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Abstract

We investigate to what extent the experimental information on B → ππ branching
fractions and CP asymmetries can be used to better understand the QCD dynamics in
these decays. For this purpose we decompose the independent isospin amplitudes into
factorizable and non-factorizable contributions. The former can be estimated within the
framework of QCD factorization for exclusive B decays. The latter vanish in the heavy-
quark limit, mb → ∞, and are treated as unknown hadronic parameters. We discuss
at some length in which way the non-factorizable contributions are treated in different
theoretical and phenomenological frameworks. We point out the potential differences
between the phenomenological treatment of power-corrections in the “BBNS approach”,
and the appearance of power -suppressed operators in soft-collinear effective theory
(SCET). On that basis we define a handful of different (but generic) scenarios where
the non-factorizable part of isospin amplitudes is parametrized in terms of three or four
unknowns, which can be constrained by data. We also give some short discussion on the
implications of our analysis for B → πK decays. In particular, since non-factorizable
QCD effects in B → ππ may be large, we cannot exclude sizeable non-factorizable
effects, which violate SU(3)F flavour symmetry, or even isospin symmetry (via long-
distance QED effects). This may help to explain certain puzzles in connection with
isospin-violating observables in B → πK decays.
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1 Introduction

An important unresolved question in the theoretical analysis of charmless non-leptonic B
decays is the quantitative understanding of the non-perturbative dynamics responsible for
non-factorizable contributions to decay amplitudes.

In the heavy quark limit, mb → ∞ , a factorization theorem [1] states that B → PP
decay amplitudes (where P stands for a light pseudoscalar meson) factorize into pertur-
batively calculable coefficient functions TI,II and universal hadronic quantities, namely
B → P transition form factors FB→P (m2

P ) and light-cone wave functions for heavy and
light mesons (φB and φπ). Schematically, one has

〈PP |Heff|B〉 = FB→P · TI ⊗ φP + TII ⊗ φB ⊗ φP ⊗ φP

+ terms suppressed by 1/mb (1)

where the symbol ⊗ represents convolution with respect to the light-cone momentum frac-
tions of light quarks inside the mesons. Without taking into account radiative corrections,
TI depends on kinematic factors only, and TII vanishes. This approximation corresponds
to the “naive” factorization assumption. At first order of the strong coupling constant
the factorization formula (1) has been shown to hold by the explicit calculation of the αs

corrections to naive factorization [1, 2]. In the following we refer to (1) in the heavy-quark
limit as “QCD factorization”. Arguments towards an all-order proof have been given in an
effective theory framework in [3] (see also [4] for a recent discussion). Here, the relevant
momentum modes for B → PP decays are determined by the momentum scaling of the
external particles and their possible interactions. The QCD factorization formula follows
from identifying TI,II as coefficient functions of operators in the soft-collinear effective the-
ory (SCET), where the constituents from different hadrons appear to be decoupled. An
all-order proof, which considers the subtle effects of endpoint divergences (see Section 2 in
[5] for a toy example, and also [6]), has not been worked out to the last detail. It should
follow a similar line of reasoning as for the somewhat simpler cases of B → γ and B → π
form factors [7, 8, 5, 6].

A major complication for phenomenology arises due to the fact that at least some of
the power corrections to (1) appear to be enhanced by large numerical coefficients (these
are proportional to the quark condensate in QCD, for this reason these terms are referred
to as “chirally enhanced”). In the diagrammatic analysis, non-factorizable contributions
are identified from convolution integrals that suffer from endpoint-divergences when one
of the parton energies vanishes. The authors of [1] parametrize the chirally enhanced
contributions of this type by an arbitrary complex number. The modulus of this num-
ber is estimated from regularizing the endpoint divergences with a finite energy cut-off.
We emphasize that this is a model-dependent procedure that aims to get a quantitative
handle on terms that are beyond the QCD factorization approach. We will refer to this
approximation and its phenomenological implications as the “BBNS approach”.

Another well-known framework is to use approximate flavour symmetries (isospin or
SU(3)F ) to relate different decay amplitudes and reduce the number of unknown hadronic
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parameters [9, 10]. This procedure is often combined with so-called “plausible dynamical
assumptions” about the importance of certain flavour topologies that can be identified in
the factorization approximation only. In particular, from a recent study in [11] along these
lines, it has been concluded that (a) non-factorizable effects in B → ππ are large, (b)
certain B → πK observables point to possible new physics effects in electroweak penguin
contributions.

A comprehensive analysis of presently available B → PP data leads to a somewhat
milder conclusion [12]. It is found that, within the statistical uncertainties, the “anomalies”
in B → πK decays may still be considered as being consistent with the SM. Furthermore,
the non-factorizable effects in B → ππ can be more or less accounted for by fitting the
hadronic input parameters in the BBNS approach to experimental data. Of course, in this
procedure, most of the predictive power of the QCD factorization approach is lost. Still,
the model-dependent parametrization of non-factorizable effects in the BBNS framework
turns out to result in significant constraints when used as the basis for a CKM fit.

The purpose of this article is to carefully examine different (model-dependent) ap-
proaches to quantify non-factorizable hadronic effects in charmless non-leptonic B de-
cays. In view of the ultimate goal, namely to extract independent information on CKM
parameters from non-leptonic B decays, we think that it is important to make sure that
certain assumptions about the size of flavour symmetry breaking, the origin of strong
phases etc. are clearly identified in order not to induce an uncontrolled theoretical bias.

Our paper is organized as follows. In the next section we will use the B → ππ de-
cays as a guideline, and decompose the independent isospin amplitudes into factorizable
and non-factorizable parts. The factorizable contributions are estimated within the QCD
factorization approach to first order in the strong coupling constant, and using default val-
ues for hadronic input parameters. The non-factorizable contributions are considered as
unknown parameters, the size of which has to be taken from experimental data on branch-
ing fractions and CP asymmetries. We will discuss the origin/interpretation of different
sources for non-factorizable effects within the BBNS approach, SCET, and phenomeno-
logical studies assuming large long-distance penguin contributions. From this we develop
a handful of constrained scenarios that implement different generic features of such ap-
proaches. Constraining the parameters for these scenarios using B → ππ data, one may
obtain quite different results on the size of individual isospin amplitudes. In particular,
we find that in scenarios with large non-factorizable penguin or annihilation contributions,
one may not exclude sizeable corrections to isospin-violating observables which arise from
long-distance QED effects, and may be relevant to explain the B → πK puzzles men-
tioned above. A detailed numerical analysis of B → πK modes is postponed until new
experimental data become available.
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2 Factorizable and non-factorizable contributions

2.1 Isospin decomposition of decay amplitudes

The CKM elements entering the effective weak hamiltonian for b-quark decays in the
Standard Model are defined as

λ
(q)
i = VibV

∗

iq . (2)

In particular, for b→ d transitions we have

λ(d)
u

λ
(d)
c

= −Ru e
−iγ , (3)

and for b→ s transitions we have

λ(s)
u

λ
(s)
c

= tan2 θC Ru e
−iγ ≡ ǫKM e−iγ (4)

with sin θC ≃ 0.2266 being the Cabbibo angle, and Ru =
√
ρ̃2 + η̃2 ≃ 0.405 and γ ≃

62◦ related to one side and one angle of the CKM-triangle (all numbers from [12], Ru is
sometimes denoted as Rb). In the case of b → d decays, all CKM factors are of the same
order, whereas for b→ s decays, ǫKM is suppressed by two powers of the Cabbibo angle.

Assuming isospin conservation in hadronic matrix elements the B → ππ decay ampli-
tudes can be decomposed into2

√
2 〈π−π0|Heff |B−〉 ≃ λ(d)

u [3Au(2, 3/2)] + λ(d)
c [3Ac(2, 3/2)] , (5)

〈π+π−|Heff |B̄0〉 ≃ λ(d)
u [−Au(0, 1/2) + Au(2, 3/2)] ,

+λ(d)
c [−Ac(0, 1/2) + Ac(2, 3/2)] (6)

√
2 〈π0π0|Heff |B̄0〉 ≃ λ(d)

u [Au(0, 1/2) + 2Au(2, 3/2)]
+λ(d)

c [Ac(0, 1/2) + 2Ac(2, 3/2)] , (7)

where the first argument denotes the total isospin I of the final state, and the second
argument denotes the isospin ∆I of the operators in the weak effective hamiltonian. For
the charge-conjugated modes one has to replace λ

(d)
i by λ

(d)∗
i . Thus, the physical B → ππ

amplitudes fulfill the well-known isospin relation

A[B− → π−π0] − A[B̄0 → π0π0] −A[B̄0 → π+π−]/
√

2 = 0 . (8)

The latter is violated by small quark mass effects and electromagnetic corrections which
we discard in the following.

