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Abstract

Soft supersymmetry breaking terms involving heavy singlet sneutrinos provide new sources of

lepton number violation and of CP violation. In addition to the CP violation in mixing, investigated

previously, we find that ‘soft leptogenesis’ can be generated by CP violation in decay and in the

interference of mixing and decay. These additional ways to leptogenesis can be significant for a

singlet neutrino Majorana mass that is not much larger than the supersymmetry breaking scale,

M ∼< 102mSUSY. In contrast to CP violation in mixing, for some of these new contributions the

sneutrino oscillation rate can be much faster than the decay rate, so that the bilinear scalar term

need not be smaller than its natural scale.
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I. INTRODUCTION

The evidence for neutrino masses at a scale ∼ 10−2 eV makes a convincing case for

the seesaw mechanism [1, 2, 3]: The existence of singlet neutrinos with Majorana masses

and with Yukawa couplings to active neutrinos becomes very plausible. The physics of

these heavy neutrinos can provide all the necessary ingredients for baryogenesis [4]: B−L is

violated by the Majorana masses, CP is likely to be violated in the neutrino Yukawa couplings

and, for small enough Yukawa couplings, the heavy neutrinos decay out of equilibrium. Thus,

leptogenesis [5], the dynamical generation of lepton asymmetry through the decays of heavy

singlet Majorana neutrinos, becomes an attractive solution to the puzzle of the baryon

asymmetry.

The seesaw mechanism introduces a new scale, M , the mass scale of the singlet neutrinos.

Since this scale must be much higher than the electroweak breaking scale, M � ΛEW, a

huge amount of fine-tuning is required within the framework of the Standard Model extended

to include singlet neutrinos (SM+N) to keep the low Higgs mass. This situation provides

further motivation to consider the supersymmetric extension of the model (SSM+N). Then,

leptogenesis is induced in both singlet neutrino and singlet sneutrino decays. The results

are modified by factors of order one, but the basic mechanism and the order of magnitude

of the asymmetry remain very much the same as in the non-supersymmetric version.

Supersymmetry must, however, be broken. In addition to the soft supersymmetry break-

ing terms of the SSM, there are now terms that involve the singlet sneutrinos Ñ , in particular,

bilinear (B) and trilinear (A) scalar couplings. These terms provide yet another source of

lepton number violation and of CP violation. One may ask whether these terms can play

a significant role in leptogenesis. One finds that for a certain range of parameters, the soft

breaking terms play a significant role, and may even be dominant in leptogenesis [6, 7]. This

scenario has been termed ‘soft leptogenesis.’ (For related work, see [8, 9, 10, 11, 12].)

In [6] we investigated soft leptogenesis related to CP violation in mixing (a leptonic analog

of Re(ε)K→π�ν). In this work, we present all the contributions to the lepton asymmetry

that arise in this scenario. The contribution considered in [6] dominates over the other

contributions in a large part of the parameter space. Yet, if the scale M is relatively low,

other contributions, related to CP violation in the interference of decays with and without

mixing (a leptonic analog of SB→ψK), and to CP violation in decay (a leptonic analog of
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Re(ε′)K→ππ), play a significant role.

The plan of this paper is as follows. In section II we derive exact expressions for the

singlet sneutrino decay rates into final (s)leptons in terms of mixing and decay amplitudes.

In section III we present our model, that is the supersymmetric standard model extended to

include singlet neutrinos (SSM+N) and express the mixing and decay amplitudes in terms

of the model parameters. Our main results are obtained in sections IV and V. In section

IV we evaluate the lepton asymmetry in terms of the model parameters and, in particular,

assuming hierarchy between the supersymmetry breaking scale and the mass scale of the

singlet sneutrinos, find the potentially leading contributions. In section V we estimate the

size of the various contributions and find the regions in the SSM+N parameter space where

these contributions can account for the observed baryon asymmetry. We summarize our

results and draw further conclusions in section VI. Additional points are made in two

appendices. In appendix A we explicitly prove that the consideration of three body final

states does not change the picture. In appendix B we discuss the possibility of naturally

obtaining a small B term for the singlet sneutrinos.

