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1. Introduction

Two of the most interesting open questions in physics, the stabilization of the gauge hierarchy

and the nature of the dark matter, naively appear to be related in that both point to new

physics at the weak scale ∼ 100 GeV. Supersymmetric theories are an explicit realization

of this relationship. The gauge hierarchy (in particular the Higgs mass) is stabilized by the

interplay between fermionic and bosonic radiative corrections. Dark matter appears trivially

with the imposition of R-parity conservation, which stabilizes the lightest superpartner (LSP).

The relic density of stable particles with masses ∼ 100 GeV undergoing thermal freeze-out in

the early universe is generically found to be of the observed order.

Supersymmetric extensions to the Standard Model are plagued by a lack of predictiveness

due to the large number of undetermined parameters. Even assumptions that drastically

reduce the parameter space leave enough parameters that exhaustive study is difficult. In

this paper we apply the well-known (in other fields) techniques of Markov Chain Monte Carlo

(MCMC) to explore the parameter space of Minimal Supergravity (mSUGRA), a simple and

widely studied scenario for supersymmetry breaking. This is a four parameter model, with

one sign that must be chosen. There are many constraints from (lack of) data on e.g. the

masses of the superpartners. The most restrictive constraint comes from the assumption

that the LSP constitutes the dark matter. The cosmological dark matter density is known

to better than 10% accuracy. In mSUGRA, the parameter region consistent with the dark

matter density is very thin. Grid methods have a very difficult time finding these models, as

the volume occupied by them in parameter space is a very small fraction of the total volume

consistent with accelerator searches. Even with this relatively small number of parameters

we find that MCMC is much superior to grid searches. Our future goal is to apply MCMC

techniques to larger parameter spaces, with the expectation that only modest increases in

computational resources will be required.

2. Minimal Supergravity

One of the most well studied frameworks for supersymmetry breaking is Minimal Supergravity

[1]. This model distills the multitude of supersymmetry breaking parameters into merely four,

plus one sign. It assumes that all sfermions share the same mass at the GUT scale, m0. This

contributes to the masses of the Higgs doublets as well. It assumes that the hypercharge,

weak, and strong gauginos share the same mass at the GUT scale, m1/2. There is a GUT scale

trilinear coupling among scalars A0. The last continuous parameter is taken to be the ratio of

the Higgs vacuum expectation values (VEVs) at the weak scale, tan β. Equivalently, a GUT

scale boundary condition could be applied – this is the B parameter. In this framework, the

weak scale Higgs mass parameter µ2 is derived from the requirement of electroweak symmetry

breaking, thus µ is derived up to a phase. To conserve CP, the phase of µ is chosen to be ±1,

the last parameter of the model.
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Many authors have studied the mSUGRA parameter space from many points of view

[2]. In this paper we explore the full parameter space, subject to some basic constraints.

The techniques described below allow us to vary all four mSUGRA parameters freely, while

efficiently focusing on the interesting regions of parameter space. In contrast, studies in

the literature typically illustrate several 2-parameter slices of the parameter space, usually

holding A0 and tan β fixed.

For each set of parameters, we compute the spectrum using ISAJET [3], and we com-

pute other relevant quantities with DarkSUSY [4]. The model confronts current accelerator

constraints on sparticle and Higgs masses [5], including preliminary results from LEP con-

cerning a Standard Model-like Higgs [6] and the chargino mass [7]. Precision results for the

b → sγ branching ratio from the CLEO and Belle collaborations are applied [8] (DarkSUSY

computes the NLO b → sγ). We mention here that the precise value of the mass of the top

quark mt can have significant effects on mSUGRA models even within current error bars.

PDG2002 quotes mt = 174.3 ± 5.1 GeV [5], while a more recent evaluation from the CDF

and D0 collaborations finds mt = 178.0 ± 4.3 GeV [9]. In effect we need to take mt as one of

the model parameters.

