy                             =  1.61070E-04 Joules 
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► Enter the value for stored energy, 1.61070E-04 Joules, into the Mathcad variable U 
(highlighted in green on page 5).  Close the SFO file. 
► In the blue highlighted region, enter 0axis.txt as the input file after the variable sf_file_axis 
and 0.txt after sf_file_r_equals_a.   At this point make sure that these two files are located in the 
same directory as the Mathcad worksheet. 
► Double click on the T35 file to verify that the frequency, f0, in Mathcad is correct. 
► Verify that the rest of the highlighted green variables on page 5 of the Mathcad worksheet 
match your desired input parameters. 
► Click somewhere in the 6th page of Mathcad and run the simulation by pressing the equals 
button or the F9 key. 
► A plot of the beam loaded Q vs. voltage should be displayed on the 6th page. 
 
 
This concludes the tutorial for finding the beam loaded Q using Mathcad and SUPERFISH.  The 
same approach may be used to calculate the beam loaded Q for the other three modes, the results 
are shown below in Figure IV-2. 
 

Beam Loaded Q for the XC8
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6. Listing of Mathcad worksheet for stability analysis 
 

Define Constants: 

c 2.99792510
8⋅≡  Speed of Light 

me 9.109 10
31−⋅≡  

Electron Rest Mass e 1.602 10
19−⋅≡  

Electron Charge 

εo 8.854187810
12−⋅≡  Permittivity of Free Space 

Sweep Parameters: 

Ko
Io

Vo
1.5

:=  Perveance Ko 1.7127 10
6−×=  

num_points npoints mod npoints 2,( )+:=  Make npoints an Even Number 

o 0.5 num_points⋅:=  Index Where the Voltage Array, V, is Vo 

i 0 num_points..:=  Plotting Resolution 

Assign Voltages Symmetrically  
About Vo 

V
i

Vo i
1.99 Vo⋅

num_points
⋅+

1.99 Vo⋅
2

−:=  

I
i

V
i( )1.5

Ko⋅:=  Assign Currents Associated With 
Each Voltage to Produce Constant Perveance 

Initialize Variables: 

η
e

me
:=  

Electron Charge to Mass Ratio η 1.7587 10
11×=  

Jo
I

π b
2⋅

:=  
Beam Current Density (A/m2) Jo

o
2.0161 10

7×=  

Jbeam
Jo

100
2

:=  
Beam Current Density (A/cm2) Jbeam

o
2.0161 10

3×=  

K Ko 10
6⋅:=  Microperveance K 1.7127=  

Potential Beam Depression  
( @ r = 0.707 * b ) 

Vd .0304 V⋅ K⋅
1

4
ln

a

b
⎛⎜
⎝

⎞
⎠

+⎛⎜
⎝

⎞
⎠

⋅:=  Vd
o

1.7827 10
4×=  
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Vod V Vd−:=  Depressed Beam Potential Vod

o
4.3217 10

5×=  

Go
Io

Vod

→⎯⎯

:=  (Depressed) Beam Admittance Go
o

1.1963 10
3−×=  

σ 1
Vod

511000
+:=  Relativistic Mass Factor σo 1.8457=  

v/c for a Relativistic Particle  
with Potential Depression 

von
1

σ
σ

2
1−( )⋅⎡

⎢
⎣

⎤
⎥
⎦

→⎯⎯⎯⎯⎯⎯

:=  von
o

0.8405=  

βe
2 π⋅ f0⋅ 10

9⋅
von c⋅

:=  Electron propagation Constant βeo 211.002=  

γ βe 1 von
2−⋅( )
→⎯⎯⎯⎯⎯⎯

:=  Radial Propagation Constant γo 114.3184=  

----------------------------------   PLASMA REDUCTION FACTORS   ---------------------------------------- 

Calculation of the Plasma Reduction Factor, R, for the Pencil Beam Geometry, Using the Method 
of Branch and Mihran.   