II. MIXING AND DECAY

We would like to calculate the CP-violating lepton asymmetry:

ε� ≡ Γ(L̃) + Γ(L) − Γ(L̃†) − Γ(L)

Γ(L̃) + Γ(L) + Γ(L̃†) + Γ(L)
, (1)

where Γ(X) is the time-integrated decay rate into a final state with a leptonic content X.

Here L(L) is the (anti)lepton doublet and L̃(L̃†) is the (anti)slepton doublet.

A crucial role in our results is played by the Ñ − Ñ † mixing amplitude,

〈Ñ |H|Ñ †〉 = M12 − i

2
Γ12, (2)

which induces mass and width differences,

x ≡ ∆M

Γ
≡ MH −ML

Γ
, y ≡ ∆Γ

2Γ
≡ ΓH − ΓL

2Γ
, (3)

(Γ is the average width) between the two mass eigenstates, the heavy |ÑH〉 and the light

|ÑL〉,
|ÑL,H〉 = p|Ñ〉 ± q|Ñ †〉. (4)
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The ratio q/p depends on the mixing amplitude ratio:(
q

p

)2

=
2M∗

12 − iΓ∗
12

2M12 − iΓ12
. (5)

For each final state X, we define a pair of amplitudes and a quantity λX involving the

amplitude ratio and the mixing amplitudes:

AX = 〈X|H|Ñ〉, AX = 〈X|H|Ñ †〉, λX =
q

p

AX
AX

. (6)

Defining |Ñ(t)〉 and |Ñ †(t)〉 to be the states that evolve from purely |Ñ〉 and |Ñ †〉,
respectively, at time t = 0, we obtain the following time-dependent decay rates into a final

state X:

Γ(Ñ(t) → X) = NX |AX |2e−Γt

[
1 + |λX |2

2
cosh

∆Γt

2
+

1 − |λX |2
2

cos(∆M t)

+ ReλX sinh
∆Γt

2
− ImλX sin(∆M t)

]
,

Γ(Ñ †(t) → X) = NX |AX |2
∣∣∣∣∣pq
∣∣∣∣∣
2

e−Γt

[
1 + |λX |2

2
cosh

∆Γt

2
− 1 − |λX |2

2
cos(∆M t)

+ ReλX sinh
∆Γt

2
+ ImλX sin(∆M t)

]
, (7)

where NX is a phase space factor. Summing over the initial states, Ñ and Ñ †, we obtain

the following four time-integrated decay rates (in arbitrary units):

Γ(L̃) = Ns|AL̃|2
[
(1 + |p/q|2)(1 + |λ

L̃
|2)

2(1 − y2)
+

(1 − |p/q|2)(1 − |λ
L̃
|2)

2(1 + x2)

+
y(1 + |p/q|2)Reλ

L̃

1 − y2
− x(1 − |p/q|2)Imλ

L̃

1 + x2

]
,

Γ(L̃†) = Ns|ĀL̃† |2
[
(1 + |q/p|2)(1 + |λ

L̃†|−2)

2(1 − y2)
+

(1 − |q/p|2)(1 − |λ
L̃† |−2)

2(1 + x2)

+
y(1 + |q/p|2)Re 1

λ
L̃†

1 − y2
−
x(1 − |q/p|2)Im 1

λ
L̃†

1 + x2

⎤⎦ ,
Γ(L) = Nf |AL|2

[
(1 + |p/q|2)(1 + |λL|2)

2(1 − y2)
+

(1 − |p/q|2)(1 − |λL|2)
2(1 + x2)

+
y(1 + |p/q|2)ReλL

1 − y2
− x(1 − |p/q|2)ImλL

1 + x2

]
,

Γ(L) = Nf |AL|2
[
(1 + |q/p|2)(1 + |λL|−2)

2(1 − y2)
+

(1 − |q/p|2)(1 − |λL|−2)

2(1 + x2)

+
y(1 + |q/p|2)Re 1

λL

1 − y2
− x(1 − |q/p|2)Im 1

λL

1 + x2

⎤⎦ . (8)

Using these four decay rates, we can obtain an exact expression for ε� defined in eq. (1).
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III. THE SSM+N

Since we are interested in the effects of the soft supersymmetry breaking couplings, we

work in a simplified single generation model. The relevant superpotential terms are

W = Y εαβLαNHβ +
1

2
MNN, (9)

where L is the supermultiplet containing the left-handed lepton doublet fields, N is the

superfield whose left-handed fermion is the SU(2) × U(1)-singlet νL, and H is the Higgs

doublet (usually denoted by H2). The relevant soft supersymmetry breaking terms in the

Lagrangian are the following:

LSSB = −
(
m2λ

a
2λ

a
2 + AεαβL̃αÑHβ +BÑÑ + h.c.