The anomalous magnetic moment of the muon aµ = (gµ−2)/2, is sensitive to new physics

such as supersymmetry. The experimental measurement has improved greatly in recent years

[10], and there is a hint of a discrepancy with the Standard Model, though the theoretical

calculations of the Standard Model hadronic contribution are somewhat in doubt [11, 12] due

to a discrepancy between evaluations based on e+e− → hadrons and those based on hadronic

decays of the τ lepton. Quoting the results of Davier et al. [11], the discrepancy is

∆aµ = (27 ± 10) × 10−10 (e+e− based), (2.1)

∆aµ = (12 ± 9) × 10−10 (τ based). (2.2)

We apply the constraint that the SUSY contribution must be within 3σ of one of these

calculations,

−15 × 10−10 < ∆aµ(SUSY) < 57 × 10−10. (2.3)

Furthermore, we will highlight models that fall within 1σ of either of these measurements to

simulate future constraints,

3 × 10−10 < ∆aµ(SUSY, 1σ) < 37 × 10−10. (2.4)

This latter constraint enforces that the supersymmetric correction be positive, ruling out

µ < 0. Much of the power this constraint has is simply the requirement of positive µ.

Of astrophysical interest, we compute the relic density of neutralinos in the model, as

well as the neutralino - nucleon elastic scattering cross section. We are interested in models

where the neutralino relic density is consistent with the cosmological dark matter density, as

discussed in the next section.
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3. Dark Matter

We take the viewpoint that the observed density of cold dark matter is the most accurate

measurement available indicating physics beyond the standard model [13]. The best sin-

gle measurement to date is that of the Wilkinson Microwave Anisotropy Probe (WMAP)

[14], which measured the angular power spectrum of the thermal fluctuations in the cosmic

microwave background. These fluctuations encode information on many cosmological pa-

rameters, including the cosmological densities of many species relative to the critical density

ΩX = ρX/ρc, where ρc = 3H2
0/8πG, and H0 is the Hubble constant. As is usually done, we

take H0 = 100 h km s−1 Mpc−1. The relevant parameters are then the total matter density

ΩMh2, the baryon density ΩBh2 and the neutrino density Ωνh
2. The density of cold dark

matter is then just ΩCDMh2 = ΩMh2 −ΩBh2 −Ωνh
2. The WMAP results are as follows [14]

ΩMh2 = 0.135+0.008
−0.009, (3.1)

ΩBh2 = 0.0224 ± 0.0009, (3.2)

Ωνh
2 < 0.0072 (95% confidence). (3.3)

Other cosmological probes, such as the Sloan Digital Sky Survey (SDSS) [15] give consistent

and complementary results. We naively construct the cold dark matter density by adding

the matter and baryon errors in quadrature, and simply expanding the lower error bar to

accommodate the possibility of a neutrino component. Thus,

ΩCDMh2 = 0.1126+0.008
−0.013 . (3.4)

We will consider the following range for the cold dark matter density, allowed at 95% confi-

dence,

0.087 < ΩCDMh2 < 0.129. (3.5)

In the next section, we require a likelihood function based on the relic density of neu-

tralinos. We will use the WMAP likelihood function, assuming an asymmetric lognormal

distribution.

χ2 =

(

ln
(

ΩCDMh2/0.113
)

σ

)2

, (3.6)

σ = 0.068,
(

ΩCDMh2 > 0.113
)

, (3.7)

σ = 0.12,
(

ΩCDMh2 < 0.113
)

. (3.8)

The likelihood function is then determined from χ2 in the usual manner, L = exp(−χ2/2).

4. Markov Chain Monte Carlo

The problem of efficiently scanning high-dimensional parameter spaces appears in most sci-

entific disciplines. Clearly, direct grid scans can not be extended beyond a few dimensions.
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Markov Chain Monte Carlo (MCMC) algorithms were developed to firstly numerically find

function minima, and secondly to explore the region “near” the minimum. The utility of

these techniques for data analysis is obvious: most famously in cosmology the data from

the WMAP satellite were analyzed in this way [16]. Detailed explanations may be found in

Ref. [17].

