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Abstract

Light-front Fock state wavefunctions encode the bound state properties of hadrons
in terms of their quark and gluon degrees of freedom at the amplitude level. The free-
dom to choose the light-like quantization four-vector provides an explicitly covariant
formulation of light-front quantization and can be used to determine the analytic
structure of light-front wave functions. The AdS/CFT correspondence of large NC

supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric
QCD in 4-dimensional space-time has interesting implications for hadron phenomenol-
ogy in the conformal limit, including an all-orders demonstration of counting rules
for exclusive processes. String/gauge duality also predicts the QCD power-law be-
havior of light-front Fock-state hadronic wavefunctions with arbitrary orbital angular
momentum at high momentum transfer. The form of these near-conformal wavefunc-
tions can be used as an initial ansatz for a variational treatment of the light-front
QCD Hamiltonian. I also briefly review recent work which shows that some leading-
twist phenomena such as the diffractive component of deep inelastic scattering, single
spin asymmetries, nuclear shadowing and antishadowing cannot be computed from
the LFWFs of hadrons in isolation.
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1 Introduction

Light-front Fock state wavefunctions ψn/H(xi, ~k⊥i, λi) encode the bound-state quark
and gluon properties of hadrons, including their spin and flavor correlations, in the
form of universal process- and frame- independent amplitudes. Because the gener-
ators of certain Lorentz boosts are kinematical, knowing the LFWFs in one frame
allows one to obtain it in any other frame. LFWFs underlie virtually all areas of QCD
phenomenology. The hadronic distribution amplitudes which control hard exclusive
processes are computed from the valence Fock state LFWFs. Matrix elements of
space-like local operators for the coupling of photons, gravitons, and the moments of
deep inelastic structure functions all can be expressed as overlaps of light-front wave-
functions with the same number of Fock constituents. Similarly, the exclusive decays
of heavy hadrons such as the B meson are computed from overlaps of LFWFs. The de-
cays of heavy hadrons. The unintegrated parton distributions and generalized parton
distributions measured in deeply virtual Compton scattering can be constructed from
LFWFs. Hadronization phenomena such as the coalescence mechanism for leading
heavy hadron production are computed from LFWF overlaps. Diffractive jet pro-
duction provides another phenomenological window into the structure of LFWFs.
However, some leading-twist phenomena such as the diffractive component of deep
inelastic scattering, single spin asymmetries, nuclear shadowing and antishadowing
cannot be computed from the LFWFs of hadrons in isolation.

Formally, the light-front expansion is constructed by quantizing QCD at fixed
light-cone time [1] τ = t + z/c and forming the invariant light-front Hamiltonian:

HQCD
LF = P+P−− ~P 2

⊥ where P± = P 0±P z [2]. The momentum generators P+ and ~P⊥

are kinematical; i.e., they are independent of the interactions. The generator P− =
i d
dτ

generates light-cone time translations, and the eigen-spectrum of the Lorentz

scalar HQCD
LF gives the mass spectrum of the color-singlet hadron states in QCD

together with their respective light-front wavefunctions. For example, the proton
state satisfies: HQCD

LF |ψp〉 = M2
p |ψp〉. The expansion of the proton eigensolution

|ψp〉 on the color-singlet B = 1, Q = 1 eigenstates { |n〉} of the free Hamiltonian

HQCD
LF (g = 0) gives the light-front Fock expansion:

∣
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16π3 δ
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∣

∣

∣n; xiP
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~P⊥ + ~k⊥i, λi

〉

.

The light-cone momentum fractions xi = k+
i /P

+ and ~k⊥i represent the relative mo-
mentum coordinates of the QCD constituents. The physical transverse momenta are
~p⊥i = xi

~P⊥ + ~k⊥i. The λi label the light-cone spin projections Sz of the quarks and
gluons along the quantization direction z. The physical gluon polarization vectors
ǫµ(k, λ = ±1) are specified in light-cone gauge by the conditions k · ǫ = 0, η · ǫ =
ǫ+ = 0.
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The solutions of HQCD
LF |ψp〉 = M2

p |ψp〉 are independent of P+ and ~P⊥; thus

given the eigensolution Fock projections 〈n;xi, ~k⊥i, λi|ψp〉 = ψn(xi, ~k⊥i, λi), the wave-
function of the proton is determined in any frame [3]. In contrast, in equal-time
quantization, a Lorentz boost always mixes dynamically with the interactions, so
that computing a wavefunction in a new frame requires solving a nonperturbative
problem as complicated as the Hamiltonian eigenvalue problem itself. The LFWFs
ψn/H(xi, ~k⊥i, λi) are properties of the hadron itself; they are thus universal and process
independent.