)
. (10)

Here λa2 (a = 1, 2, 3) are the SU(2)L gauginos, Ñ, L̃, H are scalar fields (and N,L, h are

their fermionic superpartners). The U(1)Y gaugino, λ1, would give effects that are similar

to those of λ2 and can be included in a straightforward way.

The Lagrangian derived from eqs. (9) and (10) has two independent physical CP violating

phases:

φN = arg(AMB∗Y ∗),

φW = arg(m2MB∗). (11)

These phases give the CP violation that is necessary to dynamically generate a lepton

asymmetry. If we set the lepton number of N and Ñ to −1, so that Y and A are lepton

number conserving, the two couplings M and B violate lepton number by two units. Thus

processes that involve Y or A, and M or B, would give the lepton number violation that is

necessary for leptogenesis.

There are several dimensionful parameters in (9) and (10). Of these M is supersymmetry

conserving and all other are supersymmetry breaking. We assume the following hierarchies:

εS ≡ mSUSY

M
� 1, (12)

where mSUSY is the supersymmetry breaking scale in the SSM+N (we take mSUSY ∼ 1 TeV),

and, unless otherwise stated,

|m2| ∼ |A/Y | ∼ |B/M | ∼ mSUSY. (13)
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FIG. 1: Two-body decay diagrams of a singlet sneutrino.

We also assume that |Y | � 1, as is required by the condition of out-of-equilibrium decay

[see eq. (31)].

We can evaluate the various parameters of eq. (8) in terms of the Lagrangian parameters

of eqs. (9) and (10). The singlet sneutrino decay width is given, for |MY | � |A|, by

Γ =
|MY 2|

4π
. (14)

For the mixing parameters, we obtain

x =
2|B|
|M |Γ =

8π|B|
|MY |2 ,

y =
∣∣∣∣ AMY

∣∣∣∣ cosφN −
∣∣∣∣ BM2

∣∣∣∣ ,∣∣∣∣∣qp
∣∣∣∣∣ =

(
1 +

2|AMY/(4πB)| sinφN
1 − |AMY/(4πB)| sinφN + 1

4
|AMY/(4πB)|2

)1/4

. (15)

As concerns the decay amplitudes, CPT guarantees the following relation:

|A
L̃
|2 + |A

L̃† |2 + |AL|2 + |AL|2 = |A
L̃
|2 + |A

L̃† |2 + |AL|2 + |AL|2. (16)

We consider only two body final states, since three body (or higher) states give only small

corrections, as shown in Appendix A. In Fig. 1 we show the relevant diagrams (including

the dominant one loop corrections) for the four two body final states: (1) L̃H , (2) L̃†H†, (3)
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Lh, and (4) Lh. The amplitudes are given by (we use an = sign when the difference between

the absolute values of two CP conjugate amplitudes is negligible and an ≈ sign when it is

not)

|A
L̃
| = |A

L̃† | = |MY |,
|AL| ≈ |AL| ≈ |MY |,
|A

L̃
| ≈ |A

L̃† | ≈ |A|,
|AL| = |AL| =

3α2

4
|m2Y |

√
f 2

1 + f 2
2 = O (α2|m2Y |) ,

|AL| − |AL| = −3α2

2

∣∣∣∣m2A

M

∣∣∣∣ f1 sin(φW − φN) = O(α2|m2A/M |),

|A
L̃
| − |A

L̃† | =
3α2

2
|m2Y |f1 sin(φW − φN) = O (α2|m2Y |) , (17)

where α2 = g2
2/(4π) is the weak coupling constant and where we define

f1 = ln

(
M2 +m2

2

m2
2

)
,

f2 = Li2

⎛⎝ 2

1 −
√

1 + 4m2
2/M

2

⎞⎠+ Li2

⎛⎝ 2

1 +
√

1 + 4m2
2/M

2

⎞⎠ . (18)

These expressions assume, for simplicity, that m2 > m
L̃
, mH , thus neglecting corrections

proportional to m
L̃

and mH . The function Li2(z) ≡ ∫ 0
z

ln(1−t)dt
t

is the dilogarithm function.

