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Abstract

Starting from the superconformal algebras associated with G2 manifolds, I extend

the algebra to the manifolds with spin(7) holonomy. I show how the mirror symmetry in

manifolds with spin(7) holonomy arises as the automorphism in the extended sperconformal

algebra. The automorphism is realized as 14 kinds of T-dualities on the supersymmetric

T 4 toroidal fibrations. One class of Joyce’s orbifolds are pairwise identified under the

symmetry.
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1. Introduction

Mirror symmetry is a beautiful subject both in physics and mathematics. It was first

conjectured in [1] that there exists a symmetry which exchanges the complex moduli on

one manifold with the Kahler moduli on the dual manifold when we consider the string

worldsheet propagation on Calabi-Yau target spaces. The symmetry arises in the sense

that the resulting physical spectra of the mirror pair are isomorphic. This requires the

Betti numbers of the CY mirror pair satisfy the condition bp,q(M) = bd−p,q(M̃). It was

also shown that mirror symmetry could determine non-perturbative effects of worldsheet

instantons by counting the number of holomorphic curves in Calabi-Yau spaces [2]. Those

who are interested in various aspects of mirror symmetry are referred to [3].

In [4], Strominger, Yau and Zaslow (SYZ) argued that the mirror transformation is

equivalent to T-duality on the supersymmetric T 3 fibration in the Calabi-Yau manifolds,

by considering the mirror BPS soliton spectra in two theories (IIA/IIB). Some concrete

mirror pairs of certain toroidal orbifolds with discrete torsion can be found in [5], where the

mirror symmetry is indeed realized as T-duality on toroidal T 3 fibration in the orbifolds.

And these examples involving the changes of discrete torsion are related to the main goal

of this paper.

In [6][7], Acharya discussed the existence of the mirror symmetry in IIA/IIB string

theory compactified on manifolds with exceptional holonomy and argued how the discrete

torsion trasforms under the T 4 T-duality. In [8], the authors gave some concrete mirror

pairs among Joyce’s orbifolds with G2 holonomy, which are built from resolving or deform-

ing T 7/Z3
2 orbifolds. They also identified the mirror symmetry as an automorphism in the

extended superconformal algebra on manifolds with G2 holonomy.

Motivated by these known results, I generalize the chiral superconformal algebra to

the manifolds with spin(7) holonomy, and identify the corresponding automorphism in the

algebra as a combination of a T-duality in 8-direction and a generalized G2 mirror trans-

formation or a combination of two distinct G2 mirror transformations. The automorphism

could also be understood as T-duality on the supersymmetric T 4 fibrations. In order to

make the automorphism clearer, I give an example of one class of Joyce’s spin(7) manifolds

with discrete torsion. The 14 kinds of T 4 T-dualities are classified into two categories, one

of which does flip the discrete torsion and hence lead to a topologically different Joyce’s

orbifold and the other does not.

The paper is presented as follows. In section 2 I review the mirror symmetry of

Calabi-Yau and G2 manifolds both from the viewpoint of the conformal field theory and
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the T-duality. In section 3 I will give the construction of spin(7) extended superconformal

algebra and identify the automorphism in it as 14 kinds of T-dualities and classify them

into two kinds as mentioned above. Section 4 is conclusion and some suggestion for future

study.

2. Mirror symmetry for CY and G2 manifolds

In this section I will give a short review of mirror symmetry on Calabi-Yau orbifolds

(T 6/Z2
2 ) and Joyce’s G2 manifolds [8][9][10].

2.1. Mirror symmetry of Calabi-Yau threefolds

The generators of the N = 2 superconformal algebra for string propagation on Calabi-

Yau target-space are the stress energy tensor TCY , two supercurrent GCY , G′CY and the

U(1) current JCY , along with a complex current ΩCY of conformal weight 3/2 constructed

from the worldsheet fermions and its superpartner ΨCY .