A Markov chain is a sequence of points P0 → P1 → P2 → . . ., with repetitions al-

lowed, together with a transition probability W (Pi+1|Pi) from one point to the next. In a

Markov Chain Monte Carlo, a Markov chain is constructed as follows. The first point of

the chain P0 is randomly chosen according to a prior probability Π(P ). A new point in the

chain is proposed according to a proposal probability G(Pi+1|Pi), and is accepted as part of

the chain according to an acceptance probability A(Pi+1|Pi). The transition probability is

then W (Pi+1|Pi) = G(Pi+1|Pi)A(Pi+1|Pi). It has been proven that if L(P ) is a probability

distribution that satisfies the detailed balance condition W (Pj |Pi)L(Pi) = W (Pi|Pj)L(Pj),

then asymptotically, the points Pi in the Markov chain defined by W (Pi+1|Pi) are distributed

according to the “equilibrium” distribution L(P ).

We use the Metropolis algorithm to construct chains of mSUGRA models, with the hope

that the WMAP region will be strongly favored giving scans much more efficient than grid

scans. A Markov Chain is constructed as follows. A random point P0 in parameter space

is chosen as the start of the chain, checking to see that it passes accelerator constraints.

The likelihood function L ≡ e−χ2/2 is computed so that L(P0) = L0. From this point, a

proposal step is made, to point Pp with likelihood Lp. The Markov chain is advanced as

follows. If Lp ≥ L0 take P1 = Pp, i.e., if the new point has a higher likelihood, take it. If

Lp < L0 take P1 = Pp with probability Lp/L0, otherwise take P1 = P0, i.e., if the new point

has a lower likelihood, take it with a probability equal to the ratio of likelihoods, otherwise

take the new point equal to the old point. The process repeats from P1, and the Markov

chain is constructed. If the proposed point is better, the chain always advances there. If the

proposed point is worse, the chain sometimes advances there — if it is only slightly worse,

the chain will advance there most of the time, if it is much worse, the chain advances only

rarely. This deceptively simple algorithm is very efficient at traversing a large-dimensional

parameter space, in O(N) time, in contrast to the O(eN ) time for a grid search.

Of course the Metropolis algorithm for advancing the Markov chain is not the whole

story. Choosing a proposal point based on the i-th point in the chain Pp(Pi) in an optimal

way is a subject of much research in the MCMC field. We now need to know something

about the specific problem we are interested in. We would like to find the region of mSUGRA

parameter space that is consistent with the WMAP data. This is a strange problem from

the point of view of the usual applications of MCMC, namely we have many more model

parameters (four) than data points (one). This is not a minimization problem at all, but

one of finding the three-dimensional contours of relic density near the WMAP measured

value. The degeneracies among parameters are exact. This contrasts the usual applications

of MCMC, which involve many data points constraining a model with only a few parameters,

with the goal of finding a best fit model and mapping the likelihood surface around it.
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In looking for an optimal strategy in this new context, we try several strategies for

making proposal steps. The first issue involved is the question of how big a step should

be taken. We can draw on a simple case for guidance. Take a likelihood function that is

gaussian in the parameters (with zero means and unit widths) L = exp
(

−∑x2
i /2
)

, and

take a proposal step gaussian about the current point, with width N times the width of the

likelihood function P (pi) ∝ exp
(

−∑(pi − xi)
2/(2N2)

)

. In the limit of a large number of

parameters D, the probability to accept the proposed point is P (accept) = 1− erf(N
√

D/8).