For the relevant strong and weak phases, we obtain

φs ≡ 1

2
arg

(
λ
L̃
λ
L̃†

)
= −φN ,

φf ≡ 1

2
arg (λLλL) = −φW ,

sin δs ≡ sin
arg(λ

L̃
λ−1

L̃† )

2
=

3α2

4

∣∣∣∣m2Y

A

∣∣∣∣ f1 = O(α2),

sin δf ≡ sin
arg(λLλ

−1
L )

2
=

f1√
f 2

1 + f 2
2

= O(1). (19)

Note that there are several relations between decay amplitudes to final scalars and to final

fermions. These relations have to be taken into account when evaluating the asymmetry.

First, in the supersymmetric limit we have |A
L̃
| = |AL|. Second, we have |A

L̃
/A

L̃
| sin δs =

|AL/AL| sin δf . Similar relations hold for the CP conjugate amplitudes.
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IV. THE LEADING CONTRIBUTIONS TO ε�

Many terms that contribute to the lepton asymmetry are small and can be neglected.

The small parameters that play a role are the ratio εS, the weak coupling constant α2, and

the Yukawa coupling Y . The dependence on the Yukawa coupling enters either via the

combination |A|/|MY | which, as can be seen from eq. (13), is taken to be of order εS, or

via the x parameter evaluated in eq. (15). The x parameter can be small or large but, since

x ∼ 8πεS/|Y |2, we take x � εS. (Some of the contributions that we consider are significant

only for B � εSM
2 and, consequently, x � 8πεS/|Y |2. In these cases, however, x ∼ 1 is

required, so that x� εS is still valid.) We keep the x dependence explicit.

We identify several interesting contributions to ε�. We write down only the potentially

leading contributions and neglect terms that are suppressed by higher powers of εS and/or

α2. We classify the contributions according to the source of CP violation:

(i) CP violation in mixing: Here, CP violation comes from |q/p| 	= 1 (as in Re(ε) in

K → π	ν). We identify two potentially significant contributions. The first is given by

εm1 =
x2

4(1 + x2)

⎛⎝∣∣∣∣∣pq
∣∣∣∣∣
2

−
∣∣∣∣∣qp
∣∣∣∣∣
2
⎞⎠∆sf = O

(
x∆sf εS
1 + x2

)
. (20)

This is the contribution discussed in [6, 7]. The size of this contribution depends crucially

on

∆sf ≡
Ns(|AL̃|2 + |A

L̃† |2) −Nf(|AL|2 + |AL|2)
Ns(|AL̃|2 + |A

L̃† |2) + Nf (|AL|2 + |AL|2) . (21)

At zero temperature, ∆sf = O(ε2S), but for temperature at the time of decay that is compa-

rable to the singlet sneutrino mass, Td ∼M , we have ∆sf ≈ (Ns −Nf)/(Ns + Nf) = O(1).

The second contribution is given by (neglecting now corrections of order ∆sf)

εm2 = − x

4(1 + x2)

(∣∣∣∣∣qp
∣∣∣∣∣−

∣∣∣∣∣pq
∣∣∣∣∣
) [(∣∣∣∣∣AL̃A

L̃

∣∣∣∣∣+
∣∣∣∣∣AL̃†

A
L̃†

∣∣∣∣∣
)

sin δs cosφs −
(∣∣∣∣∣ALAL

∣∣∣∣∣+
∣∣∣∣∣ALAL

∣∣∣∣∣
)

sin δf cosφf

]

= O
(
ε2Sα2

1 + x2

)
. (22)

(ii) CP violation in interference of decays with and without mixing: Here, CP violation

comes from arg(λXλX) 	= 0 (as in SψKS
in B → J/ψK and similar to the mixing contribution

to standard leptogenesis (see e.g. [13]), though mixing in the latter case is between different

generations rather than between CP conjugate states). We identify the following potentially
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significant contribution:

εi = −y
2

[(∣∣∣∣∣AL̃A
L̃

∣∣∣∣∣+
∣∣∣∣∣AL̃†

A
L̃†

∣∣∣∣∣
)

sin δs sinφs −
(∣∣∣∣∣ALAL

∣∣∣∣∣+
∣∣∣∣∣ALAL

∣∣∣∣∣
)

sin δf sinφf

]
= O

(
ε2Sα2

)
. (23)

(iii) CP violation in decay: Here, CP violation comes from |AX | 	= |AX | (as in Re(ε′)

in K → ππ and as in the vertex contribution to standard leptogenesis). We identify the

following potentially significant contribution:

εd =
y

2

(∣∣∣∣∣AL̃

A
L̃

∣∣∣∣∣−
∣∣∣∣∣AL̃†

A
L̃†

∣∣∣∣∣
)

cos δs cosφs = O
(
ε2Sα2

)
. (24)

(iv) We also find a contribution that involves all three types of CP violation and is not

necessarily sub-dominant:

εmdi = − x

4(1 + x2)

(∣∣∣∣∣qp
∣∣∣∣∣−

∣∣∣∣∣pq
∣∣∣∣∣
)(∣∣∣∣∣AL̃A

L̃

∣∣∣∣∣−
∣∣∣∣∣AL̃†

A
L̃†

∣∣∣∣∣
)

cos δs sinφs = O
(
ε2Sα2

1 + x2

)
. (25)

We note that, apart from εm1 , all the contributions involve loop diagrams with gaugino

exchange. The gaugino is playing a double role here. First, its mass provides a new physical

CP violating phase. Second, the loop diagrams provide a strong phase. Consequently, direct

CP violation becomes a possible source of the lepton asymmetry. Gaugino interactions do

not violate lepton number, but they allow the lepton number violating time evolution of the

heavy sneutrinos to contribute to ε� in new ways. Without gaugino interactions, indirect

CP violation is the only significant source of soft leptogenesis [6, 7]. Direct CP violation

can still be induced, but it involves higher powers of the Yukawa couplings and is therefore

negligibly small.

V. THE SIZE OF ε�

In the previous section, we distinguished five potentially important contributions to ε�.

These five contributions can be separated into three different classes:

ε� = εm1 + (εi + εd) + (εm2 + εmdi),

εm1 = O
(
x∆sf εS
1 + x2

)
,

εi, εd = O
(
ε2Sα2

)
,

εm2 , ε
mdi = O

(
ε2Sα2

1 + x2

)
. (26)
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The generated baryon to entropy ratio is given by

nB/s 
 −κ10−3ε�, (27)

where κ ∼< 1 is a dilution factor which takes into account the possible inefficiency in the

production of the heavy sneutrinos or erasure of the generated asymmetry by lepton num-

ber violating scattering processes. Since observations determine nB/s ∼ 10−10, any of the

contributions in (26) would be significant only if it yields |ε�| ∼> 10−6. We now specify

the conditions on the parameters whereby each of the three classes of contributions can be

responsible for a successful leptogenesis. Since all the effects that we consider are related

to supersymmetry breaking and therefore suppressed by powers of εS, soft leptogenesis can

give significant effects only for εS ∼> 10−6, that is,

M ∼< 106 mSUSY ∼ 109 GeV. (28)

In order that the singlet neutrino and sneutrino decay out of equilibrium, we should have

a decay rate, Γ = M |Y |2/4π, that is not much faster than the expansion rate of the Universe,

H = 1.66g
1/2
∗ T 2/mPl (g∗ counts the effective number of spin degrees of freedom in thermal

equilibrium; g∗ = 228.75 in the SSM), at the time when the temperature is of order M :

M/|Y |2 ∼> 3 × 1016 GeV. (29)

On the other hand, the sneutrino decay should occur before the electroweak phase transition,

when sphalerons are still active, Γ > H(T ∼ 100 GeV ):

M |Y |2 ∼> 3 × 10−13 GeV. (30)

Combining eqs. (28), (29) and (30), we learn that soft leptogenesis can give significant

effects only for

10−11

(
109 GeV

M

)1/2

∼< |Y | ∼< 10−4
(

M

109 GeV

)1/2

. (31)