In T 6/Z2
2 orbifolds, they can be expressed as, [8][11][12]

TCY =
1
2

6∑

j=1

: ∂xj∂xj : −1
2

6∑

j=1

: ψj∂ψj : ,

GCY =
6∑

j=1

: ψj∂xj : , G′CY =
3∑

j=1

(ψ2j−1∂x2j − ψ2j∂x2j−1) , JCY =
3∑

j=1

ψ2j−1ψ2j ,

ΩCY = ψ1ψ3ψ5 − ψ1ψ4ψ6 − ψ2ψ3ψ6 − ψ2ψ4ψ5 + i(ψ1ψ3ψ6 + ψ1ψ4ψ5 + ψ2ψ3ψ5 − ψ2ψ4ψ6) ,

ΨCY := {GCY , ΩCY } .

(2.1)

There exists an automorphism in the superconformal algebra or OPE, which leave

invariant the N = 1 superconformal subalgebra generated by TCY and GCY .

G′CY → −G′CY , J → −J, Ω → Ω∗, Ψ → Ψ∗. (2.2)

Calabi-Yau mirror symmetry is to apply the above automorphism to one of the chi-

ralities of the algebra, for instance, G̃′CY , J̃CY , Ω̃CY , and Ψ̃CY . Recall that the T-duality

in ith direction will leave ∂xi and ψi invariant but reverse ∂̄xi and ψ̃i. Therefore, we can

easily see that the T-duality on T 3 fibrations in the following directions ( which appear in

the indices of ΩCY ) also generates the mirror symmetry.
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{(1, 3, 5), (1, 4, 6), (2, 3, 6), (2, 4, 5), (1, 3, 6), (1, 4, 5), (2, 3, 5), (2, 4, 6)} (2.3)

Some concrete examples of these T-dualities acting on the T 3 fibration and changing

the discrete torsion can be found in [5][8].

2.2. Compact orbifolds with G2 holonomy

In this and the following sections, I will first give an example of Joyce’s orbifolds which

were constructed by disingularising T 7/Z3
2 and how the choices in resolving (deforming) the

singularities can result in topologically different spaces. After that, I will write down the

G2 extended chiral superconformal algebra and look for the automorphism in it. We will

see that applying the automorphism transformation to one of two chiralities is equivalent

to applying a T-duality on certain T 3 toroidal fibration.

Consider the orbifolds of T 7/Γ, where xi = xi + 1 and Γ is generated by three Z2,[9]

α = (−x1,−x2,−x3,−x4, x5, x6, x7) ,

β = (−x1, 1/2− x2, x3, x4,−x5,−x6,−x7) ,

γ = (−x1, x2,−x3, x4,−x5, x6,−x7) .

(2.4)

In order to desingularize the orbifolds, one has to know, for instance, how the 16 α

fixed T 3s get identified under the group generated by β and γ. What we found in this

example is the 16 T 3s fixed by α or β are reduced to 4 orbits of order 4 by the free-acting

of the < β, γ > or < γ, α >. In the γ-fixed T 3 sector, the group < α, β > only reduce 16

T 3 to 8 orbits of order 2 since αβ acts trivially on them.

The choices of blowing-up or deforming also come from this γ-fixed sector. From a

discrete torsion analysis based on the requirement of modular invariance [8], we know that

blowing-up (deforming) corresponds to discrete torsion in the γ-fixed sector εγ;f̃ = 1 (−1)

and the even (odd) αβ parity. By virtue of the correspondence between the RR ground

states and the cohomology, we can write down the RR ground states in γ-fixed sector.