2The |π0π0〉 state in this notation already includes a statistical factor 1/
√

2 from Bose symmetry, i.e. the
branching ratio calculated with this amplitude does not receive an additional factor 1/2. This corresponds
to the convention in [11] and differs from the convention in [1].
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Notice that only electroweak penguin operators contribute to the amplitude Ac(2, 3/2).
These operators have very small Wilson coefficients compared to those in Au(2, 3/2). Ac-
tually, neglecting the tiny Wilson coefficients C7 and C8, one can use Fierz identities to
relate the matrix elements of O9,10 with those of O1,2 and thus obtains

Ac(2, 3/2)

Au(2, 3/2)
≃ 3

2

C9 + C10

C1 + C2
= O(1%) . (9)

The contribution from Ac(2, 3/2) can therefore be neglected in B → ππ decays to a very
good approximation. This result is based on the structure of the effective electroweak
hamiltonian and on the general isospin analysis only [13, 14].

Using this simplification one sometimes introduces an intuitive parametrization, which
refers to the flavour topology (“penguin”, “tree” or “colour-suppressed”) of amplitudes
that one would obtain in the factorization approximation,

P̃ = λ(d)∗
c Ac(0, 1/2) ,

T̃ eiγ = λ(d)∗
u (Au(0, 1/2) − Au(2, 3/2)) ,

C̃ eiγ = −λ(d)∗
u (Au(0, 1/2) + 2Au(2, 3/2)) . (10)

The ratios between these amplitudes can be parametrized in terms of two moduli and two
strong phases as

d eiθ ≡ − P̃
T̃
eiγ = − 1

Ru

Ac(0, 1/2)

Au(2, 3/2) −Au(0, 1/2)
(11)

as a measure for the “penguin-to-tree ratio”, and

x ei∆ ≡ C̃

T̃
=

Au(0, 1/2) + 2Au(2, 3/2)

Au(2, 3/2) − Au(0, 1/2)
(12)

as a measure for the ratio of “colour-suppressed” to “colour-allowed” tree amplitudes.
Beyond the factorization approximation the notion of flavour topologies might be somewhat
misleading, whereas the classification in terms of isospin amplitudes is more general.

The isospin amplitudes Ai(I,∆I) contain contributions from short-distance dynamics
(modes with large virtualities in the heavy quark limit) and long-distance dynamics (modes
with virtualities of order Λ2

QCD). The short-distance effects can be treated in perturba-
tive QCD, making use of the heavy-quark expansion. The long-distance effects represent
hadronic uncertainties. We therefore decompose every isospin amplitude as

Ai(I,∆I) = AF
i (I,∆I) + ANF

i (I,∆I) . (13)

In “naive” factorization, the amplitudes AF
i can be expressed in terms of electroweak

Wilson coefficients and hadronic decay constants and form factors. An example for a
naively factorizing diagram is shown in Fig. 1, where we also indicate the momentum
scaling of external and internal lines [5]: Here and in the following, “s” stands for soft
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Figure 1: Example for a naively factorizing contribution to B → PP . The labels indicate
the scaling of the momentum modes.

momenta, “c” and “c̄” stand for collinear momenta (virtuality Λ2) in one or the other
direction, “hc” and hc” for hard-collinear momenta (virtuality Λmb) in one or the other
direction, and “h” for hard modes.

In the heavy-quark limit, we can use QCD factorization (1) to improve the quantitative
description of the factorizable part AF

i . The contributions to the first term in (1) come from
vertex corrections and penguin contractions as shown in Fig. 2, and from hard spectator
scattering as shown in Fig. 3(a). Non-factorizable effects arise from power corrections in
the ΛQCD/mb expansion. They include the annihilation topologies (see Fig. 4), and cannot
be calculated in a reliable way at present.

(a) (b)

Figure 2: Examples for (a) vertex and (b) penguin corrections to naive factorization in
B → PP . The labels indicate the scaling of the momentum modes.

2.2 Factorizable contributions

In [1] the contributions related to TI and TII in (1) are expressed in terms of parameters
ai = ai,I + ai,II (ai,II will be restricted to the heavy-quark limit, whereas in ai,I the terms
proportional to rπ

χ = m2
π/mqmb are kept). The factorizable amplitudes AF

i read

AF
u (0, 1/2) =

Aππ

6

(

4a1 − 2a2 + 6au
4 + 3a7 − 3a9 + 3au

10 + rπ
χ (6au

6 + 3au
8)
)

=
(

0.626+0.027
−0.022 + i 0.007+0.018

−0.010

)

Aππ
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− 0.037





0.28

FB→π
0

350 MeV

λB

(

〈ū−1〉π
3.3

)2


 Aππ ,

AF
u (2, 3/2) = −Aππ

6

(

2a1 + 2a2 − 3a7 + 3a9 + 3au
10 + 3rπ

χ a
u
8

)

= −
(

0.350+0.007
−0.008 − i 0.021+0.003

−0.004

)

Aππ

− 0.023





0.28

FB→π
0

350 MeV

λB

(

〈ū−1〉π
3.3

)2


 Aππ ,

AF
c (0, 1/2) =

Aππ

2

(

2ac
4 + a7 − a9 + ac

10 + rπ
χ (2ac

6 + ac
8)
)

= −
(

0.086+0.004
−0.004 + i 0.013+0.001

−0.000

)

Aππ

+ 0.001





0.28

FB→π
0

350 MeV

λB

(

〈ū−1〉π
3.3

)2


 Aππ ,

AF
c (2, 3/2) = −Aππ

2

(

−a7 + a9 + ac
10 + rπ

χ a
c
8

)

≃ 0.004Aππ , (14)

where we introduced

Aππ =
iGF√

2
(m2

B −m2
π)FB→π

0 (m2
π) fπ ,

which determines the overall normalization of the factorizable amplitudes, and FB→π
0 (q2)

is the scalar B → π transition form factor.

(a) (b)

Figure 3: Hard-scattering contributions to B → PP . (a) Example for one-gluon exchange
included in the BBNS analysis. (b) Example for (power-suppressed) higher-order diagram.
The labels indicate the scaling of the momentum modes.

The error in the first term of (14) refers to the variation of the factorization scale µ
between mb/2 and 2mb in the vertex and penguin graphs. The second term denotes the
central value for the hard-scattering contribution which has a large uncertainty related
to the first inverse moment λ−1

B of the light-cone distribution amplitude of the B meson.
(There are more sources of parametric uncertainties, in particular the scale-dependence of
the hard-scattering term, see the numerical discussion in [1]. Notice that for the hard-
scattering terms, we considered the electroweak Wilson coefficients at the scale µ = mb.)
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(a) (b)

Figure 4: Annihilation contributions to B → PP . (a) Example for one-gluon exchange
included in the BBNS analysis. (b) Example for higher Fock-state-contribution.

In the following numerical discussion we will refer to the central values of the AF
i only.

Of course, a significant change in the numerical values of AF
i would also influence our

conclusions about the size of ANF
i . The question whether the variation of all possible

input parameters in the BBNS approach within “reasonable” ranges could reproduce the
experimental data has already been studied in [12].3 Here we take the point of view that
the default values in [1] give a reliable prediction for the factorizable contributions, whereas
the BBNS analysis of non-factorizable terms is considered as one option among different
alternatives.

The power-corrections to the hard-scattering parameters ai,II, and the annihilation pa-
rameters bi are considered as part of the unknown functions ANF

i , which we parametrize
as

ANF
i (I,∆I) := ri(I,∆I) e

iφi(I,∆I)Aππ (15)

with ri > 0 and an arbitrary phase φi. (As explained above, one can safely setANF
c (2, 3/2) =

0: Even if we allow for an order-of-magnitude enhancement with respect to its factorizable
counterpart in (14), we would only get an O(1%) correction to Au(2, 3/2).)

2.3 Non-factorizable effects from B → ππ data

Our general parametrization of non-factorizable effects introduces seven adjustable parameters
ru(0, 1/2), φu(0, 1/2), ru(2, 3/2), φu(2, 3/2), rc(0, 1/2), φc(0, 1/2), and FB→π

0 . On the other
hand, if we neglect the tiny contribution from Ac(2, 3/2), on general grounds, we have only
five relevant parameters to describe three complex isospin amplitudes for B → ππ (one
overall phase is not observable). Consequently, our parametrization contains some redun-
dancy, which we will keep for the moment. Later we will consider different constrained
scenarios, where the number of parameters is less than 5.

Our strategy to infer information on the non-factorizable parameters from experimen-
tal data is to produce sets of random parameter values, and calculate the corresponding

3For instance, using the “large-a2” scenario in [2], where 〈ū−1〉π = 4.2, λB = 200 MeV, and FB→π
0

=
0.25, the hard-scattering correction in ai,II increase by a factor of 3.
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Observable BaBar Belle CLEO Average

B[B0 → π+π−] 4.7 ± 0.6 ± 0.2 4.4 ± 0.6 ± 0.3 4.5+1.4+0.5
−1.2−0.4 4.55 ± 0.44

B[B+ → π+π0] 5.5+1.0
−0.9 ± 0.6 5.0 ± 1.2 ± 0.5 4.6+1.8+0.6

−1.6−0.7 5.18+0.77
−0.76

B[B0 → π0π0] 2.1 ± 0.6 ± 0.3 1.7 ± 0.6 ± 0.2 < 4.4 1.90 ± 0.47
C+−

ππ −0.19 ± 0.19 ± 0.05 −0.58 ± 0.15 ± 0.07 – −0.46 ± 0.13
S+−

ππ −0.40 ± 0.22 ± 0.03 −1.00 ± 0.21 ± 0.07 – −0.73 ± 0.16
ACP[π+π0] −0.03+0.18

−0.17 ± 0.02 −0.14 ± 0.24+0.05
−0.04 – −0.07 ± 0.14

Table 1: Experimental results on B → ππ observables [12]. All branching ratios are CP-
averaged and quoted in units of 10−6. The sign convention for CP-asymmetries is defined
in the text.