With such a small Yukawa coupling, the decay width is rather narrow,

Γ ∼< 1 GeV
(

M

109 GeV

)2

. (32)

(i) The contribution from εm1 is of order (x/(1 + x2))∆sfεS. For temperatures well below

the mass M , the finite temperature contribution to ∆sf is given by the following approxi-

mation (ns,f = (eM/(2T ) ∓ 1)−1):

∆sf 
 (1 + ns)
2 − (1 − nf )

2

(1 + ns)2 + (1 − nf)2
≈ 2e−M/(2Td), (33)

10



where Td is the temperature at the time of decay. To obtain |ε�| ∼> 10−6 we must have

Td
M ∼>

1

2 ln(2εS/10−6)
. (34)

By using Γ = H(Td), this can be translated into an upper bound on M/|Y |2:

M/|Y |2 ∼< 4 × 1016 GeV [2 ln(2εS/10−6)]2. (35)

The lower (35) and upper (29) bounds define, for given M , a range for |Y | and a range for Γ.

Finally, we must have x/(1+x2) ∼> 10−6/(∆sfεS). Taking into account that x = 2|B|/(MΓ),

for a given value of M we obtain an allowed range for B. Since the naive estimate is

|B| ∼ MmSUSY, it is useful to write the allowed range for |B| in units of MmSUSY. We do

so in Fig. 2. We conclude that εm1 can account for the observed baryon asymmetry under

the following conditions:

1. The mass of the lightest sneutrino is light enough, M ∼< 109 GeV .

2. The Yukawa couplings are small enough, Y ∼< 10−4. The lighter is M , the smaller the

Yukawa coupling must be.

3. The B parameter is well below its naive value, |B|/(MmSUSY) ∼< 10−3. The lighter is

M , the more suppressed the B coupling must be.

We note that the inclusion of three body decays [14] does not change the basic picture and,

in particular, does not modify the estimate of ∆sf . We prove this statement in Appendix

A.

(ii) The contribution from εd and εi is of order α2ε
2
S. Since α2 ∼ 10−2, we must have

M ∼< 102mSUSY. (36)

Eq. (31) then requires

Y ∼< 10−6. (37)

The region where this class of contributions can account for the observed baryon asymmetry

is to the left of the dash-dotted line in Fig. 2. Note that |B| is not constrained in this

scenario. In particular, it can take its naive value, |B| ∼ MmSUSY, in which case x =

2|B|/(MΓ) ∼> 1011, so that the sneutrino oscillation rate is much faster than its decay rate.
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FIG. 2: Regions in the Y − B plane where Γ < H(T = M) and ε� ∼> 10−6. We take mSUSY = 103

GeV. The approximation made in our calculations (x > εS) does not hold below the dotted line. (i)

For ε� ∼ εm1 , the allowed regions are within the solid curves, for M = 2× 108 (right), 107 (middle)

and 105 (left) GeV. (ii) For ε� ∼ εd + εi, the allowed region is to the left of the dash-dotted line,

with M = 105 GeV. (iii) For ε� ∼ εm2 + εmdi, the allowed region is below and to the the left of the

dashed curve, for M = 105 GeV.

(iii) The contribution from εm2 and εmdi is of order α2ε
2
S/(1+x2). Consequently, the bound

(36) on M and the bound (37) on Y apply. In addition, we must have x 	� 1, which implies

B

MmSUSY
∼<

M

mSUSY

Y 2

8π ∼< 10−11. (38)

This third class of contributions is never much larger than the second class. It may, however,

be comparable if B is small enough. The region where this class of contributions is significant

is to the left and below the dashed line.

We note that, since our calculations are performed with the assumption that x � εS,

they should not be trusted for B/(MmSUSY) < Y 2/(8π), that is below the dotted line in

Fig. 2.

VI. CONCLUSIONS

Our main conclusions regarding the range of parameters where soft leptogenesis may be

successful are the following:

12



1. Soft leptogenesis can be neglected for M � 109 GeV.

2. Soft leptogenesis can work for M � 105 GeV only if the Yukawa couplings have small

values in a rather narrow range and if the B parameter is very small compared to

its naive scale (MmSUSY). (We comment on the possibility of naturally achieving

B �MmSUSY in Appendix B.)