One can also define the light-front Fock expansion using a covariant generalization
of light-front time: τ = x·ω. The four-vector ω, with ω2 = 0, determines the orienta-
tion of the light-front plane; the freedom to choose ω provides an explicitly covariant
formulation of light-front quantization [4]: all observables such as matrix elements
of local current operators, form factors, and cross sections are light-front invariants
– they must be independent of ωµ. In recent work, Dae Sung Hwang, John Hiller,
Volodya Karmonov [5], and I have studied the analytic structure of LFWFs using
the explicitly Lorentz-invariant formulation of the front form. Eigensolutions of the
Bethe-Salpeter equation have specific angular momentum as specified by the Pauli-
Lubanski vector. The corresponding LFWF for an n-particle Fock state evaluated at
equal light-front time τ = ω · x can be obtained by integrating the Bethe-Salpeter
solutions over the corresponding relative light-front energies. The resulting LFWFs
ψI

n(xi, k⊥i) are functions of the light-cone momentum fractions xi = ki · ω/p · ω and

the invariant mass squared of the constituents M2
0 = (

∑n
i=1 k

µ
i )2 =

∑n
i=1 [

k2

⊥
+m2

x
]i

and the light-cone momentum fractions xi = k · ω/p · ω each multiplying spin-vector
and polarization tensor invariants which can involve ωµ. They are eigenstates of the
Karmanov–Smirnov kinematic angular momentum operator [6]. Thus LFWFs satisfy
all Lorentz symmetries of the front form, including boost invariance, and they are
proper eigenstates of angular momentum.

2 Light-Front Wavefunctions and QCD Phenome-

nology

Given the light-front wavefunctions, one can compute the unintegrated parton dis-
tributions in x and k⊥ which underlie generalized parton distributions for nonzero
skewness. As shown by Diehl, Hwang, and myself [7], one can give a complete rep-
resentation of virtual Compton scattering γ∗p→ γp at large initial photon virtuality
Q2 and small momentum transfer squared t in terms of the light-cone wavefunctions
of the target proton. One can then verify the identities between the skewed parton
distributions H(x, ζ, t) and E(x, ζ, t) which appear in deeply virtual Compton scat-
tering and the corresponding integrands of the Dirac and Pauli form factors F1(t)
and F2(t) and the gravitational form factors Aq(t) and Bq(t) for each quark and anti-
quark constituent. We have illustrated the general formalism for the case of deeply
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virtual Compton scattering on the quantum fluctuations of a fermion in quantum
electrodynamics at one loop.

The integrals of the unintegrated parton distributions over transverse momentum
at zero skewness provide the helicity and transversity distributions measurable in po-
larized deep inelastic experiments [3]. For example, the polarized quark distributions
at resolution Λ correspond to

qλq/Λp
(x,Λ) =

∑

n,qa

∫ n
∏

j=1

dxjd
2k⊥j

∑

λi

|ψ(Λ)
n/H(xi, ~k⊥i, λi)|2

× δ

(

1 −
n
∑

i

xi

)

δ(2)

(

n
∑

i

~k⊥i

)

δ(x− xq)

× δλa,λq
Θ(Λ2 −M2

n) ,

where the sum is over all quarks qa which match the quantum numbers, light-cone
momentum fraction x, and helicity of the struck quark. As shown by Raufeisen
and myself [8], one can construct a “light-front density matrix” from the complete
set of light-front wavefunctions which is a Lorentz scalar. This form can be used
at finite temperature to give a boost invariant formulation of thermodynamics. At
zero temperature the light-front density matrix is directly connected to the Green’s
function for quark propagation in the hadron as well as deeply virtual Compton
scattering. In addition, moments of transversity distributions and off-diagonal helicity
convolutions are defined from the density matrix of the light-cone wavefunctions. The
light-front wavefunctions also specify the multi-quark and gluon correlations of the
hadron. For example, the distribution of spectator particles in the final state which
could be measured in the proton fragmentation region in deep inelastic scattering at
an electron-proton collider are in principle encoded in the light-front wavefunctions.