χ2-value by comparing the theoretical branching ratios and CP asymmetries with the ex-
perimental measurements in Table 1. We follow the sign convention of [12],

ACP[π+π0] =
Γ[B̄− → π−π0] − Γ[B̄+ → π+π0]

Γ[B̄− → π−π0] + Γ[B̄+ → π+π0]
, (16)

and

S+−

ππ =
2Imλππ

1 + |λππ|2
, C+−

ππ =
1 − |λππ|2
1 + |λππ|2

, (17)

λππ =
q

p

A[B̄0 → π+π−]

A[B0 → π+π−]
≃ e−2iβ A[B̄0 → π+π−]

A[B0 → π+π−]
(18)

The so-obtained χ2 distributions enable us to investigate the generic size and importance
of non-factorizable parameters. To generate the sample, we assume uniform distributions
of parameter values in the following ranges

0.23 ≤ FB→π
0 (m2

π) ≤ 0.33 ,

0 ≤ ru,c(I,∆I) ≤ 1.0 ,

0◦ ≤ φu,c(I,∆I) ≤ 360◦ , (19)

The bound on the scalar form factor is the main theoretical bias. We used a rather
conservative estimate of the theoretical uncertainties, which contains the central value
0.28 used in [1] as well as a recent update 0.26 for this quantity in the framework of QCD
sum rules [15]. The upper bound on ru,c(I,∆I) will turn out to be sufficiently large not to
induce an additional bias.

Already for the unconstrained scenario we find some interesting patterns, see Fig. 5,
where we have plotted the χ2 value against each of the free parameters for a sample of 500
points with χ2 < 10:

• The value of the scalar B → π form factor is not constrained by the data4

4It would therefore be interesting to independently measure the value of the form factor from B → πℓν
decay for given value of |Vub|.
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• The distribution of the parameter ru(0, 1/2) is rather broad, with a slight prefer-
ence for ru(0, 1/2) = 0.5 ± 0.5. The corresponding phase take values in the range
120◦ < φu(0, 1/2) < 240◦. (Notice that for values of φu(0, 1/2) around 180◦ the non-
factorizable contributions reduce the value of the “colour-allowed” tree amplitude,
which accomodates the experimental fact that the parameter x in (12) is large.)

• We further find rc(0, 1/2) < 0.35, and ru(2, 3/2) < 0.8. The corresponding phases
φc(0, 1/2) and φu(2, 1/2) show no pronounced preference.

Of course, there are correlations between the different parameters. For instance, there
is no solution with small χ2, where all parameters ri(I,∆I) are small (relative to the fac-
torizable terms), in other words the default scenario in the BBNS approach is disfavoured
by the data (in accordance with similar conclusions in [11, 12, 16]). For illustration we
marked solutions which simultaneously fulfill

ru(0, 1/2) < 0.5 , ru(2, 3/2) < 0.2 , and rc(0, 1/2) < 0.1 , (20)

and which, in view of the large parametric uncertainties related to hard-scattering and
annihilation contributions (see below) may still be viewed as more or less compatible with
the BBNS approach (in the spirit of [12]). This still yields values of χ2 ≤ 3.

The situation is somewhat different if we take into account the BaBar and Belle
measurements separately. The BaBar data can be explained with slightly smaller non-
factorizable contributions, whereas the Belle data require even larger deviations from the
heavy quark limit. The difference comes mainly from different results for S+−

ππ and C+−

ππ .

2.4 Non-factorizable effects from “BBNS”

In the BBNS approach non-factorizable effects arise through chirally enhanced power-
corrections which are identified from endpoint-divergent convolution integrals, appearing
in the diagrammatic approach.

2.4.1 Hard-scattering contributions

One source of non-factorizable power-corrections are so-called hard spectator-scattering
diagrams, where a gluon connects the spectator quark to the short-distance decay process.
Fig. 3(a) (together with an analogous diagram where the gluon is attached to the other
collinear quark) has been considered in [1]. On the other hand, Fig. 3(b) represents an
example of a higher-order diagram (which is not included in the BBNS approach), which
involves a multi-particle Fock state in the B meson and which is power-suppressed (see
below).

Apart from a factorizable part that determines the heavy quark limit, explicit calcula-
tion shows that the diagram in Fig. 3(a) gives rise to chirally-enhanced power-suppressed
endpoint divergences. At the considered order in the diagrammatic expansion, these end-
point divergences enter through the quantity

Xπ
H ≡

∫ 1−Λh/mB

0

u

1 − u
φπ

p (u) , (21)
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Figure 5: Comparison of χ2 values for a random sample of non-factorizable parameters:
Dots for unconstrained scenario, stars for combinations that fulfill (20).
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where φπ
p (u) ≃ 1 is a twist-3 light-cone distribution amplitude of the pion. We regularized

the integral by means of an ad-hoc cut-off, because the integral does not converge for
u→ 1. Since the twist-3 distribution amplitudes are normalized to a term proportional to
the quark condensate (i.e. the ratio of Goldstone boson and quark masses, m2

M/mq), their
contributions are numerically large (“chirally enhanced”). To study the phenomenological
impact of these terms, the authors of [1] propose to parametrize the quantity on the left-
hand side in terms of

Xπ
H = (1 + ρH e

iϕH ) ln
mB

ΛH
, ρH ∼ O(1) (22)

with ϕH being an arbitrary phase, whereas ΛH ≈ 0.5 GeV.
Inserting the default values for the hadronic parameters in the BBNS analysis, we

obtain

ANF
u [0, 1/2]|hs ≃ −0.030Aππ (1 + ρH e

iϕH )

[

0.28

FB→π
0

350 MeV

λB

〈ū−1〉π
3.3

]

, (23)

ANF
u [2, 3/2]|hs ≃ −0.018Aππ (1 + ρH e

iϕH )

[

0.28

FB→π
0

350 MeV

λB

〈ū−1〉π
3.3

]

, (24)

ANF
c [0, 1/2]|hs ≃ 0.001Aππ (1 + ρH e

iϕH )

[

0.28

FB→π
0

350 MeV

λB

〈ū−1〉π
3.3

]

, (25)

ANF
c [2, 3/2]|hs ≃ 0 . (26)

Comparing with the general parametrization (15), we deduce that in the BBNS approach
ru(I,∆I) are expected to receive contributions of the order 5% (up to 10% for the “large a2

scenario”) from hard spectator-scattering, whereas the corresponding effect for rc(I,∆I)
seems to be negligible.

In any case the above procedure is understood to only give a rough idea about the
typical size of non-factorizable contributions for individual decay amplitudes. The origin
and size of strong re-scattering phases remains unclear. In particular, treating ρH and ϕH as
universal parameters, one induces model-dependent correlations between non-factorizable
effects in different isospin amplitudes. Substantially different strong interaction phases for,
say, I = 0 and I = 2 final states can arise from more complicated diagrams with additional
quark lines (i.e. higher Fock states). In the diagrammatic approach along the lines of BBNS,
these effects can only show up at higher orders in the diagrammatic expansion, see Fig. 3(b).
Notice that in the case of non-factorizable endpoint configurations, “higher-order” diagrams
are not necessarily suppressed by powers of the strong coupling constant. The universality
of strong phases arising from hard-spectator scattering is therefore not a generic feature of
QCD factorization, but appears as an artefact of the diagrammatic expansion, which serves
as the basis for the phenomenological modelling in the BBNS approach. Notice, however,
that in the BBNS approach different phases in different isospin amplitudes can be generated
by combining the non-factorizing pieces from hard scattering (XH) and from annihilation
(XA see below) which are treated as independent complex parameters. Nevertheless, a
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model-dependent correlation between non-factorizable contributions to different B → ππ
and B → πK amplitudes would remain. The analysis [12], which uses the universal BBNS
parameters for all isospin amplitudes, should therefore be interpreted with some care.

2.4.2 Scenario 1: Dominance of hard spectator scattering

If we assume that non-factorizable effects from power-suppressed contributions to hard
spectator scattering are the main source for ANF(I,∆I), we may define a phenomenological
approximation, where we put rc(0, 1/2) = 0. In addition, we might either fix the form
factor value, F0 = 0.26 (Scenario 1a), or assume that the phases ϕH are universal such
that φu(0, 1/2) = φu(2, 1/2) (Scenario 1b).