In this limit the optimal stepsize (maximizing N2P (accept), a measure of the “diffusion

velocity” of the chain) is given by N = 2.381/
√

D [18]. This result assumes that the Markov

chain is “burned in,” namely it has found the region of reasonable likelihood. For even a few

parameters these results are acceptable, though for one or two they break down, e.g. for one

parameter, it is easy to show that the acceptance probability is P (accept) = (2/π) tan−1(2/N)

and N2P (accept) has no maximum.1 However, it has been shown that N ≈ 2.4/
√

D is a

reasonable approximation even for D = 1, 2 [19]. What we can draw from this is an optimal

acceptance probability, P (accept) = 0.2338. This means that the fastest exploration of the

parameter space happens when only about 1/4 of the proposals are accepted. This allows

the stepsize to remain relatively large, but still a reasonable fraction of points are accepted.

Based on this result, we apply a simple method for adapting the stepsize. If too many

proposals are accepted in a row, it can be inferred that the probability to step is too large to

optimally sample the parameter space. The indication is that the stepsize is too small and

should be increased. Likewise, if too many proposals are rejected in a row, the acceptance

probability may be too small and the stepsize may be too large. For example, based on an

acceptance probability of 1/4, three consecutive acceptances is already unlikely at the 98.4%

level, and the stepsize should be increased. Aiming for a similar probability for the other

extreme, if 14 proposals are rejected in a row, the stepsize should be decreased. In both

cases we choose to change the stepsize by a factor of 2. We have made crude explorations of

these thresholds, and found that changing the stepsize for 3–4 consecutive acceptances or 6–8

consecutive rejections works fairly well. The exact numbers can be adjusted, but we find that

the threshold for rejections should be higher than for acceptance. Equivalently, an acceptance

probability less than 0.5 is ideal. Setting the threshold for rejections at twice the threshold

for acceptances corresponds to an acceptance probability of 38%.

The second issue we discuss is that of step direction. We know that there are exact

degeneracies, as we place only one constraint on many parameters. We would like to step

in a direction that is likely to find another good point. When the chain point is close to

1We have derived an exact expression for P(accept) as a function of N and D. In full generality the

expression is a double integral, not obviously tractable for D > 1. In the limit of large D the integrand

simplifies, and we reproduce the limit given in Ref. [18]. For D ≥ 2 the result is

P (accept) =
25/2−DN1−D

Γ
(

D
2

)

Γ
(

D−1
2

)

∫

∞

0

dx x
D−1

e
−x2/2

∫ x

0

dy y
D−2

e
−y2/2N2

∑

±

erf

(

√

x2 − y2 ± x

N
√

2

)

. (4.1)

For D = 2 we find again that the function N2P (accept) has no maximum, in fact for N ≫ 1, P (accept) ∝ N−D.
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the WMAP value of ΩCDMh2, we would like the next point to lie (approximately) on the

ΩCDM = ΩCDM,WMAP surface. The most obvious thing to do is to calculate the likelihood

gradient at the current point in the Markov chain, and step orthogonally to the gradient.

We do this when 4 (or the number of dimensions) consecutive rejections are collected, as

soon as the current likelihood is reasonably good (within 3–4σ). With 4 directions along

which the difference in likelihood is known, the gradient vector can be computed.2 After this,

steps are taken in arbitrary directions perpendicular to the gradient vector. A refinement of

this procedure is to allow a small step along the gradient, though much smaller than that

perpendicular. This can be done in a fixed manner (e.g. 10:1 ratio, 20:1 ratio), or adaptively.

We employ the gradient technique for most of the mSUGRA scans discussed in this paper.

We remark here that this choice of proposal probability depends through the gradient and

stepsize on more than just the previous point in the Markov chain. As a consequence, its

associated transition probability does not satisfy the condition of detailed balance, and we

cannot immediately prove that our gradient algorithm converges to the likelihood distribution

L(P ). Nevertheless, based on the intuition that an “equilibrium” distribution should not

depend on the initial conditions or on the way equilibrium is approached, we expect that the

points in the Markov chain are distributed according to the likelihood L(P ) after the chain

has “converged.” It must however be kept in mind that the final distribution of points in

parameter space depends also on where we choose the initial point of each chain, i.e. our

prior distribution.