Given the ψ
(Λ)
n/H , one can construct any spacelike electromagnetic, electroweak, or

gravitational form factor or local operator product matrix element of a composite
or elementary system from the diagonal overlap of the LFWFs [9]. Exclusive semi-
leptonic B-decay amplitudes involving timelike currents such as B → Aℓν̄ can also
be evaluated exactly in the light-front formalism [10]. In this case, the timelike decay
matrix elements require the computation of both the diagonal matrix element n→ n
where parton number is conserved and the off-diagonal n+1 → n−1 convolution such
that the current operator annihilates a qq̄′ pair in the initial B wavefunction. This
term is a consequence of the fact that the time-like decay q2 = (pℓ +pν̄)

2 > 0 requires
a positive light-cone momentum fraction q+ > 0. Conversely for space-like currents,
one can choose q+ = 0, as in the Drell-Yan-West representation of the space-like elec-
tromagnetic form factors. The light-front Fock representation thus provides an exact
formulation of current matrix elements of local operators. In contrast, in equal-time
Hamiltonian theory, one must evaluate connected time-ordered diagrams where the
gauge particle or graviton couples to particles associated with vacuum fluctuations.
Thus even if one knows the equal-time wavefunction for the initial and final hadron,
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one cannot determine the current matrix elements. In the case of the covariant Bethe-
Salpeter formalism, the evaluation of the matrix element of the current requires the
calculation of an infinite number of irreducible diagram contributions. One can also
prove that the anomalous gravitomagnetic moment B(0) vanishes for any composite
system [11]. This property follows directly from the Lorentz boost properties of the
light-front Fock representation and holds separately for each Fock state component.

One of the central issues in the analysis of fundamental hadron structure is the
presence of non-zero orbital angular momentum in the bound-state wave functions.
The evidence for a “spin crisis” in the Ellis-Jaffe sum rule signals a significant orbital
contribution in the proton wave function [12, 13]. The Pauli form factor of nucleons
is computed from the overlap of LFWFs differing by one unit of orbital angular
momentum ∆Lz = ±1. Thus the fact that the anomalous moment of the proton is
non-zero requires nonzero orbital angular momentum in the proton wavefunction [9].
In the light-front method, orbital angular momentum is treated explicitly; it includes
the orbital contributions induced by relativistic effects, such as the spin-orbit effects
normally associated with the conventional Dirac spinors.

3 Complications from Final State Interactions

It is usually assumed—following the parton model—that the leading-twist structure
functions measured in deep inelastic lepton-proton scattering are simply the prob-
ability distributions for finding quarks and gluons in the target nucleon. In fact,
gluon exchange between the fast, outgoing quarks and the target spectators effects
the leading-twist structure functions in a profound way, leading to diffractive lep-
toproduction processes, shadowing of nuclear structure functions, and target spin
asymmetries. In particular, the final-state interactions from gluon exchange lead
to single-spin asymmetries in semi-inclusive deep inelastic lepton-proton scattering
which are not power-law suppressed in the Bjorken limit.

A new understanding of the role of final-state interactions in deep inelastic scat-
tering has recently emerged [14]. The final-state interactions from gluon exchange
between the outgoing quark and the target spectator system lead to single-spin asym-
metries in semi-inclusive deep inelastic lepton-proton scattering at leading twist in
perturbative QCD; i.e., the rescattering corrections of the struck quark with the tar-
get spectators are not power-law suppressed at large photon virtuality Q2 at fixed
xbj [15] The final-state interaction from gluon exchange occurring immediately after
the interaction of the current also produces a leading-twist diffractive component to
deep inelastic scattering ℓp→ ℓ′p′X corresponding to color-singlet exchange with the
target system; this in turn produces shadowing and anti-shadowing of the nuclear
structure functions [14, 16]. In addition, one can show that the pomeron structure
function derived from diffractive DIS has the same form as the quark contribution of
the gluon structure function [17]. The final-state interactions occur at a light-cone
time ∆τ ≃ 1/ν after the virtual photon interacts with the struck quark, producing
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a nontrivial phase. Thus none of the above phenomena is contained in the target
light-front wave functions computed in isolation. In particular, the shadowing of nu-
clear structure functions is due to destructive interference effects from leading-twist
diffraction of the virtual photon, physics not included in the nuclear light-front wave
functions. Thus the structure functions measured in deep inelastic lepton scatter-
ing are affected by final-state rescattering, modifying their connection to light-front
probability distributions. Some of these results can be understood by augmenting the
light-front wave functions with a gauge link, but with a gauge potential created by
an external field created by the virtual photon qq̄ pair current [18]. The gauge link is
also process dependent [19], so the resulting augmented LFWFs are not universal.