For αβ parity even case, we have,

εγ;f̃ = 1 ,

|0, 0; f̃〉γ , ψ2+|0, 0; f̃〉γ , ψ4+ψ6+|0, 0; f̃〉γ , ψ2+ψ4+ψ6+|0, 0; f̃〉γ ,
(2.5)

where f̃ = 1, ..8 labelling the γ-fixed points after α or β identification.
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For αβ parity odd case, the RR ground states are,

εγ;f̃ = −1 ,

ψ4+|0, 0; f̃〉γ , ψ6+|0, 0; f̃〉γ , ψ2+ψ4+|0, 0; f̃〉γ , ψ2+ψ6+|0, 0; f̃〉γ .
(2.6)

One should regard |0, 0; f̃〉γ as the harmonic two form associated with the exceptional

divisors of the blowing-up (deformation). Therefore, blowing-up contributes 1 to b2 and 1

to b3 while the deformation increases b3 by 2.

For the RR ground states in γ-fixed sector, the operation αβ reverses the 4th and 6th

directions. Therefore, we can express it as,

αβ =
1
4
ψ4

0ψ6
0ψ̃4

0ψ̃6
0εγ;f̃ . (2.7)

We denote Xl Joyce’s manifold with l blow-ups and 8−l deformations. After summing

up all Betti numbers from various sectors, we have,

(b0, ..., b7) = (1, 0, 8 + l, 47− l, 47− l, 8 + l, 0, 1) . (2.8)

2.3. G2 extended superconformal algebra

The algebra on manifolds with G2 holonomy is generated by appending a spin 3/2

operator ΦG2 and its superpartner XG2 to the N = 1 superconformal subalgebra spanned

by TG2 and GG2 [11][13]. In our basis of coordinates, they are,

TG2 =
1
2

7∑

j=1

: ∂xj∂xj : −1
2

7∑

j=1

: ψj∂ψj : , GG2 =
6∑

j=1

: ψj∂xj : ,

ΦG2 = ψ1ψ3ψ6 + ψ1ψ4ψ5 + ψ2ψ3ψ5 − ψ2ψ4ψ6 + ψ1ψ2ψ7 + ψ3ψ4ψ7 + ψ5ψ6ψ7 ,

XG2 = −ψ2ψ4ψ5ψ7 − ψ2ψ3ψ6ψ7 − ψ1ψ4ψ6ψ7 + ψ1ψ3ψ5ψ7 − ψ3ψ4ψ5ψ6

− ψ1ψ2ψ5ψ6 − ψ1ψ2ψ3ψ4 − 1
2

7∑

j=1

: ψj∂ψj : .

(2.9)

The extended superconformal algebra has one obvious automorphism [11][13].

ΦG2 → −ΦG2 ; KG2 → −KG2; TG2 , GG2 , XG2 , MG2 unchanged. (2.10)
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If the G2 manifolds are of the form (CY3×S1)/Z2 as the Joyce G2 manifolds, we can

also reformulate the superconformal generators in terms of the Calabi-Yau ones.

TG2 = TCY +
1
2

: ∂x7∂x7 : −1
2

: ψ7∂ψ7 : , GG2 = GCY + : ψ7∂x7 : ,

ΦG2 = Im(ΩCY )+ : JCY ψ7 : ,

XG2 = : Re(ΩCY )ψ7 : +
1
2

: JCY JCY : −1
2

: ψ7∂ψ7 : ,

KG2 = Im(ΨCY )+ : JCY ∂x7 : + : G′CY ψ7 : ,

MG2 = : Re(ΨCY )ψ7 : − : Re(ΩCY )∂x7 : + : ∂x7∂ψ7 : + : JCY G′CY : −1
2
∂GCY .

(2.11)

Similarly, the generalized mirror symmetry for manifolds with G2 holonomy is to apply

the above automorphism to one of the two chiralities. On the other hand, the T-duality

in the following (i1, i2, i3) directions can obviously realize the automorphism.

(i1, i2, i3) ∈ I+
3 ∪ I−3 ,

I+
3 = {(2, 4, 6), (2, 3, 5), (1, 2, 7)} ,

I−3 = {(1, 3, 6), (1, 4, 5), (3, 4, 7), (5, 6, 7)} .