Repeating the analysis of the B → ππ data with these additional constraints, we obtain
the situation illustrated in Figs. 6 and 7. Scenario 1a still gives a more or less reasonable
description with χ2 ≥ 4 for six experimental observables and four adjustable parameters.
The situation in Scenario 1b is similar. In both cases we need rather large non-factorizable
amplitudes with either ru(0, 1/2) > 0.5 or ru(2, 3/2) > 0.3. φu(0, 1/2) is rather constrained
in both cases.

ru(0, 1/2) φu(0, 1/2)

0.2 0.4 0.6 0.8 1

2

4

6

8

10

50 100 150 200 250 300 350

2

4

6

8

10

ru(2, 3/2) φu(2, 3/2)

0.2 0.4 0.6 0.8 1

2

4

6

8

10

50 100 150 200 250 300 350

2

4

6

8

10

Figure 6: Comparison of χ2 values for a random sample of non-factorizable parameter
combinations, using rc(0, 1/2) = 0 and FB→π

0 = 0.26 (Scenario 1a).
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Figure 7: Comparison of χ2 values for a random sample of non-factorizable parameter
combinations, using rc(0, 1/2) = 0 and φu(2, 3/2) = φu(0, 1/2) (Scenario 1b).
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2.4.3 Annihilation topologies

Another source of non-factorizable, power-suppressed contributions to B → PP are an-
nihilation topologies, see Fig. 4. They receive the same chiral enhancement as the non-
factorizable hard-scattering pieces.

In the BBNS approach, the flavour-changing sub-process for annihilation topologies is
bq → qq̄, and consequently, it can only contribute to I = 0 (for B → ππ) or I = 1/2
(for B → πK) decay amplitudes (again this statement is only true as long as we do not
consider higher Fock states). The order of magnitude for annihilation effects is estimated
in a similar way as for the hard-scattering terms in the previous section, introducing the
quantity

Xπ
A = (1 + ρA e

iϕA) ln
mB

ΛH
, ρA ∼ O(1) . (27)

The corresponding contributions to the non-factorizable B → ππ amplitudes read

Au(0, 1/2)|ann ≃ 0.01 (1 + 1.0ρAe
iϕA − 0.7ρ2

Ae
2iϕA)Aππ , (28)

Ac(0, 1/2)|ann ≃ −0.01 (1 + 2.0ρAe
iϕA + 0.9ρ2

Ae
2iϕA)Aππ . (29)

Comparing with the general parametrization (15), we deduce that in the BBNS approach
ru,c[0, 1/2] may receive contributions of the order of several percent from annihilation.
Notice that the annihilation topologies in BBNS lead to 1/m2

b corrections that are doubly
chirally enhanced (giving rise to the ρ2

A terms above).

2.4.4 Scenario 2: Dominance of annihilation topologies

In another approximation, we assume that the non-factorizable part of the ∆I = 3/2
amplitude is sub-dominant and can be neglected, ru(2, 3/2) = 0. In addition we again fix
the form factor, FB→π

0 = 0.26.
From the theoretical point of view, the situation corresponds to the case where the

annihilation graphs in the BBNS approximation are assumed to be the dominant source
of non-factorizable effect. Alternatively, it can also be viewed as representing the case
where higher-order contributions from penguin corrections (“charm” and “GIM” penguins
[17, 18]; for a recent phenomenological fit along these lines, see [19]) are the main source
of non-factorizing effects (again, such effects do not contribute to the amplitudes with
∆I = 3/2).

From the plots in Fig. 8 we observe that a very good description of the data is possible
in such a scenario. Again, rather large non-factorizable effects (i.e. of the same order as
the factorizable ones) are needed in Au(0, 1/2) and/or Ac(0, 1/2). The data also show a
clear prefererence for ANF

c (0, 1/2) < ANF
u (0, 1/2) in this scenario.

2.5 Non-factorizable contributions in SCET

Soft-collinear effective theory has been developped as a systematic tool to study the factor-
ization of different short- and long-distance modes contributing to inclusive and exclusive
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Figure 8: Comparison of χ2 values for a random sample of non-factorizable parameter
combinations, using ANF

u (2, 3/2) = 0 and FB→π
0 = 0.26 (Scenario 2 – dominance of annihi-

lation/penguins).
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B decays [20, 21, 22]. In case of exclusive decays, two kinds of short-distance modes are
successively integrated out: hard modes (with virtualities of order m2

b) and hard-collinear
modes (with energies of order mb and virtualities of order mbΛQCD) [23, 24, 5]. The first
matching step leads from QCD to the so-called SCETI. The second matching step leads
from SCETI to SCETII. The effective theory SCETII only contains long-distance modes
with virtualities of the order of the QCD scale. In the B meson rest frame these are
denoted as “soft” (all momentum components of order ΛQCD), and “collinear” (one mo-
mentum component scales as mb). Fields and operators in the effective theory have a
definite power-counting in terms of the expansion parameter λ2 = ΛQCDmb. In this para-
graph we will discuss some generic examples for effective-theory operators that may give
rise to factorizable and/or non-factorizable effects in B → ππ.

Let us follow the strategy of [5] (which has been used in the context of a factorization
proof for the B → πℓν decay) and identify the possible field content of effective operators
in SCETI that are relevant for B → ππ. (We will consider light-cone gauge for the collinear
modes, and will drop soft Wilson lines for simplicity. We also do not explicitely note Dirac
or Lorentz indices.). The two hard-collinear directions defined by the final-state hadron are
denoted as “hc” and “hc”, respectively. It is understood that for all operators that we will
list below, one has a corresponding term with hc ↔ hc interchanged. It should also be clear
that the different possible flavour structures of the operators in SCET are obtained from
matching the corresponding operators in the weak effective hamiltonian by integrating out
hard QCD modes (we will comment on flavor-dependent QED effects below).

In the second matching step, one has to generate the minimal field content

[q̄s . . . hv] [ξ̄c . . . ξc] [ξ̄c̄ . . . ξc̄]

that is necessary to build up the initial and final state quantum numbers (the dots stand
for additional qq̄ pairs or gluon fields of the same kind; we do not consider decays into
flavor-singlet mesons here). The generation of soft and collinear fields from hard-collinear
ones costs a certain power of the small expansion parameter λ, which can be read off the
corresponding interaction terms in the SCETI Lagrangian. Examples are [5]

ξhc
λ→ ξc ,

ξhc
λ2

→ ξcA
⊥

hc ,

A⊥

hc
λ→ q̄sξhc ,

A⊥

hc
λ2

→ q̄sξc . (30)

2.5.1 3-body operators

The minimal possible field content for a SCETI operator, that contributes to B → ππ, is

[ξ̄hcA
⊥

hc
hv] ∼ λ5 , (31)

where on the right-hand side we indicated the power-counting for this operator, following
from the SCETI Lagrangian. Performing the explicit matching calculation, one finds that
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at tree-level the first non-trivial operator is just a copy of the chromomagnetic term Og
8 in

the weak hamiltonian, restricted to the particular kinematical situation,5

−Ceff
8

gsmb

8π2
ξ̄hc σµν(1 + γ5)G

µν

hc
hv + (hc → hc) . (32)

Here Ceff
8 contains the short-distance contribution from loop contractions with 4-quark

penguin operators.
Starting from the operator in (32), in order to generate the necessary final-state partons,

we need at least two collinear quark fields ξc and ξ̄c which have to be generated from the
hard-collinear field ξ̄hc, and two collinear quark fields ξc̄ and ξ̄c̄ which should descend from
A⊥

hc
. The first case costs at least a factor λ4, for instance through the chain

ξ̄hc
λ2

→ ξ̄cA
⊥

hc
λ2

→ ξ̄c[q̄sξc] . (33)

In the second case, we cannot directly produce two collinear quark fields from the hard-
collinear gluon field, because they would be in a flavor-singlet configuration (the case of
flavor-singlet mesons has been discussed in the context of QCD factorization in [25]). There-
fore we need at least two additional quark fields that do not end up in the corresponding
pion (and therefore have to come from the initial B meson which provides soft modes). A
possible branching

A⊥

h̄c
λ→ q̄sξhc

λ4

→ [q̄sξc̄][ξ̄c̄qs] (34)

costs a factor λ5 such that the power-counting for currents in SCETII that descend from
three-body operators in SCETI is λ14. Together with the power-counting for the hadronic
states the contribution to the B → ππ amplitude is λ7, which has to be compared with the
result in naive factorization ∼ fπF

B→π
0 ∼ λ5. Therefore, contributions from three-body

operators are 1/mb suppressed (and therefore do not contribute to the factorization theo-
rem in the heavy-quark limit). To obtain a non-vanishing contribution of a 3-body SCETI

operator to a B → ππ matrix element in the diagrammatic expansion of the BBNS ap-
proach, we thus need at least three gluons. Such diagrams are not considered in the analysis
of power-corrections in [1], which has been restricted to one-gluon exchange diagrams. Up
to now, we do not know whether this operator gives factorizable contributions in the first
non-vanishing order in SCETII (i.e. 1/mb with respect to the leading contributions from
naive factorization). In any case, from the structure of the factorization proof for B → πℓν
decays in [5] and similar arguments in [29], we expect that, in general, factorization of
soft and collinear modes in SCETII does not hold for power-corrections obtained in the
matching of SCETI to SCETII. Therefore, at least on the level of 1/m2

b power-corrections,
the operator in (32) provides a new source of non-factorizable corrections. Similarly as for
the annihilation diagrams considered in BBNS, see (27), contributions from such power-
suppressed 8-quark operators in SCETII could be doubly chirally enhanced. In this case,
numerically they may be as important as the non-factorizable terms included in the BBNS
analysis.