The shadowing and antishadowing of nuclear structure functions in the Gribov-
Glauber picture is due to the destructive and constructive coherence, respectively, of
amplitudes arising from the multiple-scattering of quarks in the nucleus. The effec-
tive quark-nucleon scattering amplitude includes Pomeron and Odderon contributions
from multi-gluon exchange as well as Reggeon quark exchange contributions [16]. The
multiscattering nuclear processes from Pomeron, Odderon and pseudoscalar Reggeon
exchange leads to shadowing and antishadowing of the electromagnetic nuclear struc-
ture functions in agreement with measurements. This picture leads to substantially
different nuclear effects for charged and neutral currents, particularly in anti-neutrino
reactions, thus affecting the extraction of the weak-mixing angle sin2 θW and the con-
stant ρo which are determined from the ratio of charged and neutral current deep
inelastic from neutrino and anti-neutrino scattering. In recent work, Schmidt, Yang,
and I [20] find that a substantial part of the difference between the standard model
prediction and the anomalous NuTeV result [21] for sin2 θW could be due to the dif-
ferent behavior of nuclear antishadowing for charged and neutral currents. Detailed
measurements of the nuclear dependence of charged, neutral and electromagnetic
DIS processes are needed to establish the distinctive phenomenology of shadowing
and antishadowing and to make the NuTeV results definitive.

4 Other Aspects of Light-Front Wavefunction Phe-

nomenology

A number of other important phenomenological properties follow directly from the
structure of light-front wavefunctions in gauge theory.

(1) Color transparency. The small transverse size fluctuations of a hadron wave-
function with a small color dipole moment will have minimal interactions in a nu-
cleus [22, 23]. This has been verified in the case of diffractive dissociation of a high
energy pion into dijets πA→ qq̄A′ in which the nucleus is left in its ground state [24].
When the hadronic jets have balancing but high transverse momentum, one stud-
ies the small size fluctuation of the incident pion. The diffractive dissociation cross
section is found to be proportional to A2 in agreement with the color transparency
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prediction. Color transparency has also been observed in diffractive electroproduction
of ρ mesons [25] and in quasi-elastic pA → ppA − 1 scattering [26] where only the
small size fluctuations of the hadron wavefunction enters the hard exclusive scattering
amplitude. In the latter case an anomaly occurs at

√
s ≃ 5 GeV, most likely signaling

a resonance effect at the charm threshold [27].
(2) Intrinsic charm [28]. The probability for Fock states of a light hadron such as

the proton to have an extra heavy quark pair decreases as 1/m2
Q in non-Abelian gauge

theory [29, 30]. The relevant matrix element is the cube of the QCD field strength
G3

µν . This is in contrast to abelian gauge theory where the relevant operator is F 4
µν

and the probability of intrinsic heavy leptons in QED bound state is suppressed as
1/m4

ℓ . The intrinsic Fock state probability is maximized at minimal off-shellness. The
maximum probability occurs at xi = mi

⊥/
∑n

j=1m
j
⊥; i.e., when the Constituents have

equal rapidity. Thus the heaviest constituents have the highest momentum fractions
and highest x. Intrinsic charm thus predicts that the charm structure function has
support at large xbj in excess of DGLAP extrapolations [28]; this is in agreement
with the EMC measurements [31]. It predicts leading charm hadron production and
fast charmonium production in agreement with measurements [32]. The production
cross section for the double charmed Ξ+

cc baryon [33] and the production of double
J/ψ′s appears to be consistent with the dissociation and coalescence of double IC
Fock states [34]. Intrinsic charm can also explain the J/ψ → ρπ puzzle [35]. It also
affects the extraction of suppressed CKM matrix elements in B decays [36].