Another method for using directional information involves the interactions among several

Markov chains. The basic assumption is that if two Markov chains have found good regions,

then the line connecting their current positions might also be in the good region. For each

chain, a random second chain is selected, and the step taken is in the direction (positive

or negative) of this chain. This is the “snooker” algorithm. A few of our scans use this

algorithm, trying interactions between 8 chains, or 128 chains. We find neither does a great

job of covering the full surface, and that perhaps more chains are required. This difficulty is

possibly related to the fact that we are trying to trace a surface instead of finding a global

minimum.

5. Scanning the mSUGRA Parameter Space

We now explore the mSUGRA parameter space using the techniques of the previous section.

First, we employ a very crude grid search, taking only a few points along the tan β and A0

axes. Roughly 1% of the scanned points pass the WMAP 2σ relic density cut. Crudely, this

is the 4-dimensional “efficiency” of the grid search.

As the first illustration of the MCMC method, we attempt to duplicate a typical mSUGRA

scan from the literature. We choose Fig. 3 of Ref.[20], which illustrates the usual basic fea-

2We compute the gradient of ΩCDMh2 rather than the gradient of the likelihood function. The two gradients

share the same direction since our likelihood is a function of ΩCDMh2 only. However, the gradient of the

likelihood function vanishes on the WMAP surface, thus we use the former gradient.
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tures – at moderate tan β, acceptable relic density occurs only for the stau coannihilation

region at small m0 or the focus point region at large m0 where chargino coannihilations are

important. This model has A0 = 0, tan β = 30, µ > 0, and mt = 175 GeV. Fixing these

parameters, we make a 2 dimensional scan in m0 and m1/2. In Fig. 1 we plot every point

where the relic density was calculated. Points that pass the WMAP relic density cut are

highlighted in red, and those with relic density below the WMAP region are highlighted in

blue. It is clear that the MCMC technique does an excellent job of automatically finding the

WMAP preferred region. For these scans, the gradient method was used. The usual features

are clear in that the acceptable regions are the stau coannihilation funnel at small m0 and the

focus point region at large m0. About 40,000 points have been generated in this scan. Notice

that only a small fraction of points lies outside the good WMAP region, so few that they can

be counted individually on the figure. This indicates that the Markov chains converge to the

good region rapidly.

We now extend the scans to the full 4 dimensional parameter space. We are searching

for the 3 dimensional surface near which the relic density is acceptable. We separately scan

both signs of µ, and take three values for the top quark mass: mt = 174.3 GeV (PDG 2002

central value [5]), mt = 178.0 GeV (current CDF/D0 central value [9]), and mt = 181.7

GeV (within 1σ of the central value). Using the MCMC techniques of the previous section,

predominantly the gradient method, but also with some scans using the snooker algorithm, we

find efficiencies of 20%-30% to find points that pass the relic density cut. This is remarkable

in that the acceptable region is found automatically. In total, we have sampled some 2.4

million models, with more than 500 thousand within the WMAP region. The full extent of

the scans is as follows,

50 GeV < m0 < 50 TeV, (5.1)

50 GeV < m1/2 < 20 TeV, (5.2)

−20 TeV < A0 < 20 TeV, (5.3)

2 < tan β < 60. (5.4)

MCMC techniques allow us to scan freely in all 4 parameters. Since the MCMC algorithm is

essentially linear in the number of parameters, the utility of the technique for more complex

models is clear.

As we are scanning freely in A0, we must be careful about unacceptable vacua, both

potential directions unbounded from below (UFB) and the so-called charge and/or color

breaking (CCB) vacua that occur if e.g. the stop gets a VEV [21]. We apply a simple

constraint [22] that (conservatively) allows for CCB minima as long as they are long-lived,

A2
t + 3µ2 < 7.5

(

m2

t̃L
+ m2

t̃R

)

, (5.5)

and the parameters are taken at the weak scale. This constraint in particular excludes the

stop from getting a VEV, removing a small number of models where |A0| ≫ m0. Even this
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constraint may not be permissive enough; recent work indicates that radiative corrections

soften some of these constraints considerably [23].