5The power-counting follows from the leading term nσ
−Gµ⊥σ = (n−∂)A⊥

hc
∼ λ in the light-cone gauge.
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2.5.2 4-body operators

The leading-power contributions to the function TI in (1) involve four-quark operators in
SCETI of the type

[ξ̄hcξhc][ξ̄hchv] ∼ λ6 . (35)

The conversion of the hard-collinear quark pair to a collinear one costs twice a power of
λ, and the conversion of ξ̄hc via (33) costs a factor of λ4. Therefore, these four-quark
operators match onto 6-quark operators in SCETII which scale as λ12 and, according to
the discussion in the previous paragraph, are leading power.

Another 4-quark operator that is allowed in SCETI by momentum conservation is of
the form

[q̄shv][ξ̄hcξhc] ∼ λ8 . (36)

The conversion of hard-collinear quark fields into at least two collinear fields via (33)
costs each a factor of λ4. Therefore, these operators match onto 8-quark operators in
SCETII which scale at least as λ16 and are thus 1/m2

b suppressed. This corresponds to
an annihilation topology which involves a higher Fock state (bq̄)(q′q̄′) in the B meson.
Notice that, again, the suppression by 1/m2

b can be numerically compensated by two chiral
enhancement factors coming from the wave functions of the two final-state mesons.

We may also consider 4-body operators that involve additional gluons, like

[A⊥

hc
][ξ̄hcA

⊥

hchv] ∼ λ6 SCETII→
∫

. . . [q̄sξc̄][ξ̄c̄qs][q̄sξc][ξ̄chv] ∼ λ14 , (37)

or

[A⊥

s A
⊥

hc][ξ̄hchv] ∼ λ7 SCETII→
∫

. . . A⊥

s [q̄sξc̄][ξ̄c̄qs][q̄sξc][ξ̄chv] ∼ λ16 , (38)

where again we have to use (34) to obtain flavour non-singlet collinear quark configurations
from a single hard-collinear gluon field.

2.5.3 Remark on the treatment of charm quarks

One may also worry about 4-quark operators involving charm quarks. In the BBNS ap-
proach, the charm quarks are treated as hard modes (i.e. mc = O(mb)), and therefore they
are integrated out in the first matching step and do not appear as degrees of freedom in
SCETI. Alternatively, one may take the point of view that m2

c ∼ Λmb, i.e. mc ≪ mb in the
heavy quark limit. Still, since charm quarks do not appear as external partonic degrees
of freedom in charmless non-leptonic B decays, they cannot induce endpoint singularities,
and can, in any case, be treated perturbatively. The effect of the alternative power-
counting scheme merely amounts to expanding the hard coefficient functions in terms of
mc/mb, which corresponds to integrating out the charm quarks in the second matching step
SCETI → SCETII. Via the renormalization group running within SCETI one would also
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resum logarithms lnmc/mb. Numerically, the effect onto factorizable amplitudes should
be marginal. In the non-factorizable contributions, on the other hand, the crucial effects
come from the endpoint divergences and chiral enhancement related to light quarks, and
not from charm quarks, if mc ≫ ΛQCD.

In [4] it has been argued that one should also consider the possibility of non-relativistic
charm and gluon modes in SCETI. This would correspond to operators of the type

[ξ̄hchv][c̄c]NR ,

where the invariant mass of the cc̄ pair happens to be close to 4m2
c which corresponds to

a light-cone momentum fraction for the quark field ξ̄hc of the order u = 1 − 4m2
c/m

2
b ≃

0.6. However, since charm modes do not appear as external degrees of freedom, hadronic
matrix elements of the above operator in SCETI× NRQCD would vanish. One may ask
the question, where the effect of charm resonances (i.e. non-relativistic cc̄ bound states,
J/ψ, ψ′, . . .) would show up in the effective theory framework. As explained above, as charm
quarks do not appear as external states, they can be formally integrated out, resulting in
a quark determinant with charm quarks in the background of soft and collinear gluon
fields. The treatment of charm quarks is thus fully inclusive, and the appearance of charm
resonances resembles the well-known cases of e+e− → hadrons or B → Xsℓ

+ℓ−: When
integrating the invariant-mass spectrum over a large enough region, the effect of charm
resonances provides power-corrections to the inclusive rate.

In our case, the pion distribution amplitude serves as the “detector” with a “sensitivity”
φπ(u = 1 − q2/m2

b). Integrating over all momentum fractions u, the effect of charm res-
onances translates into power-corrections, which should be attributed to the matching
coefficients of sub-leading operators in SCETI. One can even perform a numerical esti-
mate of such charm-resonance effects by using the same phenomenological treatment as for
b → sℓ+ℓ− [26, 27]. We find that the standard pion distribution amplitude is sufficiently
broad to wash out the effect of exclusive charm resonances. Therefore it is not clear to us in
what sense the inclusion of non-relativistic modes in SCETI should lead to an enhancement
of charm penguin contributions in non-leptonic B decays, as has been argued in [4]. Also in
a recent analysis within QCD sum rules [28], an unnatural enhancement of charm-penguin
contributions to non-leptonic B decays is not observed, and the perturbative treatment of
charm quarks seems to be justified.

2.5.4 5-body operators

Two examples of 4-quark operators with an additional hard-collinear gluon are

[ξ̄hcξhc][ξ̄hcA
⊥

hchv] ∼ λ7 , (39)

[ξ̄hcA
⊥

hcξhc][ξ̄hchv] ∼ λ7 . (40)

With similar arguments as above, the first term matches onto a leading-power 6-quark
operator in SCETII, which corresponds to the factorizable hard-spectator diagrams in the
QCD factorization approach. The second term gives a 1/mb power-suppressed contribution,
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which serves as one of the candidates to compensate the endpoint divergences parametrized
by XH . There are a number of further 5-body structures, which we are not going to discuss
in detail here.

2.5.5 6-body operators

The simplest 6-quark operator in SCETI has the form

[ξ̄hcξhc][ξ̄hcξhc][q̄shv] ∼ λ10 (41)

The leading-power matching onto SCETII gives a 6-quark operator of the order λ14 which
corresponds to the 1/mb-suppressed annihilation graphs in the BBNS approach.

Another possibility is a 4-quark operator with two additional transverse gluons, e.g.

[ξ̄hcξhc][q̄shv]A
⊥

hcA
⊥

hc
∼ λ10 (42)

which amounts to annihilation with additional radiation of hard-collinear gluons. After
matching onto SCETII, the minimal quark content refers to an 8-quark operator which
scales as λ16, and is therefore 1/m2

b suppressed with respect to the leading-power contri-
butions, and should be related to the terms of order X2

A in (27).

2.5.6 Summary: Factorizable and non-factorizable SCET operators

We summarize the examples for SCETI and SCETII operators in Table 2. The identification
of the power-corrections as non-factorizable is tentative (without a more detailed analysis,
which is beyond the scope of this work, we cannot exclude that some of the operators
identified as non-factorizable at a certain sub-leading power in 1/mb are actually free of
endpoint divergences in SCETII). The factorization of the two structures contributing at
leading power (as indicated by

√
), can be understood by applying the same rules as in the

B → πℓν case [5] (this point has also been realized in [4]).
Notice that another set of possible operators is obtained by changing one gluon field

into a photon field. The contributions of such operators are suppressed by the ratio of
electromagnetic and strong coupling constants, αem/αs. They may be important in isospin-
breaking observables for B → πK decays, if they enter with large Wilson coefficients
and large CKM elements, and if the 1/mb suppression is compensated by large numerical
factors.

2.6 Non-factorizable effects from long-distance penguins

It is often argued that a main source of non-factorizable effects in B → PP decays should
be attributed to long-distance penguin topologies [17, 18], where two quarks of one of
the four-quark operators O1−6 in the electroweak hamiltonian are contracted to a loop
which radiates one or more gluons. As explained above, in the effective theory approach,
long-distance modes in SCETI are hard-collinear and soft quark and gluon fields, i.e. the
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SCETI power AF ANF SCETII BBNS

[ξ̄hcA
⊥

hc
hv] λ5 – 1/mb [q̄sq̄s..qshv][ξ̄c̄..ξc̄][ξ̄c..ξc]

[ξ̄hcξhc][ξ̄hchv] λ6
√

1/mb [q̄s..hv][ξ̄c̄..ξc̄][ξ̄c..ξc] in TI

[A⊥

hc
][ξ̄hcA

⊥

hchv] λ6 – 1/mb [q̄sq̄s..qshv][ξ̄c̄..ξc̄][ξ̄c..ξc]

[ξ̄hcξhc][ξ̄hcA
⊥

hchv] λ7
√

1/mb [q̄s..hv][ξ̄c̄..ξc̄][ξ̄c..ξc] in TII, XH

[ξ̄hcA
⊥

hcξhc][ξ̄hchv] λ7 – 1/mb [q̄s..hv][ξ̄c̄..ξc̄][ξ̄c..A
⊥

c ξc]

[A⊥

s A
⊥

hc][ξ̄hchv] λ7 – 1/m2
b [q̄sq̄s..A

⊥

s qshv][ξ̄c̄..ξc̄][ξ̄c..ξc]

[q̄shv][ξ̄hcξhc] λ8 – 1/m2
b [q̄sq̄s..qshv][ξ̄c̄..ξc̄][ξ̄c..ξc]

[ξ̄hcξhc][ξ̄hcξhc][q̄shv] λ10 – 1/mb [q̄s..hv][ξ̄c̄..ξc̄][ξ̄c..ξc] in XA

[ξ̄hcξhc][q̄shv]A
⊥

hcA
⊥

hc
λ10 – 1/m2

b [q̄sq̄s..qshv][ξ̄c̄..ξc̄][ξ̄c..ξc]

. . . . . . . . . . . . . . . . . .