3. For M ∼< 105 GeV there are several contributions from soft leptogenesis that could

account for the observed baryon asymmetry. All the supersymmetry soft breaking

terms can assume their natural values.

The main novel point of this paper is the realization that soft supersymmetry breaking

terms give contributions to the lepton asymmetry that are related to CP violation in decays

[εd of eq. (24)] and in the interference of decays with and without mixing [εi of eq. (23)].

In contrast to CP violation in mixing [εm of eq. (20)], the oscillation rate needs not be

comparable to the decay rate in order to have a significant effect. This is the reason that

the B term can assume natural values. The new contributions to ε� are second order in

supersymmetry breaking terms and further suppressed by a loop factor (∼ α2m2A/(M
2Y ))

and are, therefore, significant only if M is not much higher than 102mSUSY.

The contribution to the lepton asymmetry related to CP violation in mixing (εm1 of eq.

(20)), which was originally discussed in refs. [6, 7], requires thermal effects in order to be

significant. In contrast, the new contributions discussed here (such as εi of eq. (23) and εd

of eq. (24)) do not require thermal effects and, consequently, allow a non-thermal scenario of

leptogenesis to work. Such a scenario would arise if, for example, sneutrinos were produced

by inflaton decays (or if the sneutrino itself were the inflaton), and the temperature of the

thermal bath at the epoch of decay is well below M (though above the electroweak scale so

that sphalerons are still active).

Soft leptogenesis opens up the interesting possibility that the scale of the lightest singlet

(s)neutrino mass (M) is not far above the electroweak scale. In contrast, standard leptoge-

nesis cannot yield, in general, a large enough asymmetry for low M . The difference between

the two scenarios lies in the different role of the Yukawa couplings. In both standard and

soft leptogenesis, the condition for out of equilibrium decay associates a low scale M with

tiny Yukawa couplings Y . In standard leptogenesis, the Yukawa couplings are the source

13
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FIG. 3: Three-body decay diagrams of a singlet sneutrino

of CP violation; therefore, small Y yield a small ε�. In soft leptogenesis, CP violation is

induced by soft supersymmetry breaking terms and is not suppressed by small Y .

APPENDIX A: THREE BODY DECAYS

The Hu field has Yukawa couplings to neutrinos and to up quarks. The superpotential

terms, W = Y NLH + YuQūH , give a quartic scalar interaction term in the Lagrangian,

L4 = Y Y ∗
u Ñ L̃Q̃

† ˜̄u† + h.c., (A1)

where Q̃ is the scalar quark doublet and ˜̄u is the up-singlet. This coupling allows the three

body decay mode, Ñ → L̃† ˜̄uQ̃. Since there is no similar quartic coupling of Ñ to two

fermions and one scalar, one may think that for the three body decays, the vanishing of ∆
(3)
sf

(defined in (A3)) in the supersymmetric limit is avoided, and a sizeable lepton asymmetry

is induced even at zero temperature. This is, however, not the case, as we now explain.

We are considering contributions to the CP asymmetry of the form

ε(3) =
x2

4(1 + x2)

⎛⎝∣∣∣∣∣qp
∣∣∣∣∣
2

−
∣∣∣∣∣pq
∣∣∣∣∣
2
⎞⎠∆

(3)
sf , (A2)

where

∆
(3)
sf ≡

∑4
i=1(−1)Li+1Ni|A(3)

i |2
Ns|AL|2 + Nf |AL̃|2

. (A3)
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Here A
(3)
i is the amplitude of a relevant final three body state with lepton number Li = ±1.