(2.12)

If we combine any two different T-dualities listed above, we obtain another set of

T-dualities acting on toroidal T 4, which also leave the extended chiral algebra invariant.

Hence, they are mirror symmetry which take IIA (IIB) to IIA (IIB).

(i1, i2, i3, i4) ∈ I+
4 ∪ I−4 ,

I+
4 = {(1, 3, 5, 7), (1, 4, 6, 7), (3, 4, 5, 6)} ,

I−4 = {(2, 4, 5, 7), (2, 3, 6, 7), (1, 2, 5, 6), (1, 2, 3, 4)} .

(2.13)

Recall that T-duality in ith direction will give ψ̃i
0 a minus sign. It’s not hard to see

that I+
3 ( I+

4 ) does not change the discrete torsion while I−3 ( I−4 ) does. We can summarize

the action of the T-dualities as follows.

IIA(IIB)/Xl ←→ IIB(IIA)/X8−l , under I−3 ,

IIA(IIB)/Xl ←→ IIA(IIB)/Xl , under I+
3 .

(2.14)
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3. Mirror symmetry for spin(7) manifolds

3.1. Joyce’s construction of spin(7) manifolds

There are many known examples of Joyce spin(7) orbifolds [14]. For simplicity, I will

take one orbifold for example in which we have choices in desingularizing T 8/Z4
2 as before.

The generators are,

α = (−x1,−x2,−x3,−x4, x5, x6, x7, x8) ,

β = (x1, x2, x3, x4,−x5,−x6,−x7,−x8) ,

γ = (1/2− x1,−x2, x3, x4, 1/2− x5,−x6, x7, x8) ,

δ = (−x1, x2, 1/2− x3, x4, 1/2− x5, x6, 1/2− x7, x8) .

(3.1)

Again, the periodicity of xi is unity. In general, the singularities arises in five different

types and the corresponding desingularization is following.

Type(1): increase b2 by 1, b3 by 4, b4+ by 3, and b4− by 3. The singularity type is

T 4 × (B4
ε /{±1}), where B4

ε is defined as an open ball of radius ε about 0 in R4.

Type(2): increase b2 by 1, b4+ by 3, and b4− by 3. The singularity if of the form

(T 4/{±1} × (B4
ε /{±1}).

Type(3): increase b4+ by 1. The singularity is (B4
ε /{±1} × (B4

ε /{±1}).
Type(4A) increase b2 by 1, b3 by 2, b4+ by 1, and b4− by 1.

Type(4B) increase b3 by 2, b4+ by 2, and b4− by 2.

The singularity of type(4) is an isometric involution σ of T 4 × (B4
ε /{±1}), where

σ = (1/2 + x1, x2,−x3,−x4, y1, y2,−y3,−y4). Namely, the singular set is isomorphic to

(T 4 × (B4
ε /{±1}))/ < σ >.

Type(5A) increase b2 by 1, b4+ by 1, and b4− by 1.

Type(5B) increase b4+ by 2, and b4− by 2.

The singularity of type(5) is isomorphic to (T 4/{±1} ×B4
ε /{±1})/ < σ >.

As a result, one found the singular set of this orbifold contains 2 type(1), 8 type(2),

64 type(3) and 4 type(4). If we choose to have j type(4A) and 4− j type(4B) and add up

all the Betti numbers in the twisted sectors as well as the untwisted sector, we have the

Joyce’s manifolds Yj with

b2 = 10 + j, b3 = 16, b4+ = 109− j, b4− = 45− j, j = 0, ..., 4 (3.2)

Â =
1
24

(−1 + b1 − b2 + b3 + b4+ − 2b4−) = 1. (3.3)
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In fact, the 4 type(4) singularities come from 16 γ-fixed T 4s. Notice that αδ acts

trivially on these T 4s and the group elements α, β, αβ, and βδ act freely on them and

reduce the number of T 4s to be 4. Therefore, we have RR ground states |0, 0; f̃ = 1, 2, 3, 4〉γ
corresponding to the harmonic two forms of the exceptional divisors. Similarly, the αδ

parity of |0, 0; f̃〉γ is also given by the discrete torsion εγ,f̃ . Since the action of αδ inverses

direction 4 and 7, we can construct RR ground states accordingly as follows.