Table 2: An incomplete list of the field content of SCETI operators, contributing to
non-leptonic B decays into light hadrons. See text for details.

effect of b (and usually also c) quarks is already absorbed into matching coefficients, see
Fig. 9(a). Examples for long-distance penguin diagrams in SCETI are shown in Fig. 9(b).
They reflect contributions to one of the 4-body operators (36) discussed above, which
gives power-suppressed contributions to the decay amplitudes. Remember that above, we
identified this type of operator as the source for annihilation contributions. Actually, in
the non-perturbative region the diagrammatic language in terms of soft quark and gluon
propagators is not appropriate anymore, and the distinction between annihilation and
penguin contractions is not clear cut. On the other hand, in SCET one has an additional
correlation between flavour quantum numbers and the type of fields (hard-collinear or soft).

(a) (b)

Figure 9: Examples for (a) short- and (b) long-distance penguin contributions to a 4-body
Greens function in SCETI via hard, hard-collinear or soft quark loop.
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For the above example, the operators

[q̄shv][ξ̄hcξhc]I=0 and [q̄shv][ξ̄hcξhc]I=1 , (43)

where the total isospin of the two hard-collinear fields is different, can be distinguished.
Notice however that, in general, interactions between soft and hard-collinear quarks can
lead to mixing of the two operators in SCETI. Notice that by momentum conservation
both hard-collinear fields are in an endpoint configuration

pµ
hc = Enµ

− + ∆pµ, |∆pµ| ∼ Λ
pµ

hc
= Enµ

+ + ∆p̄µ, |∆p̄µ| ∼ Λ , (44)

where E ≃ mb/2 denotes the pion energy in the B meson rest frame, and n− and n+ are
light-cone vectors which satisfy n2

−
= n2

+ = 0, n−n+ = 2. The invariant mass of the gluon
pair is of order

√
Λmb, and therefore the light-quark thresholds in the loop give rise to an

imaginary part in the soft loop. We emphasize that for this configuration the factors of
αs belonging to the soft gluon and to the endpoint-gluon do not count as perturbative.
Therefore the latter reflects a mechanism to generate non-perturbative strong phases. On
the other hand, as already mentioned, this contribution is power-suppressed by at least
1/m2

b , in accordance with the general arguments in [30] and [1], and, in principle, the
endpoint-configuration should be suppressed by Sudakov form factors. On the other hand,
we could have a sizeable numerical enhancement from chiral factors, but this cannot be
quantified in a satisfactory way at the moment.

2.6.1 Scenario 3: Dominance of strong phases in Ac(0, 1/2)

Sometimes the main source of non-factorizable effects in B → ππ decays is attributed to
matrix elements of the operators Oc

1,2 ∼ [d̄b][c̄c] in the electroweak hamiltonian (see e.g. [17,
18] for the general argument, and [31] for a recent hadronic model). This would correspond
to long-distance penguin topologies with charm quarks in the loop. In the effective theory
approach this would require to treat 4m2

c ≤ Λmb. Also, the line-of-reasoning in [4] (see the
discussion about non-relativistic charm modes, above) has lead the authors to conclude
that charm penguins are the primary source of strong rescattering phases.

In a more general setup, such a situation can be simulated by setting the phases
φu(0, 1/2), φu(2, 3/2) = 180◦. Furthermore, we require moderate values for the non-
factorizable parameters, ru(0, 1/2) < 0.5 and ru(2, 3/2) < 0.2. Notice that, in general,
one cannot decide whether the remaining contributions to ANF

c (0, 1/2) are to be identified
as long-distance penguin or annihilation topologies (and therefore also the phenomenolog-
ical discussion in [32] is covered). The result of this scenario (where the value of the form
factor is again fixed as 0.26) is shown in Fig. 10. We observe that the scenario is very
restrictive, leading to rc(0, 1/2) ≃ 0.15, and φc(0, 1/2) ≃ 100◦. This implies that, based
on phenomenological assumptions, the theoretical predictivity compared to the more gen-
eral case in scenario 2 is improved. However, these constraints, used in a CKM analysis,
probably represent a large theoretical bias.
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We should mention that the phenomenological scenario constructed in [4] differs from
the one discussed here in two points: (i) In [4] the remaining contributions to ru(I,∆I)
are attributed to factorizable hard-scattering contributions, where the relative weight for
different isospin amplitudes is fixed but the absolute normalization is kept arbitrary. (ii)
The form factor value is left as a free parameter. In this case the authors found a very
small value FB→π

0 ≃ 0.17 which seems to contradict the findings from QCD sum rules
and would point to large hard-scattering corrections relative to the naively factorizing
terms. We understand this as an indication that the neglect of other non-factorizable
corrections in [4] is questionable. Since the transition form factor itself and the factorizable
corrections actually represent one part of the calculation where we have some theoretical
control on the parametric errors, we believe that one should stick to the present theoretical
estimates, unless a more direct experimental determination of these terms (from B → πℓν
and B → γℓν) gives more reliable numbers.

What remains true is that the assumption about the dominance of strong rescattering
phases in the amplitude Ac(0, 1/2) cannot be excluded with present data. In view of the
already mentioned QCD sum rules result [28] and the general arguments in Section 2.5.3,
it does not seem very plausible that these effects are due to charm penguins alone.
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Figure 10: Comparison of χ2 values for a random sample of non-factorizable parame-
ter combinations, using φu(0, 1/2) = φu(2, 3/2) = 180◦, FB→π

0 = 0.26, ru(0, 1/2) < 0.5,
ru(2, 3/2) < 0.2 (Scenario 3 – dominance of strong phases from Ac(0, 1/2)).
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2.6.2 Scenario 4: Equal strong phases in Au(0, 1/2) and Ac(0, 1/2)

As explained above, in the standard framework, long-distance penguins would only involve
light quarks. Imaginary parts are related to the soft momentum regions in these light-quark
loops. If this was the leading mechanism to generate strong phases, one may indeed expect
that the corresponding contributions to Au(0, 1/2) and Ac(0, 1/2) differ in moduli, due to
different Wilson coefficients, and short-distance coefficient functions in SCET, but yield
the same strong phases φu(0, 1/2) = φc(0, 1/2). (More precisely, this situation is always
realized if the non-factorizable contributions are dominated by only one operator in the
∆I = 1/2 SCETI hamiltonian, e.g. the operator in (36). Strong phases can be induced
either by soft quark loops in penguin diagrams, or by soft gluon rescattering in annihilation
diagrams. As already mentioned, to disentangle the two possibilities does not make sense
for non-factorizable operators.) The corresponding 4-quark operators with the largest
Wilson coefficients are Ou

1,2, and therefore it is also conceivable that ru(0, 1/2) > rc(0, 1/2).
As one can see from the general set-up in scenario 2 (see Fig. 8), both these assumptions
seem to be in line with experiment.

We therefore define another scenario 4 with four constraints, ANF
u (2, 3/2) = 0, φc(0, 1/2) =

φu(0, 1/2), and FB→π
0 = 0.26, and thus only three free parameters. The comparison with

the experimental data is shown in Fig. 11. Not surprisingly, the largest restriction concerns
the value of φu(0, 1/2) = φc(0, 1/2) which is tuned to values around 150◦. But the values
of ru(0, 1/2) and rc(0, 1/2), which lead to a good description of the data are still rather
generic, ru(0, 1/2) ≃ 0.4 − 0.8 and rc(0, 1/2) < 0.2.

2.7 Lessons from B → ππ

We conclude:

• The present data on B → ππ decays require non-vanishing non-factorizable correc-
tions which should be related to 1/mb corrections in the factorization formula (1).

• The dynamical origin of these corrections remains a theoretical challenge, and differ-
ent phenomenological assumptions can accomodate the data. This includes scenarios
in the spirit of BBNS, where non-factorizable corrections can still be moderate for
certain hadronic input parameters. On the other hand, the central values of exper-
imental data seem to point to rather large non-factorizable contributions, in partic-
ular for the isospin amplitude Au(0, 1/2), which can only be reached by pushing the
hadronic parameters in the BBNS approach to the limits.

