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Abstract

While there exist various candidates, the identification of dark matter remains un-
resolved. Recently it was argued that the generalized uncertainty principle (GUP)
may prevent a black hole from evaporating completely, and as a result there should
exist a Planck-size BHR at the end of its evaporation. We speculate that the stability
of BHR may be further protected by supersymmetry in the form of extremal black
hole. If this is indeed the case and if a sufficient amount of small black holes can be
produced in the early universe, then the resultant BHRs can be an interesting can-
didate for DM. We demonstrate that this is the case in the hybrid inflation model.
By assuming BHR as DM, our notion imposes a constraint on the hybrid inflation
potential. We show that such a constraint is not fine-tuned. Possible observational
signatures are briefly discussed.
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1 Introduction

It is by now widely accepted that dark matter (DM) constitutes a substantial
fraction of the present critical energy density in the universe. However, the na-
ture of DM remains an open problem. There exist many DM candidates, most
of them are non-baryonic weakly interacting massive particles (WIMPs), or
WIMP-like particles[1]. Figure 1 shows the masses and cross sections of WIMP
(or WIMP-like) candidates[2]. By far the DM candidates that have been more
intensively studied are the lightest supersymmetric (SUSY) particles such as
neutralinos or gravitinos, and the axions (as well as the axinos). There are
additional particle physics inspired DM candidates[1]. A candidate which is
not as closely related to particle physics is the relics of primordial black holes
(PBHs)[3,4]. Earlier it was suggested that PBHs are a natural candidate for
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DM[5]. More recent studies[6] based on the PBH production from the “blue
spectrum” of inflation demand that the spectral index ns ∼ 1.3, but this pos-
sibility may be ruled out by recent WMAP experiment[7]. There are also other
studies on the idea of PBH as DM[8].

Fig. 1. Cross sections and masses of WIMP dark matter candidates. Black hole
remnant (BHR) is included.

One weakness of the notion of PBH as DM is the ambiguity on the final prop-
erty of small black holes. The standard view of black hole thermodynamics[9,10]
does not provide an answer as to whether a small black hole should evaporate
entirely, or leave something else behind, which we refer to as a black hole rem-
nant (BHR). Numerous calculations of black hole radiation properties have
been made from different points of view[11], and some hint at the existence of
remnants, but none appear to give a definitive answer.

In a recent paper[12], a generalized uncertainty principle (GUP)[15,16,17,18]
was invoked to argue that the total evaporation of a black hole may be pre-
vented, and as a result there should exist a black hole remnant with Planck
mass and size. Here we speculate that the stability of such BHR may be further
protected by supersymmetry, in the form of the extremal black hole[13]. Such
a BHR is totally inert, with no attributes other than gravitational interaction,
and is thus a natural candidate for DM. It remains unclear, however, whether
such a notion can be smoothly incorporated into the standard cosmology.

We note that certain inflation models naturally induce a large number of
small black holes. As a specific example, we demonstrate that the hybrid
inflation[20,21,22] cosmology can in principle yield the necessary abundance
of primordial BHRs for them to be the primary source of dark matter. We
show that such a construction is not fine-tuned.

2



2 Generalized Uncertainty Principle and Black Hole Remnant

As a result of string theory[16], or noncommutative spacetime algebra[17,19],
or general considerations of quantum mechanics and gravity[15,18], the stan-
dard uncertainty principle must be modified when the gravity effect is in-
cluded. A heuristic derivation may be made on dimensional grounds. Con-
sider a particle such as an electron being observed by means of a photon with
momentum p. The usual Heisenberg argument leads to an electron position
uncertainty given by ~/∆p. But we should add to this a term due to the
gravitational interaction between the electron and the photon, and that term
must be proportional to G times the photon energy, or Gpc. Since the electron
momentum uncertainty ∆p will be of order of p, we see that on dimensional
grounds the extra term must be of order G∆p/c3. Note that there is no ~ in
the extra term when expressed in this way. The effective position uncertainty
is therefore

∆x ≥ ~

∆p
+ ξ2l2p

∆p

~
, (1)

where lp = (G~/c3)1/2 ≈ 1.6× 10−33cm is the Planck length. Here the dimen-
sionless coefficient ξ ∼ O(1) can be considered either as related to the string
tension from the string theory’s motivation, or simply as a factor to account
for the imprecision of our heuristic derivation which can only be fixed by a
precise theory of quantum gravity in the future. Note that Eq.(1) has a mini-
mum value of ∆xmin = 2ξlp, so the Planck length (or ξlp) plays the role of a
fundamental length.