For αδ parity even case, we have,

εγ;f̃ = 1 ,

|0, 0; f̃〉γ , ψ3+|0, 0; f̃〉γ , ψ8+|0, 0; f̃〉γ , ψ3+ψ8+|0, 0; f̃〉γ , ψ4+ψ7+|0, 0; f̃〉γ ,

ψ3+ψ4+ψ7+|0, 0; f̃〉γ , ψ4+ψ7+ψ8+|0, 0; f̃〉γ , ψ3+ψ4+ψ7+ψ8+|0, 0; f̃〉γ .

(3.4)

For αδ parity odd case, the RR ground states are,

εγ;f̃ = −1 ,

ψ4+|0, 0; f̃〉γ , ψ7+|0, 0; f̃〉γ ,

ψ3+ψ4+|0, 0; f̃〉γ , ψ3+ψ7+|0, 0; f̃〉γ , ψ4+ψ8+|0, 0; f̃〉γ , ψ7+ψ8+|0, 0; f̃〉γ ,

ψ3+ψ4+ψ8+|0, 0; f̃〉γ , ψ3+ψ7+ψ8+|0, 0; f̃〉γ .

(3.5)

Obviously, we obtain ∆b2 = 1, ∆b3 = 2, ∆b4 = 2 in parity even case, and ∆b3 =

2, ∆b4 = 4 in parity odd case, which agrees with the mathematical analysis in [14].

3.2. spin(7) extended superconformal algebra

Consider a direct product space M×S1, where M is a manifold with G2 holonomy. It

is always possible to define a spin(7) structure. And the Cayley 4-form φ4 in this manifold

with spin(7) structure can be written as,

φ4 = ∗φ3 + φ3 ∧ dx8, (3.6)

where φ3 is the calibrated three form in the G2 manifold.

It is true that in the example in the previous section T 7/〈α, γ, δ〉 gives rise to a Joyce’s

7-manifold of G2 holonomy, if we forget about 8-direction. In fact, we can have a more

generic statement which is T 7/〈α, γ, δ〉 is always a manifold with G2 holonomy for any

choices of the constants ci and di [15], where
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α = (−x1,−x2,−x3,−x4, x5, x6, x7) ,

γ = (c1 − x1, c2 − x2, x3, x4, c5 − x5, c6 − x6, x7) ,

δ = (c1 − x1, x2, c3 − x3, x4, c5 − x5, x6, c7 − x7) .

(3.7)

If we reformulate the action of β in the previous section, we will find that β acts as,

β : x8 → −x8, β∗(φ3) = −φ3, β∗(∗φ3) = ∗φ3. (3.8)

In this example, β indeed turns the spin(7) structure into the spin(7) holonomy.

However, it is not clear that we can always form manifolds with spin(7) holonomy by

modding out this kind of Z2 involution on G2 × S1.

Therefore, at least in Joyce’s orbifolds, the relation (3.6) enables us to write down the

expression of the stress energy tensor Tspin(7) and the supercurrent Gspin(7) in terms of

the corresponding quantities in G2 manifolds [13].

Tspin(7) = TG2 +
1
2

: ∂x8∂x8 : −1
2

: ψ8∂ψ8 : ,

Gspin(7) = GG2+ : ψ8∂x8 : ,

Xspin(7) = XG2 + ΦG2ψ
8 +

1
2
ψ8∂ψ8 ,

Mspin(7) = [Gspin(7), Xspin(7)]

= ∂x8ΦG2 −KG2ψ
8 −MG2 +

1
2
∂2x8ψ8 − 1

2
∂x8∂ψ8 .