At zero temperature, all the three body phase space factors Ni are equal in the supersym-

metric limit and, consequently, ∆
(3)
sf ∝ ∑4

i=1(−1)Li+1|A(3)
i |2. The five tree level diagrams,

leading to four different final states, are shown in Fig. 3. A straightforward calculation

gives:

∣∣∣A(3)
1

∣∣∣2 =
∣∣∣A(3)

1a + A
(3)
1b

∣∣∣2 = 2|Y |2|Yu|2 m4
23

(m2
23 − µ2)2

,

∣∣∣A(3)
2

∣∣∣2 = 2|Y |2|Yu|2 m2
12m

2
23

(m2
23 − µ2)2

,

∣∣∣A(3)
3

∣∣∣2 = 2|Y |2|Yu|2 m2
13m

2
23

(m2
23 − µ2)2

,

∣∣∣A(3)
4

∣∣∣2 = 2|Y |2|Yu|2 M2m2
23

(m2
23 − µ2)2

, (A4)

where µ is the supersymmetric mass of the Hu supermultiplet, and m2
ij = (ki + kj)

2, with

k1, k2, k3 the momenta of, respectively, the final (s)lepton, the singlet up (s)quark and the

doublet (s)quark. Then,

4∑
i=1

(−1)Li+1|A(3)
i |2 = |A(3)

1 |2 + |A(3)
2 |2 + |A(3)

3 |2 − |A(3)
4 |2

= 2|Y |2|Yu|2m
2
23(M

2 −m2
12 −m2

13 −m2
23)

(m2
23 − µ2)2

= 0. (A5)

The last equation, that is the vanishing of the
∑4
i=1(−1)Li+1|A(3)

i |2, holds in the super-

symmetric limit, when the three final particles are massless. The result is that, in the

supersymmetric limit, ε
(3)
� = 0. The vanishing of ∆

(3)
sf is lifted by finite temperature effects,

similarly to the case of ∆sf , but then the contribution of the three body states is small

compared to the dominant two body ones.

If we assign lepton number L = 0 to the N -supermultiplet, then the quantities ∆sf

defined in eq. (21) and ∆
(3)
sf defined in eq. (A3) are the asymmetries between ∆L = +1

and ∆L = −1 decay rates. Then, the vanishing in the supersymmetric limit of ∆sf and

∆
(3)
sf , demonstrated explicitly in our work, becomes understandable on general grounds and

generalizes to n-body states for any n. In a single generation framework and in the absence

of supersymmetry breaking, singlet neutrino decay rates to leptons and antileptons must be

equal. Then, by supersymmetry, this should hold also for singlet sneutrinos.
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APPENDIX B: ON THE NATURALNESS OF B = 0

We consider the following superpotential terms:

W = MNN + Y NLH, (B1)

and SUSY breaking terms,

L = BÑÑ + AÑL̃H. (B2)

In the absence of these terms, there are four additional flavor conserving global U(1) sym-

metries: U(1)N × U(1)L × U(1)H × U(1)R, with the following charge assignments:

N(1, 0, 0, 0), Ñ(1, 0, 0, 1),

L(0, 1, 0, 0), L̃(0, 1, 0, 1),

h(0, 0, 1, 0), H(0, 0, 1, 1). (B3)

Selection rules for the symmetries may be used if M,Y,A and B are treated as spurions

with charges assigned to compensate those of the fields:

M(−2, 0, 0, 0), Y (−1,−1,−1,−1), A(−1,−1,−1,−3), B(−2, 0, 0,−2). (B4)

To understand the consequences, it is simpler to examine the charges of the spurions under

U(1)N−L × U(1)2R−3(L+H) × U(1)2R−(L+H) × U(1)L+H :

M(−2, 0, 0, 0), Y (0,+4, 0, 0), A(0, 0,−4, 0), B(−2,−4,−4, 0). (B5)

We learn that setting B = 0 does not add a symmetry to the Lagrangian. Consequently, B

is additively renormalized. However, setting B and any other of the three couplings, M,Y

or A, to zero is natural.

We can therefore think of a three generation framework where, for example, Y = 0

because of a supersymmetric Froggatt-Nielsen symmetry [15, 16]. Then B = 0 is natural.

When the FN symmetry is spontaneously broken, B can be naturally suppressed:

B ∝ AMY † � AM. (B6)

Of course, a Froggatt-Nielsen symmetry can also induce A ∼ mSUSYY � mSUSY, leading to

further suppression of B compared to MmSUSY. Both the additive renormalization, and the

suppression factors in (B6) are manifest in the RGE [17]:

16π2 d

dt
B = MY ∗A, (B7)
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If, however, B is radiatively generated, as in (B7), the phase φN vanishes at this order. At

two loops, there will be a contribution to B that depends on m2, but then φN ∼ α2.
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