The Hawking temperature for a spherically symmetric black hole may be ob-
tained in a heuristic way with the use of the standard uncertainty principle
and general properties of black holes[12]. In the vicinity of the black hole sur-
face there is an intrinsic uncertainty in the position of any vacuum-fluctuating
particle of about the Schwarzschild radius, ∆x ≈ rs = 2GMBH/c

2, due to the
behavior of its field lines[23] - as well as on dimensional grounds. This leads
to a momentum uncertainty ∆p. Identifying ∆pc as the characteristic energy
of the emitted photon, and thus as a characteristic temperature (with the in-
sertion of a calibration factor 1/4π), one arrives at the celebrated Hawking
temperature, TH = ~c3/8πGMBH.

Applying the same argument, but invoking the GUP, one then finds a modified
black hole temperature,

TGUP =
mpc

2

4π

µ

ξ2

[

1 ∓
√

1 − ξ2/µ2

]

, (2)
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where µ ≡ MBH/mp is the BH mass in units of the Planck mass: mp =
(~c/G)1/2 ≈ 1.2 × 1019GeV. This agrees with the Hawking result for large
mass if the negative sign is chosen, whereas the positive sign has no evident
physical meaning. Note that the temperature becomes complex and unphysical
for mass less than ξmp and Schwarzschild radius less than 2ξlp, the minimum
size allowed by the GUP. At µ = ξ, TGUP is finite but its slope is infinite, which
corresponds to zero heat capacity of the black hole. The BH evaporation thus
comes to a stop, and what remains is a inert BHR with mass µ = ξ.

If there are g species of relativistic particles, then the BH evaporation rate
(assuming the Stefan-Boltzmann law) is

µ̇ = −16g

tch

µ6

ξ8

[

1 −
√

1 − ξ2/µ2

]4

, (3)

where tch = 60(16)2πtp ≈ 4.8 × 104tp is a characteristic time for BH evapo-
ration, and tp = (~G/c5)1/2 ≈ 0.54 × 10−43sec is the Planck time. Note that
the energy output given by Eq.(3) is finite at the end point where µ = ξ, i.e.,
dµ/dt|µ=ξ = −16g/(ξ2tch). Thus the hole with an initial mass µi evaporates
to a remnant in a time given by

τ =
tch
16g

[8

3
µ3

i +
8

3
(µ2

i − ξ2)3/2 − 4ξ2(µ2

i − ξ2)1/2

−8ξ2µi + 4ξ3 cos−1
ξ

µi
+

19

3
ξ3 − ξ4

µi

]

≈ µ3

i

3g
tch, µi ≫ 1 . (4)

The evaporation time in the µi ≫ 1 limit agrees with the standard Hawking
picture.

3 The Issue of Black Hole Remnant Stability

Even if the GUP may prevent a small black hole from total evaporation, it
remains unclear whether the resultant BHR will be prohibited from decaying
into the vacuum. In our previous work[12] we argued that the total collapse of
a black hole may be prevented by dynamics (i.e., the GUP) and not by sym-
metry, just like the prevention of hydrogen atom from collapse by the standard
uncertainty principle[24]. In a closer look the hydrogen atom argument may
be only fortuitous, as there exist counter-examples such as the finite lifetime of
the positronium. Therefore to protect the stability of the BHR, the existence
of a symmetry principle in the system appears essential.
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In this regard supersymmetry, in particular supergravity, stands a very good
chance of providing such a protection to BHR. It is well-known that the no-
hair theorem allows for only three attributes of a classical black hole, namely,
its mass, charge and angular momentum. For the extreme Kerr-Newman BH,
we have the limiting case where

M2 = Q2 + a2 , (5)

where M is the BH mass, Q the BH charge associated with certain gauge
symmetry, and a ≡ S/M is the BH angular momentum per unit mass. In the
special case where the BH has no angular momentum, it reaches the extremal
condition of M = Q. It has been shown that in certain specific realizations
of supergravity, there exist extremal black hole solutions[13]. As supergravity
“charge” is in units of Planck mass, this condition dictates that the BH mass
is bounded by the Planck mass. We speculate that the extremal condition
should remain intact even when SUSY is broken.

If the primordial black holes were generated in the very early epoch of the uni-
verse, such as the one immediately following inflation, it is likely that SUSY
was still unbroken. Then the PBHs so generated could be either straight-
forwardly the SUSY extremal BHs governed by supergravity, or the small but
classical BHs described above. We believe that, governed by the GUP, the
latter would soon reduce to Planck-size BHRs whose final state then coincides
with the extremal BH condition. In either case we expect the existence of
BHRs at Planck size. It is unclear, however, whether this notion can be phys-
ically realized. More efforts are evidently needed beyond the simple-minded
comments made here. A study in this direction based on string theory is cur-
rently underway[14].