(3.9)

From these generators for the extended supercomformal algebra, it is not difficult to see

that the combination of the G2 automorphism (2.10) and the T-duality in 8-direction is an

automorphism in the algebra. In addition, the T-duality in (2.13) is also an automorphism

in the algebra. Therefore, we have a list of 14 T-dualities on T 4 toroidal fibrations which

generate the mirror symmetry,

{(2, 4, 6, 8), (2, 3, 5, 8), (1, 2, 7, 8), (1, 3, 6, 8), (1, 4, 5, 8), (3, 4, 7, 8), (5, 6, 7, 8),

(1, 2, 5, 7), (1, 4, 6, 7), (3, 4, 5, 6), (2, 4, 5, 7), (2, 3, 6, 7), (1, 2, 5, 6), (1, 2, 3, 4)} .
(3.10)

The first line consists of T-dualities in directions in (2.12) and 8-direction. The second

line is the same as the directions listed in (2.13). In this spin(7) case, we don’t have the sim-

ilar relation like (2.10). Therefore, in order to visualize the automorphism in the algebra,

we have to express the spin(7) generators and the algebra in terms of G2 generators and
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construct our desirable mirror transformation from G2 automorphism (2.10)(2.12)(2.13).

Finally, the expression of αδ in γ-fixed sector is,

αδ =
1
4
ψ4

0ψ7
0ψ̃4

0ψ̃7
0εγ;f̃ . (3.11)

By the same reasoning, the 14 T-dualities are divided into two sets J±4 . Their action is

also summarized as follows.

(i1, i2, i3, i4) ∈ J+
4 ∪ J−4 ,

J+
4 = {(2, 3, 5, 8), (1, 3, 6, 8), (3, 4, 7, 8), (1, 4, 6, 7), (2, 4, 5, 7), (1, 2, 5, 6)} ,

J−4 = {(2, 4, 6, 8), (1, 2, 7, 8), (1, 4, 5, 8), (5, 6, 7, 8), (1, 2, 5, 7), (3, 4, 5, 6),

(2, 3, 6, 7), (1, 2, 3, 4)} .

(3.12)

IIA(IIB)/Yj ←→ IIA(IIB)/Y4−j , under J−4 ,

IIA(IIB)/Yj ←→ IIA(IIB)/Yj , under J+
4 .

(3.13)

4. Conclusion

In this paper I have generalized the construction of [8] to the Joyce’s manifolds with

spin(7) holonomy and shown how the mirror symmetry is realized in the superconformal

algebra as a combination of a T-duality in 8-direction and a G2 mirror symmetry trans-

formation, or a combination of 2 distinct G2 mirror transformations. The spin(7) mirror

transformation contains 14 different kinds of T-dualities on the T 4 fibrations. By an anal-

ysis on the change of discrete torsion, one can classify these 14 T-dualities into 2 kinds,

one of which changes the discrete torsion and the other does not.

In [16], the authors completed a cycle of the dualities by explicitly performing the

T-duality on T 3 fibration and a G2 flop in M-theory. It would be interesting to generalize

the computation to a duality cycle involving spin(7) and G2 manifolds and understand

how the generalized mirror symmetry lies in this picture [17].

In order to understand the G2/spin(7) mirror symmetry better, one may try to T-

dualize the known various non-compact metric solutions with G2/spin(7) holonomy [18]

and see how they are connected through mirror symmetry. In the Calabi-Yau case, NS-NS

fluxes can turn the CY target space into half-flat [19]. The generalized mirror symmetry

for G2 and spin(7)in the presence of the background fluxes also begs some further study.
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Finally, it would also be interesting to see how we can fit the G2 or spin(7) mirror symmetry

into the correspondence of heterotic(G2)/ IIA(G2 orientifold)/M-theory(spin(7)) [20].
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