• Different assumptions about the dominance of certain decay topologies are consitent
with the data. However, the additional assumptions and constraints may lead to a
strong theoretical bias when used in CKM fits. Whereas it seems safe to neglect
the non-factorizable contributions to the isospin amplitude Au(2, 3/2), in general,
both large contributions to Au(0, 1/2) and Ac(0, 1/2) should be taken into considera-
tion. They may be related to either long-distance penguin or annihilation topologies
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Figure 11: Comparison of χ2 values for a random sample of non-factorizable parameter
combinations, using FB→π

0 = 0.26, φu(0, 1/2) = φc(0, 1/2) and ru(2, 3/2) = 0 (Scenario 4 –
equal phases for ANF

u (0, 1/2), and ANF
c (0, 1/2)).
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which correspond to matrix elements of power-suppressed operators in soft-collinear
effective theory.

• The picture of large non-factorizable penguin contributions still appears to be at-
tractive from the phenomenological point of view. Although they formally appear
on the level of power-corrections, their numerical impact remains a matter of debate.
We have given some arguments that in the effective theory framework, one would
need to consider more complicated diagrams than those taken into account in [1] or
[4], in order to cover such effects. We also saw that the distinction between annihi-
lation and penguin topologies is not clear cut for non-factorizable contributions. We
also find it unlikely that large non-factorizable effects to Ac(0, 1/2) are coming from
charm-quark loops.

• In the extreme case, we may assume that the non-factorizable effects required by
experimental data are dominated by one non-factorizable operator in the ∆I = 1/2
SCETI Lagrangian, leading to equal strong phases for ANF

u (0, 1/2) and ANF
c (0, 1/2).

Comparison with experimental data shows that these long-distance contributions to
the decay amplitudes, are about an order of magnitude larger than the factorizable
penguin contributions contained in (1). We note that in the BBNS approach this
scenario can be simulated by allowing for significantly larger non-factorizable anni-
hilation contributions XA.

3 Some Remarks on B → Kπ Decays

In the future, we expect new and/or more accurate data within the whole class of B → PP
decays from the B factories and hadron machines. This is crucial for a better understanding
of the strong dynamics in charmless non-leptonic B decays. In this work, we limit our
analysis here to some general remarks. We plan to give a comprehensive analysis of B →
Kπ decays in a forthcoming paper.

3.1 Isospin decomposition for B → πK

The isospin decomposition of B → πK amplitudes reads

〈π−K̄0|Heff |B−〉 ≃ λ(s)
u [Au(1/2, 0) + Au(1/2, 1) + Au(3/2, 1)]+
λ(s)

c [Ac(1/2, 0) + Ac(1/2, 1) + Ac(3/2, 1)] , (45)
√

2 〈π0K−|Heff |B−〉 ≃ λ(s)
u [−Au(1/2, 0) −Au(1/2, 1) + 2Au(3/2, 1)]+
λ(s)

c [−Ac(1/2, 0) −Ac(1/2, 1) + 2Ac(3/2, 1)] , (46)

〈π+K−|Heff |B̄0〉 ≃ λ(s)
u [−Au(1/2, 0) + Au(1/2, 1) + Au(3/2, 1)]+
λ(s)

c [−Ac(1/2, 0) + Ac(1/2, 1) + Ac(3/2, 1)] , (47)
√

2 〈π0K̄0|Heff |B̄0〉 ≃ λ(s)
u [Au(1/2, 0)− Au(1/2, 1) + 2Au(3/2, 1)]+
λ(s)

c [Ac(1/2, 0) − Ac(1/2, 1) + 2Ac(3/2, 1)] , (48)

26



reflecting the isospin relation

〈π−K̄0|Heff |B−〉 +
√

2 〈π0K̄0|Heff |B̄0〉 − 〈π+K−|Heff |B̄0〉 −
√

2 〈π0K̄0|Heff |B̄0〉 = 0 .
(49)

For comparison, we also quote the connection with the parametrization used in [1]

P = λ(s)
c (Ac(1/2, 0) + Ac(1/2, 1) + Ac(3/2, 1)) , (50)

ǫae
iφa = ǫKM

Au(1/2, 0) + Au(1/2, 1) + Au(3/2, 1)

Ac(1/2, 0) + Ac(1/2, 1) + Ac(3/2, 1)
, (51)

ǫ3/2e
iφ = ǫKM

3Au(3/2, 1)

Ac(1/2, 0) + Ac(1/2, 1) + Ac(3/2, 1)
, (52)

ǫT e
iφT = ǫKM

2Au(1/2, 1) + 2Au(3/2, 1)

Ac(1/2, 0) + Ac(1/2, 1) + Ac(3/2, 1)
, (53)

qeiω = − 1

ǫKM

Ac(3/2, 1)

Au(3/2, 1)
, (54)

qCe
iωC = − 1

ǫKM

Ac[1/2, 1] + Ac[3/2, 1]

Au[1/2, 1] + Au[3/2, 1]
(55)

Thus, there are eleven independent isospin parameters for the Kπ mode. At the moment,
there is not enough data available to fix them all independently.

The factorizable part of the isopin amplitudes in the QCD factorization approach can
be expressed using the corresponding parameters ai,I and ai,II (the latter coefficients are
restricted again to the heavy quark limit) as given in [1].

AF
c (3/2, 1) =

AπK

2

(

−rK
χ ac

8 − ac
10

)

+
AKπ

2
(−a7 + a9) , (56)

AF
u (3/2, 1) =

AπK

6

(

2a1 − 3rK
χ au

8 − 3au
10

)

+
AKπ

6
(−2a2 + 3a7 − 3a9) , (57)

AF
c (1/2, 1) =

AπK

2

(

−rK
χ ac

8 − ac
10

)

+
AKπ

2
(a7 − a9) , (58)

AF
u (1/2, 1) =

AπK

12

(

−2a1 − 3rK
χ au

8 − 3au
10

)

+
AKπ

6
(−2a2 − 3a7 + 3a9) , (59)

AF
c (1/2, 0) =

AπK

4

(

4ac
4 + ac

10 + 4rK
χ ac

6 + rK
χ ac

8

)

, (60)

AF
u (1/2, 0) =

AπK

4

(

2a1 + 4au
4 + au

10 + 4rK
χ au

6 + rK
χ au

8

)

. (61)

3.2 SU(3)F connection between B → ππ and B → πK

A well-defined procedure to reduce the number of independent hadronic amplitudes in
the analysis of non-leptonic B decays is to use the limit of SU(3)F flavour symmetry.
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For a comprehensive summary see Appendix A of [33].6 Together with the structure of
the effective hamiltonian, SU(3)F symmetry results in the following relation between the
isospin amplitudes for B → ππ and B → πK decays

Ap(2, 3/2) = Ap(3/2, 1) , p = u, c . (62)

These equations represent in principle four additional relations between the real parameters
entering the definition of the isospin amplitudes, namely two phase relations and two ones
connecting the moduli. Using the parametrization (10,12) and the approximate relation
(9) for B → ππ amplitudes together with the parametrization for B → Kπ amplitudes
quoted above, Eqs. (62) translate into

q eiω ≃ δEW = − 3

2ǫKM

C9 + C10

C1 + C2
≃ 0.69 , (63)

and

|ǫ3/2 P |
|λ(s)

u |
=

|(1 + x ei∆) T̃ |
|λ(d)

u |
. (64)

The first equality states that in the SU(3)F limit the parameter q eiω is a pure short-distance
quantity, i.e. a real number that can be calculated in terms of Wilson coefficients and CKM
factors. This is a well-known result where only the structure of the electroweak effective
hamiltonian enters [13, 14]. The second relation connects the overall normalization, i.e.
the dominant amplitudes T̃ for B → ππ, and P for B → πK in the naive factorization
approach. These are known to receive sizeable SU(3)F breaking corrections, already in
naive factorization through the ratio

AπK

Aππ
=
FB→π(m2

K)fK

FB→π(m2
π)fπ

≃ AKπ

Aππ
=
FB→K(m2

π)

FB→π(m2
π)

≃ 1.2 − 1.3 . (65)

There is no further exact SU(3)F connection between B → ππ and B → Kπ decays,
because the SU(3)F multiplets involve also other decays, namely B → KK and Bs → Kπ
decays for ∆S = 0 and Bs → KK and Bs → ππ decays for ∆S = 1. However, using
additional information by anticipating some experimental data, one can derive further
SU(3)F relations between the B → ππ and B → Kπ modes.

If one assumes that A[B0 → K+K−] → 0 (which in the SU(3)F limit corresponds to
A[B0

s → π+π−] → 0) SU(3)F symmetry implies the following additional relations between
isospin amplitudes

Ap(0, 1/2) = Ap(1/2, 0)− Ap(1/2, 1) , p = u, c (66)

In the factorization approach this corresponds to neglecting exchange/annihilation topolo-
gies. It can be easily translated into four additional relations conecting two phases and
two moduli in the ππ and in the Kπ mode.