5 Solving for Light-front Wavefunctions

In principle, one can solve for the LFWFs directly from the fundamental theory using
methods such as discretized light-front quantization (DLCQ), the transverse lattice,
lattice gauge theory moments, or Bethe–Salpeter techniques. DLCQ has been re-
markably successful in determining the entire spectrum and corresponding LFWFs in
1+1 field theories, including supersymmetric examples. Reviews of nonperturbative
light-front methods may be found in references [2, 4, 37, 38]. One can also project the
known solutions of the Bethe–Salpeter equation to equal light-front time, thus pro-
ducing hadronic light-front Fock wave functions. A potentially important method is
to construct the qq̄ Green’s function using light-front Hamiltonian theory, with DLCQ
boundary conditions and Lippmann-Schwinger resummation. The zeros of the result-
ing resolvent projected on states of specific angular momentum Jz can then generate
the meson spectrum and their light-front Fock wavefunctions. The DLCQ properties
and boundary conditions allow a truncation of the Fock space while retaining the
kinematic boost and Lorentz invariance of light-front quantization.

Even without explicit solutions, much is known about the explicit form and struc-
ture of LFWFs. They can be matched to nonrelativistic Schrodinger wavefunctions
at soft scales. At high momenta, the LFWFs large k⊥ and xi → 1 are constrained by
arguments based on conformal symmetry, the operator product expansion, or pertur-
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bative QCD. The pattern of higher Fock states with extra gluons is given by ladder
relations. The structure of Fock states with nonzero orbital angular momentum is
also constrained.

6 The Infrared Behavior of Effective QCD Cou-

plings

Theoretical [39, 40, 41, 42, 43] and phenomenological [44, 45, 46] evidence is now ac-
cumulating that the QCD coupling becomes constant at small virtuality; i.e., αs(Q

2)
develops an infrared fixed point in contradiction to the usual assumption of singular
growth in the infrared. If QCD running couplings are bounded, the integration over
the running coupling is finite and renormalon resummations are not required. If the
QCD coupling becomes scale-invariant in the infrared, then elements of conformal
theory [47] become relevant even at relatively small momentum transfers.

Menke, Merino, and Rathsman [45] and I have presented a definition of a physical
coupling for QCD which has a direct relation to high precision measurements of the
hadronic decay channels of the τ− → ντh

−. Let Rτ be the ratio of the hadronic decay
rate to the leptonic one. Then Rτ ≡ R0

τ

[

1 + ατ

π

]

, where R0
τ is the zeroth order QCD

prediction, defines the effective charge ατ . The data for τ decays is well-understood
channel by channel, thus allowing the calculation of the hadronic decay rate and the
effective charge as a function of the τ mass below the physical mass. The vector
and axial-vector decay modes which can be studied separately. Using an analysis of
the τ data from the OPAL collaboration [48], we have found that the experimental
value of the coupling ατ (s) = 0.621 ± 0.008 at s = m2

τ corresponds to a value of
αMS(M

2
Z) = (0.117-0.122) ± 0.002, where the range corresponds to three different

perturbative methods used in analyzing the data. This result is in good agreement
with the world average αMS(M

2
Z) = 0.117 ± 0.002. However, one also finds that the

effective charge only reaches ατ (s) ∼ 0.9±0.1 at s = 1 GeV2, and it even stays within
the same range down to s ∼ 0.5 GeV2. The effective coupling is close to constant at
low scales, suggesting that physical QCD couplings become constant or “frozen” at
low scales.

The near constancy of the effective QCD coupling at small scales helps explain
the empirical success of dimensional counting rules for the power law fall-off of form
factors and fixed angle scaling. As shown in the references [49, 50], one can calculate
the hard scattering amplitude TH for such processes [3] without scale ambiguity in
terms of the effective charge ατ or αR using commensurate scale relations. The
effective coupling is evaluated in the regime where the coupling is approximately
constant, in contrast to the rapidly varying behavior from powers of αs predicted
by perturbation theory (the universal two-loop coupling). For example, the nucleon
form factors are proportional at leading order to two powers of αs evaluated at low
scales in addition to two powers of 1/q2; The pion photoproduction amplitude at fixed
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angles is proportional at leading order to three powers of the QCD coupling. The
essential variation from leading-twist counting-rule behavior then only arises from the
anomalous dimensions of the hadron distribution amplitudes.