6. Projections of mSUGRA Parameter Space

After performing these scans, we have a 4 dimensional cloud of models, a significant fraction

of which pass the WMAP relic density cut. In order to display it easily, we project onto the

six two-dimensional coordinate planes. We will illustrate both theoretical (involving the 4

mSUGRA parameters) and phenomenological (e.g. LSP mass and cross section) examples.

As an application to dark matter searches, we consider the spin-independent neutralino-

nucleon elastic scattering cross section, σSI. We plot the neutralino mass mχ vs. σSI in Fig. 2,

for every model passing the WMAP constraint. We illustrate the DAMA preferred region [24],

current experimental bounds from EDELWEISS [25] and CDMS [26], and the future reach of

several experiments, running (CDMS II [27], CRESST II [28]) and proposed (GENIUS [29],

CryoArray [30] and XENON [31]). For an extensive collection of data and projections for

dark matter experiments see Ref. [32]. We have highlighted models having a ∆aµ(SUSY)

within 1σ of the current experimental bounds to illustrate the correlation between aµ and σSI

[33].

In Fig. 3 and Fig. 4, we plot all six 2-dimensional projections of the 4 dimensional

mSUGRA parameter space, with one subplot each for µ = ±1. There is one plot for every

parameter pair in m0, m1/2, A0 and tan β. Fig. 3 illustrates only those models that obey

the WMAP constraint, while Fig. 4 illustrates all models passing the accelerator constraints.

Seen in projection, the WMAP constraint does not look very powerful, but it typically singles

out very thin surfaces as seen in Fig. 1. These thin surfaces disappear in projection, since

their exact position in a 2-dimensional projection is a function of the other two parameters.

7. Discussion

We have shown that MCMC is a powerful technique for scanning high dimensional parameter

spaces in supersymmetry by demonstrating that it can navigate the mSUGRA parameter

space and find regions with relic density acceptable to WMAP. This is a heartening conclusion.

On the face of it, finding acceptable mSUGRA models is a very difficult problem for any

function minimization technique. There are several issues involved. First, there are exact

degeneracies. What we really need is a contouring algorithm. The gradient method alleviates

this difficulty. Second, the acceptable regions tend to be on the edges of the allowed parameter

space. Third, there are acceptable regions that are disjoint, or nearly so. A certain amount

of brute force is required; what MCMC allows for is a considerable reduction in the amount

of brute force necessary.

A more correct approach to the parameter scanning would use likelihoods based on ac-

celerator data rather than hard constraints. In particular, the b → sγ branching ratio and
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∆aµ(SUSY) would be easy to implement in this way. Limits on particle masses could be ex-

pressed as likelihoods as well, though most values would be equally likely, with the likelihood

dropping as the “limit” was approached. In fact, an analysis of the χ2 fit for the combination

b → sγ, ∆aµ(SUSY) and ΩCDMh2 has been performed [34]. An obvious extension of our

work would be to use this likelihood function with three data points to do an MCMC scan

of parameter space as we have done. However, none of the current accelerator constraints is

nearly as powerful as the relic density constraint. From the viewpoint of finding acceptable

models, we have used the most important constraint in the MCMC scans.

The likelihood function applied need not be related to real data. To scan an interesting

region in parameter space, a likelihood function could be designed to favor that region. For

example, in addition to including the WMAP relic density measurement, a likelihood function

could be constructed to favor large elastic scattering cross sections, or any other interesting

signal. In this way, models consistent with the WMAP relic density AND with high cross

sections would be preferentially chosen. We leave explorations of this possibility to future

work. Optimistically, if supersymmetry is discovered in e.g. LHC data, new terms in the

likelihood function would be required. The gradient method can be adapted when the number

of terms is less than the number of parameters: the gradient of each constraint is computed

in turn, and steps are taken in the parameter subspace orthogonal to all such gradients.