6Note that we use another sign convention for the definition of isospin amplitudes
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Often some further empirical assumptions are used within the SU(3)F analysis, namely
Adir[B

± → π±K0] = 0 or BR[B± → K+K0] = 0. This allows to eliminate two more
parameters within the SU(3)F analysis, namely (see (55))

ǫa e
iφa = 0 . (67)

Clearly, a complete analysis of the systematic error of such a procedure has to take into
account an estimate of possible SU(3)F breaking effects, and of the uncertainties related to
the phenomenological/empirical assumptions. The simplest approach to estimate flavour-
symmetry violating effects, is to restrict oneselves to factorizable amplitudes as in (65).
However, in case of large non-factorizable QCD effects, which appear to be necessary
to explain the B → ππ data, one consequently has to take into account the possibility of
sizeable flavour-symmetry violating effects for such contributions, too. Naively factorizable
SU(3)F breaking effects thus can only provide an order-of-magnitude estimate of flavour-
symmetry breaking in general.

In the BBNS approach, apart from different decay constants and form factors for pions
and kaons, SU(3)F breaking enters through the different (moments of) light-cone distri-
bution amplitudes. As we already pointed out in Section 2, the universal treatment of
non-factorizable parameters XH and XA in all B → PP isospin amplitudes is question-
able, because, on physical grounds, we expect the related low-energy dynamics to depend
on the light quark masses in an essential way. In this context we note that already in
the framework of the BBNS approach, there are additional sources of SU(3)F breaking.
According to [34], one has to consider strange-quark mass corrections to the twist-3 am-
plitude φK

P (which in the BBNS approach parametrizes the endpoint behaviour of the
non-factorizable diagrams). We have (neglecting again all other terms that vanish in the
asymptotic limit)

φπ,K
p (u) = 1 + ρ2

π,K

(

−5

2
C

1/2
2 (2u− 1) − 27

20
C

1/2
4 (2u− 1)

)

, (68)

where Cm
n (ξ) are Gegenbauer polynomials, and

ρ2
K =

m2
s

m2
K

= O(ms/Λ) ≃ 5 − 10% ρ2
π ≃ 0 . (69)

In particular, at the endpoint, u→ 1 we obtain

1 − φK
p (1)

φπ
p (1)

≃ 15 − 35% (70)

which is the typical size of flavor symmetry breaking usually assumed in other phenomeno-
logical analyses. Notice that the above considerations point to smaller non-factorizable
effects for kaons than for pions, which is different from the behavior of the factorizable
terms, where fK > fπ and FB→K > FB→π. As this estimate does not include any dynam-
ics related to the actual strong rescattering, we cannot exclude that the true effect might
be even larger.
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Finally, we note the parameter qce
iωc in (55) is neglected in many SU(3)F analyses (see

for example [11]), using the fact that in the limit of naive factorization, this parameter is
colour-suppressed. However, also the parameter x within the B → ππ is small in naive
factorization due to this argument, but nevertheless that parameter is found to be large
when compared to experimental data (see section 2).

Thus, we conclude that in view of large strong phases and large contributions from
colour-suppressed topologies observed in experiment, any other prediction, following from
the factorization approximation, should be critically re-analysed.

3.3 Rn-puzzle

The present data on the Kπ branching ratios can be expressed in terms of three ratios
[12, 37, 38]:

R =
τB+

τB0

BR[B0
d → π−K+] + BR[B̄0

d → π+K−]

BR[B+
d → π+K0] + BR[B̄0

d → π+K̄0]
= 0.91+0.08

−0.07 , (71)

Rn =
1

2

BR[B0
d → π−K+] + BR[B̄0

d → π+K−]

BR[B0
d → π0K0] + BR[B̄0

d → π0K̄0]
= 0.78+0.11

−0.09 , (72)

Rc = 2
BR[B+

d → π0K+] + BR[B̄+
d → π0K−]

BR[B+
d → π+K0] + BR[B−

d → π−K̄0]
= 1.16+0.13

−0.11 . (73)

This result appears somewhat anomalous, when compared, for example, with the approximate
sum rule proposed in [44, 43, 45] which leads to the prediction Rc = Rn, or from the com-
parison with the ππ data using the SU(3)F symmetry approach. In particular, the ratio
Rn appears to be smaller by about two standard deviations than one would expect. It
is important to note that the deviation of Rn and Rc from unity is solely due to isospin-
breaking effects [45]. The amount of short-distance isospin breaking in the Standard Model
is too small to explain the experimental number. Whereas the authors of [11] argue that
this may point to an interesting avenue towards new physics in electroweak penguin oper-
ators, the collaboration in [12] considers this deviation as a statistical fluctuation, which
is consistent with the Standard Model – even when the generalized SU(3)F constraints,
(62) and (66), are enforced. Not surprisingly, the B → Kπ data has triggered several
new-physics analyses (for the very recent literature see [11, 39, 40, 41, 42]).

Apart from the theoretical questions about the interpretation of the data, there are
also two experimental issues which have to be clarified:

• Radiative corrections to decays with charged particles in the final states may not
have been taken into account properly in the experimental analysis, an effect which
is expected to lead to an increased branching ratio of these modes [12] and which
could bring Rn closer to unity.

• It has also been argued in [46] that the present pattern could result from underesti-
mating the π0 detection efficiency which implies an overestimate for any branching
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ratio involving a π0. The authors of [46] propose therefore to consider the ratio
(RnRc)

1/2 in which the π0 detection efficiency cancels out. Again, the experimental
value for this quantity is closer to unity.

But even when the experimental situation is clarified and the experimental accuracy
will be significantly improved, one has to critically analyse whether the data on B → ππ
and B → πK decays point to new physics (for example to isospin breaking via new degrees
of freedom as discussed in [47, 48]), or whether they can be explained by non-factorizable
SU(3)F - or isospin-violating QCD and QED effects within the SM. Obviously, the inclusion
of more hadronic parameters to include such effects can only improve the phenomenological
situation, compared to the analyses based on flavour-symmetry or the constrained BBNS
scenario. On the other hand, the order-of-magnitude of flavour-symmetry breaking effects
should be consistent with the theoretical and experimental estimates of the non-factorizable
contributions in the B → ππ sector.

In order to illustrate this point, we discuss a toy model which is inspired by the result of
the previous section. We start with the assumption that all nonfactorizable contributions
are saturated by long-distance QCD and QED penguin contributions. To estimate the pos-
sible numerical effect, we multiply the factorizable QCD and QED penguin by a common
enhancement factor (1 − ∆PNF), where ∆PNF is a complex parameter. Within the BBNS
approach (see (14) and (56)) the QCD penguin function PQCD

p appears in the combination
ap

4 +ap
6 rχ, while the penguin function PEW

p occurs in the combination ap
10 +ap

8 rχ. The two
SU(3)F constraints, (62) and (66), are both compatible with this procedure by construc-
tion. From the B → ππ decays, we find that the long-distance QCD penguins require an
enhancement by about an order of magnitude (long-distance QED penguins are negligible
in B → ππ). Consequently, the long-distance QED effects in B → πK are enhanced by
the same amount, which leads to significant changes in the isospin-violating parameters
qeiω and qCe

iωC . We find typical values in the range 0.3 < q < 0.8, −30◦ < ω < 30◦,
0.05 < qC < 0.3, and −150◦ < ωC < 150◦.

More generally, in our framework the expansion parameter that suppresses long-distance
isospin-violating effects in B → πK is given by

rc(0, 1/2) · αem

ǫKM
≃ 5 − 10% ,

where the latter number refers to typical numbers for rc(0, 1/2) = 0.1 − 0.2 observed in
B → ππ. This seems to be in the right ball park to at least partly explain the deviation
of Rn from unity.

If realized in nature, the latter scenario should also have some impact for other “puz-
zling” B decays: In B → φKS the apparent hierarchy ru(0, 1/2) > rc(0, 1/2) in B → ππ
decays may translate into a moderate enhancement of the CKM-suppressed penguin am-
plitude. This may lead to some deviation of the extracted value of sin 2βeff from the value
found in B → J/ψKS, but is probably not sufficient to explain the present BELLE mea-
surement [49] for this quantity. Non-factorizable penguin contributions can be even more
important in B → η′K decays, because for decays into singlet mesons some non-factorizable
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operators appear at lower order in the 1/mb expansion than for the octet ones (see the
discussion in Section 2.5). According to [25] this mainly implies that the theoretical un-
certainties in such decays presently are too large to extract information on short-distance
quantities in a reliable way.

Our main conclusion is a conservative one, namely that the unsatisfactory theoretical
understanding of non-factorizable power-suppressed effects in charmless non-leptonic B
decays prevent us from identifying new-physics effects in these observables, at least on
the level of present experimental significance of certain “puzzles”. On the other hand,
the comparison of different possible approximation schemes, used to reduce the number
of unknown hadronic parameters, gives a handle to estimate model-dependent systematic
effects in CKM studies. It may also shed some light on the dynamical origin of non-
factorizable effects, which may stimulate further studies with non-perturbative methods.
In particular, a systematic classification of power-suppressed matrix elements from non-
factorizable SCET operators should give an alternative scheme compared to the traditional
classification in terms of flavour topologies.
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