γa γ a⋅:=  γao 0.5444=  

γb γ b⋅:=  γbo 0.3266=  

Plasma Frequency 

ωp η
Jo

εo von⋅ c⋅
⋅

1

σ
1.5

⎛
⎜
⎝

⎞

⎠
⋅⎡

⎢
⎣

⎤
⎥
⎦

→⎯⎯⎯⎯⎯⎯⎯⎯⎯

:=  ωpo 1.5898 10
10×=  

Calculate the Approximate Reduction Factor, R: 

R 1 2 I1 γb( )⋅ K1 γb( )⋅− 2
K0 γa( )
I0 γa( )⋅ I1 γb( )2

⋅−

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

:=  

R
o

0.197=  

Reduced Plasma Frequency and Propagation Constant 

ωq ωp R⋅( )
→⎯⎯

:=  βq
ωq

von c⋅

→⎯⎯

:=  
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-------------------------------------------------   FILE DATA   ------------------------------------------------------- 

Read in data (on axis) from the SUPERFISH file listed on pg. 5 of this worksheet. 

z_axis sf_file_axis 0〈 〉:=  z (location on the z-axis) 

r_axis sf_file_axis 1〈 〉:=  r (radial location) - Unused 

Ez_axis sf_file_axis 2〈 〉:=  Ez Field Component 

Er_axis sf_file_axis 3〈 〉:=  Er Field Component - Unused 

Emag_axis sf_file_axis 4〈 〉:=  Magnitude of the Electric Field - Unused 

H_axis sf_file_axis 5〈 〉:=  H Field Component - Unused 

N_axis length z_axis( ) 1−:=  Length of the Above Arrays 

Read in data (at r=a) from the SUPERFISH file listed on pg. 5 of this worksheet. 

z sf_file_r_equals_a 0〈 〉:=  z (location on the z-axis) 

r sf_file_r_equals_a 1〈 〉:=  r (radial location) - Unused 

Ez sf_file_r_equals_a 2〈 〉:=  Ez Field Component 

Er sf_file_r_equals_a 3〈 〉:=  Er Field Component - Unused 

Emag sf_file_r_equals_a 4〈 〉:=  Magnitude of the Electric Field - Unused 

H sf_file_r_equals_a 5〈 〉:=  H Field Component - Unused 

N length z( ) 1−:=  Length of the Above Arrays 

--------------------------------------------   R/Q Calculation   -------------------------------------------------- 

This section calculates R/Q from the included SUPERFISH file on pg. 5 of this worksheet.    
Note: R/Q must be calculated on axis.  Also, Ez is assumed to be in MV/m.  The stored 
energy, U, is entered manually by the user.  It is determined by SUPERFISH and displayed 
in the *.SFO output file. 

Vaxis

0

N_axis 1−

n

Ez_axis
n 1+ Ez_axis

n
+

2

⎛
⎜
⎝

⎞

⎠
z_axis

n 1+ z_axis
n

−( )⋅
conv

100
⋅

⎡
⎢
⎣

⎤
⎥
⎦∑

=

:=  

ω0 2 π⋅ f0⋅ 10
9⋅:=  

RQ
Vaxis 10

6⋅( )2

2 ω0⋅ U⋅
:=  RQ 385.7182=  
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---------------------------------------   Coupling Coefficient Calculation   --------------------------------------- 

Coupling Coefficient at the Beam Edge 

CosTerm n β,( ) cos
β 0.5 z

n 1+ z
n

+( )⋅ conv⋅

100

⎡
⎢
⎣

⎤
⎥
⎦

z
n 1+ z

n
−( ) conv⋅⎡⎣ ⎤⎦⋅:=  

SinTerm n β,( ) symmetry i⋅ sin
β 0.5 z

n 1+ z
n

+( )⋅⎡⎣ ⎤⎦⋅ conv⋅

100

⎡
⎢
⎣

⎤
⎥
⎦

⋅ z
n 1+ z

n
−( ) conv⋅⎡⎣ ⎤⎦⋅:=  

Ma β( ) 0

N 1−

n

Ez
n 1+ Ez

n
+

2

⎛
⎜
⎝

⎞

⎠
CosTerm n β,( ) SinTerm n β,( )+( )⋅

⎡
⎢
⎣

⎤
⎥
⎦∑

=

0

N 1−

n

Ez
n 1+ Ez

n
+

2

⎛
⎜
⎝

⎞

⎠
z
n 1+ z

n
−( )⋅ conv⋅

⎡
⎢
⎣

⎤
⎥
⎦∑

=

:=  

Coupling Coefficient Averaged Over the Beam Radius 

M β( ) Ma β( ) I0 β b⋅( )2
I1 β b⋅( )2

−

I0 β a⋅( )2
⋅:=  

---------------------------   Qb Calculations   ---------------------------- 

Gb/Go Calculated Using SUPERFISH and the M+ M- Approach (from WesselBerg). 