4 Hybrid Inflation and Black Hole Production

We now return to the scenario of a semi-classical BH and combine this notion
with the hybrid inflation proposed by A. Linde[20,25]. In the hybrid infla-
tion model two inflaton fields, (φ, ψ), are invoked. Governed by the inflation
potential,

V (φ, ψ) =
(

M2 −
√
λ

2
ψ2

)2

+
1

2
m2φ2 +

1

2
γφ2ψ2 , (6)

φ first executes a “slow-roll” down the potential, and is responsible for the
more than 60 e-folds expansion while ψ remains zero. When φ eventually
reduces to a critical value, φc = (2

√
λM2/γ)1/2, it triggers a phase transition
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that results in a “rapid-fall” of the energy density of the ψ field, which lasts
only for a few e-folds, that ends the inflation.

The equations of motion for the fields are

φ̈+ 3Hφ̇=−(m2 + γψ2)φ ,

ψ̈ + 3Hψ̇= (2
√
λM2 − γφ2 − λψ2)ψ , (7)

subject to the Friedmann constraint,

H2 =
8π

3m2
p

[

V (φ, ψ) +
1

2
φ̇2 +

1

2
ψ̇2

]

. (8)

The solution for the ψ field in the small φ regime, measured backward from
the end of inflation, is

ψ(N(t)) = ψe exp(−sN(t)) , (9)

where N(t) = H∗(te − t) is the number of e-folds from t to te and s = −3/2 +

(9/4 + 2
√
λM2/H2

∗
)1/2 and H∗ ≃

√

8π/3M2/mp.

We now show how a large number of small black holes can result from the
second stage of inflation. Quantum fluctuations of ψ induce variations of the
starting time of the second stage inflation, i.e., δt = δψ/ψ̇. This translates
into perturbations on the number of e-folds, δN = H∗δψ/ψ̇, and therefore the
curvature contrasts.

It can be shown that[26] the density contrast at the time when the curvature
perturbations re-enter the horizon is related to δN by

δ ≡ δρ

ρ
=

2 + 2w

5 + 3w
δN , (10)

where p = wρ is the equation of state of the universe at reentry. From Eq.(9),
it is easy to see that ψ̇ = sH∗ψ. At horizon crossing, δψ ∼ H∗/2π. So with
the initial condition (at φ = φc) ψ ∼ H∗/2π, we find that δN ∼ 1/s. Thus

δ ∼ 2 + 2w

5 + 3w

1

s
. (11)

As w is always of order unity, we see that the density perturbation can be
sizable if s is also of order unity. With an initial density contrast δ(m) ≡
δρ/ρ|m, the probability that a region of mass m becomes a PBH is[27]

P (m) ∼ δ(m)e−w2/2δ2

. (12)
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Let us assume that the universe had inflated eNc times during the second stage
of inflation. From the above discussion we find[25]

eNc ∼
(2mp

sH∗

)1/s
. (13)

At the end of inflation the physical scale that left the horizon during the phase
transition is H−1

∗
eNc . If the second stage of inflation is short, i.e., Nc ∼ O(1),

then the energy soon after inflation may still be dominated by the oscillations
of ψ with p = 0, and the scale factor of the universe after inflation would
grow as (tH∗)

2/3. The scale (tH∗)
2/3H−1

∗
eNc became comparable to the particle

horizon (∼ t), or t ∼ (tH∗)
2/3H−1

∗
eNc , when

t ∼ th = H−1

∗
e3Nc . (14)

At this time if the density contrast was δ ∼ 1, then BHs with size rs ∼ H−1

∗
e3Nc

would form with an initial mass

µi ∼
mp

H∗

e3Nc ≡ α
mp

H∗

(2mp

sH∗

)3/s
. (15)

A dimensionless parameter α is introduced to account for the dynamic range
of the gravitational collapse. Since H∗ depends on M while s on M and λ, the
initial BH mass depends only on the mass and the coupling in the ψ-sector of
the hybrid inflation.

5 Black Hole Remnants as Dark Matter

By identifying BHRs as DM and assuming hybrid inflation as the progenitor
of PBHs, we in effect impose a constraint between H∗ and s (or equivalently,
M and λ). Though constrained, these parameters are not so fine-tuned, as we
will show in the following analysis.

We wish to estimate the present abundance of the BHRs created by hy-
brid inflation. To do so we should track the evolution of the post-inflation
PBHs through different cosmological epochs. The newly introduced “black
hole epoch” (th ≤ t ≤ τ) would in principle involve evaporation and mergers
of PBHs as well as their accretion of radiation; the details of which can be
intricate. For the purpose of a rough estimate and as a good approximation,
however, one is safe to neglect these detailed dynamics and only keep track of
the BH evaporation throughout the BH epoch. We assume that the universe
was matter dominant at the time th when PBHs were formed. Due to Hawking
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evaporation, the universe would later become radiation dominant. Since the
rate of BH evaporation rises sharply in its late stage, the crossing time tx of
this transition can be roughly estimated by integrating Eq.(3) from µi to µi/2.
This gives tx ∼ 7/8τ . When the Hubble expansion effect is included, where
the radiation density dilutes faster than the matter density by one power of
the scale factor, the crossing time would be even closer to τ . For our purpose,
we can simply assume that the entire BH epoch was matter dominant.