It is tempting to ascribe a statistical significance to the density of models calculated

(more correctly, using the points of the Markov Chain which excludes rejected points and

possibly includes accepted points multiple times). We urge caution here, simply stating that

the higher density regions tend to be associated with acceptable relic density and as such are

more likely.

In a sense (not terribly well-defined), mSUGRA is disfavored by the WMAP results

in that getting a reasonable relic density is “difficult,” usually requiring coannihilations or

strong resonance effects. We plan to explore more general model frameworks which may relax

these difficulties. MCMC will allow such studies, while not requiring particularly immense

computational resources.
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[4] P. Gondolo, J. Edsjö, L. Bergström, P. Ullio and E. A. Baltz, astro-ph/0012234; P. Gondolo,
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Figure 1: MCMC scan in m0 and m1/2, holding other parameters fixed. All points where the

relic density was calculated are included. Compare with Fig. 3 of Ref. [20]. The strong preference

for “interesting” regions is clear. Black points have Ωχh2 more than 2σ too large according to the

WMAP constraint, red points are within the 2σ region, and blue points have too little relic density

at the 2σ level – perfectly acceptable, but not as the sole constituent of dark matter. The gradient

method was used for these scans. For some chains, the gradient estimate was not very good, e.g. the

feature at m0 = 6 TeV, m1/2 = 1.5 TeV. These runs allow steps along the gradient of 5% or 10%

of the step length. This plot is meant to illustrate the fact that very little time is spent exploring

“uninteresting” regions of the parameter space. About 40,000 models are shown here, equivalent to a

200x200 grid search. For two dimensions, MCMC may not be a big improvement, but in more than

two dimensions, it gains a clear advantage. Note that since we include all points, these are NOT the

Markov Chains. The Markov Chains exclude rejected points and include some points multiple times.

The Markov chains do not however reflect the computational efficiency that is a major concern in this

work.
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Figure 2: Spin-independent elastic scattering cross section of neutralinos on protons. The models

have been collected in bins in a square grid. Current experimental limits from EDELWEISS and

CDMS II are shown, as well as the region favored by the DAMA annual modulation result. The

proposed reach of the CDMS II, CRESST II, CryoArray, GENIUS, and XENON experiments is also

shown. Models falling withing 1σ of the current measurement of aµ are highlighted by green circles,

though not all models in those bins necessarily pass the aµ cut.
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Figure 3: Projections of mSUGRA parameter space obeying the WMAP constraint on relic density.

All six 2-dimensional projections of the four continuous parameters m0, m1/2, A0 and tanβ are

illustrated, with µ positive in the upper left and µ negative in the lower right. The green, orange and

purple circles indicate models within 1σ of the current measurement of the muon aµ. Green indicates

that all models passing the aµ cut will be detectable by the proposed XENON experiment, orange

indicates that some such models will be detectable, and purple indicates that no such models will

be detectable. The red crosses show models that fail the aµ constraint, and will be detectable by

XENON, and the blue squares show models that fail the aµ constraint, and will not be detectable. In

projection, the WMAP constraint does not seem to be very powerful, in contrast to Fig. 1. This is

simply because the thin sheet of allowed parameter space is not perpendicular to any particular one

of the mSUGRA parameters. Note that m0, m1/2, and tanβ are plotted logarithmically, while A0 is

plotted as sinh−1(A0/100 GeV), with the first non-zero tickmark being 100 GeV.
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Figure 4: Projections of mSUGRA parameter space without the WMAP constraint on relic density.

The points are plotted as in Fig. 3. The WMAP constraint does not appear to be making a huge

difference when viewed in projection, though in fact the 4-dimensional volume occupied by acceptable

models is quite small.
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