M_Min M βe βq−( )
→⎯⎯⎯⎯

:=  

M_Plus M βe βq+( )
→⎯⎯⎯⎯

:=  

Gb_Go
βe

8 βq⋅
M_Min( )2

M_Plus( )2−⎡⎣ ⎤⎦⋅
2

σ σ 1+( )⋅
⋅⎡

⎢
⎣

⎤
⎥
⎦

→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

:=  

Qb
1

Gb_Go
I

Vod
⋅ RQ⋅

→⎯⎯⎯⎯⎯⎯

:=  
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Input Data and Results 

Results 

sf_file_r_equals_a READPRN "0.txt"( )≡  "0.txt" is the input file associated with the 0 mode for 
the XC8 klystron at r=a.  "0axis.txt"  Is the input file 
associated with the 0 mode on axis.  
  
 

sf_file_axis READPRN "0axis.txt"( )≡  

To create an equivalent files for other output structures: 
 
(1) Run SUPERFISH using the chosen geometry. 
(2) SUPERFISH will create a *.T35 file.   
(3) Open the created *.T35 file in the program, SF7. 
(4) Enter the data prompted for (this data should be associated with the field at r=0 for 
R/Q calculations and r=a for all other calculations). 
(5) A *.TBL file will be created (you will need to create one for both the on axis field 
and the field at r=a). 
(6) Open the *.TBL file and delete everything except for the data found in the main set 
of columns. 
(7)  Save the edited *.TBL files under other names. 
(8) Place the files in the same directory as this one. 
(9) Enter the files' name inside of the READPRN functions above. 
For further details read Appendix IV. 

Reminder: Update the input file, f0, U, etc. for every new mode or cavity. 

Vo 450000≡  Beam Voltage (V) conv 2.54≡  Units Per cm  
(From SUPERFISH *.AF file) Io 517≡  Beam Current (A) 

f0 8.462≡  Mode Frequency (GHz) symmetry 1≡  0 - even symmetry  
1 - no symmetry  a 0.004762≡  Tunnel Radius (m) 

b 0.002857≡  Beam Radius (m) npoints 150≡  Plotting Resolution 

Stored Energy  
(From SUPERFISH *.SFO file) 

U 1.6107010
-4⋅≡  

The following are variables evaluated at the operating frequency, current, and voltage. 

βeo 211.002=  Propagation Constant 

Gb_Go
o

4.2583− 10
3−×=  Gb/Go from SUPERFISH Using M+ M- 

Ma βeo( ) 0.0632=  Coupling Coefficient @ r=a from SUPERFISH 

M βeo( ) 0.0521=  Coupling Coefficient (Averaged) from SUPERFISH 

RQ 385.7182=  R/Q from SUPERFISH (Use the Field on Axis) 
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Plots & Figures 
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Appendix V.   
 

Relativistic Corrections 
 
 
 The principal formulae used for klystron design in the main text are non-relativistic. The 
corrections listed below are essential to the design of accelerator klystrons, with beam voltages 
well above 50 kV. 

 
Quantity    Symbol   Multiply by: 

         

Perveance K 1 (3 / 28)( 1)σ− +  

Brillouin field Bb 
1/ 4[2 /( 1)]σ +  

Dc beam velocity u0 
1

(1 ) / 2σ
σ

+  

Coupling coefficient M 2 /[ ( 1)]σ σ σ +  

Beam loading conductance Gb/G0 
24 /( 1)σ +  

Plasma frequency ωp 
1/ 4(1/ )[2 /( 1)]σ σ +  

Plasma propagation factor βp 
3/ 4[2 /( 1)]σ +  

 
 

Where, 
 

 
2

01
u

c
σ ⎛ ⎞= − ⎜ ⎟

⎝ ⎠
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