The radiation to matter density ratio at the end of BH epoch, with Hubble
expansion included, can then be estimated as

Ωγ,τ

ΩBHR,τ

∼ 1

ξ

τ
∫

th

dtµ̇
( t

τ

)2/3 ≡ β
µi

ξ
. (16)

Here we introduce another parameter β to account for a range of possible
minor variations of the evolution due to the dynamical details in the black
hole epoch. Not surprisingly, the density ratio is just roughly the initial BH
mass over what remains in its remnant. As we will see below, the typical BH
mass in our scenario, while small in astrophysical sense, is nonetheless much
larger than the Planck mass, i.e., µi ≫ 1. Furthermore, the effective reheating
temperature through Hawking evaporation in this case would be much higher
than the energy scales associated with the standard model of particle physics
and baryogenesis. We thus assume that the standard cosmology would resume
after the black hole epoch. To conform with the standard cosmology, our
assumption that DM is predominantly contributed from BHR demands that,
by the time t ∼ teq ∼ 1012sec the density contributions from radiation and
BHR should be about equal, namely,

Ωγ,teq

ΩBHR,teq

∼ 1 ∼
( τ

teq

)1/2 Ωγ,τ

ΩBHR,τ
=

( τ

teq

)1/2

β
µi

ξ
. (17)

Since τ is uniquely determined by the initial BH mass µi (cf. Eq.(4)), the
above condition translates into a constraint on H∗ and s in hybrid inflation
through Eq.(15):

mp

H∗

(2mp

sH∗

)3/s ∼
( 3gξ2

α5β2

teq
tch

)1/5

. (18)

Figure 2 shows the region in the (H∗, s) parameter space that satisfies the
above condition. We assume g = 100 and ξ = 1, and let 0.3 ≤ α ≤ 3 and
0.3 ≤ β ≤ 3. The allowed (H∗, s) values are shown in the darkened region.
We see that within the constraint that s be of the order unity so that the
metric perturbation δ be not exponentially small, there exists a wide range of
H∗ that could produce the right amount of PBHs.
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Fig. 2. Region in the hybrid inflation (H∗, s) parameter space where the induced
black hole remnants would provide the right abundance for dark matter.

As an example, we take H∗ ∼ 5 × 1013 GeV and s ∼ 3. Assume that the
universe was matter-dominated when the curvature perturbation reentered
the horizon. Then the density contrast is δ ∼ 1/7, and the fraction of matter
in the BH is P (m) ∼ 10−2. From Eq.(13), eNc ∼ 54. So the total number of
e-folds is Nc ∼ 4. The black holes were produced at the moment th ∼ 2×10−33

sec, and had a typical mass MBHi ∼ 4 × 1010mp. Let g ∼ 100. Then the time
it took for the BHs to reduce to remnants, according to Eq.(4), is τ ∼ 5 ×
10−10sec. The “black hole epoch” thus ended in time before baryogenesis and
other subsequent epochs in the standard cosmology. As suggested in Ref. [25],
such a post-inflation PBH evaporation provides an interesting mechanism for
reheating. Note that due to the continuous evaporation process and the Hubble
expansion, the BH reheating should result in an effective temperature which
is sufficiently lower than the Planck scale.

6 Discussion

Our arguments for the existence of BHR based on GUP is heuristic. The search
for its deeper theoretical foundation is currently underway[14]. As interactions
with BHR are purely gravitational, the cross section is extremely small, and
direct observation of BHR seems unlikely. One possible indirect signature may
be associated with the cosmic gravitational wave background. Unlike photons,
the gravitons radiated during evaporation would be instantly frozen. Since, ac-
cording to our notion, the BH evaporation would terminate when it reduces
to a BHR, the graviton spectrum should have a cutoff at Planck mass. Such a
cutoff would have by now been redshifted to ∼ O(104) GeV. Another possible
GW-related signature may be the GWs released during the gravitational col-
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lapse at t ∼ th. The frequencies of such GWs would by now be in the range of
∼ 107−108 Hz. It would be interesting to investigate whether these signals are
in principle observable. Another possible signature may be some imprints on
the CMB fluctuations due to the thermodynamics of PBH-CMB interactions.
These will be further investigated.
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