Parisi [51] has shown that perturbative QCD becomes a conformal theory for β →
0 and zero quark mass. There are a number of useful phenomenological consequences
of near conformal behavior: the conformal approximation with zero β function can
be used as template for QCD analyses [52, 53] such as the form of the expansion
polynomials for distribution amplitudes [47, 54]. The near-conformal behavior of
QCD is also the basis for commensurate scale relations [55] which relate observables
to each other without renormalization scale or scheme ambiguities [56]. An important
example is the generalized Crewther relation [57]. In this method the effective charges
of observables are related to each other in conformal gauge theory; the effects of the
nonzero QCD β− function are then taken into account using the BLM method [58]
to set the scales of the respective couplings. The magnitude of the corresponding
effective charge [49] αexclusive

s (Q2) = Fπ(Q2)/4πQ2F 2
γπ0(Q2) for exclusive amplitudes is

connected to ατ by a commensurate scale relation. Its magnitude: αexclusive
s (Q2) ∼ 0.8

at small Q2, is sufficiently large as to explain the observed magnitude of exclusive
amplitudes such as the pion form factor using the asymptotic distribution amplitude.

7 AdS/CFT and Near-Conformal Field Theory

As shown by Maldacena [59], there is a remarkable correspondence between large NC

supergravity theory in a higher dimensional anti-de Sitter space and supersymmetric
QCD in 4-dimensional space-time. String/gauge duality provides a framework for
predicting QCD phenomena based on the conformal properties of the ADS/CFT cor-
respondence. For example, Polchinski and Strassler [60] have shown that the power-
law fall-off of hard exclusive hadron-hadron scattering amplitudes at large momentum
transfer can be derived without the use of perturbation theory by using the scaling
properties of the hadronic interpolating fields in the large-r region of AdS space. Thus
one can use the Maldacena correspondence to compute the leading power-law falloff of
exclusive processes such as high-energy fixed-angle scattering of gluonium-gluonium
scattering in supersymmetric QCD. The resulting predictions for hadron physics ef-
fectively coincide [60, 61, 62] with QCD dimensional counting rules [63, 64, 65, 66].)
Polchinski and Strassler [60] have also derived counting rules for deep inelastic struc-
ture functions at x→ 1 in agreement with perturbative QCD predictions [67] as well
as Bloom-Gilman exclusive-inclusive duality. An interesting point is that the hard
scattering amplitudes which are normally or order αp

s in PQCD appear as order αp/2
s

in the supergravity predictions. This can be understood as an all-orders resummation
of the effective potential [59, 68]. The near-conformal scaling properties of light-front
wavefunctions thus lead to a number of important predictions for QCD which are
normally discussed in the context of perturbation theory.
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De Teramond and I [69] have shown how one can use the scaling properties of
the hadronic interpolating operator in the extended AdS/CFT space-time theory to
determine the scaling of light-front hadronic wavefunctions at high relative transverse
momentum. The angular momentum dependence of the light-front wavefunctions also
follow from the conformal properties of the AdS/CFT correspondence. The scaling
and conformal properties of the correspondence leads to a hard component of the
light-front Fock state wavefunctions of the form:

ψn/h(xi, ~k⊥i, λi, lzi) ∼
(gs NC)

1

2
(n−1)

√
NC

n−1
∏

i=1

(k±i⊥)|lzi|







Λo

M2 −∑

i

~k2

⊥i
+m2

i

xi
+ Λ2

o







n+|lz |−1

,

where gs is the string scale and Λo represents the basic QCD mass scale. The scaling
predictions agree with the perturbative QCD analysis given in the references [70], but
the AdS/CFT analysis is performed at strong coupling without the use of perturbation
theory. The form of these near-conformal wavefunctions can be used as an initial
ansatz for a variational treatment of the light-front QCD Hamiltonian.
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