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Abstract

The light-front quantization of QCD provides an alternative to lattice gauge theory
for computing the mass spectrum, scattering amplitudes, and other physical prop-
erties of hadrons directly in Minkowski space. Nonperturbative light-front methods
for solving gauge theory and obtaining light-front wavefunctions, such as discretized
light-front quantization, the transverse lattice, and light-front resolvents are reviewed.
The resulting light-front wavefunctions give a frame-independent interpolation be-
tween hadrons and their quark and gluon degrees of freedom, including an exact
representation of spacelike form factors, transition form factors such as B → `νπ,
and generalized parton distributions. In the case of hard inclusive reactions, the ef-
fects of final-state interactions must be included in order to interpret leading-twist
diffractive contributions, nuclear shadowing, and single-spin asymmetries. I also dis-
cuss how the AdS/CFT correspondence between string theory and conformal gauge
theory can be used to constrain the form and power-law fall-off of the light-front
wavefunctions. In the case of electroweak theory, light-front quantization leads to a
unitary and renormalizable theory of massive gauge particles, automatically incorpo-
rating the Lorentz and ’t Hooft conditions as well as the Goldstone boson equivalence
theorem. Spontaneous symmetry breaking is represented by the appearance of zero
modes of the Higgs field, leaving the light-front vacuum equal to the perturbative
vacuum.
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1 Introduction

In Dirac’s “Front Form”[1], boundary conditions are specified at a given light-front
time x+ ≡ t+z/c; the value of x+ is unchanged as a light front crosses a system. Thus,
unlike ordinary time t, a moment of light-front time x+ = τ “stands still forever” [2].
The generator of light-front time translations is P− = i ∂

∂τ
. Given the Lagrangian of

a quantum field theory, P− can be constructed as an operator on the Fock basis, the
eigenstates of the free theory. In the case of QCD, light-front quantization provides
an alternative to lattice gauge theory for computing the mass spectrum, scattering
amplitudes, and other physical properties of hadrons directly in Minkowski space.

A remarkable advantage of light-front quantization is that the vacuum state | 0〉
of the full QCD Hamiltonian coincides with the free vacuum. The light-front Fock
space is a Hilbert space of non-interacting quarks and gluons, each of which satisfy
k2 = m2 and k− = (m2 + k2

⊥)/k+ ≥ 0. Note that all particles in the Hilbert space
have positive energy k0 = 1

2
(k+ + k−), and thus positive k±. Since the plus momenta∑

k+
i is conserved by the interactions, the perturbative vacuum can only couple to

states with particles in which all k+
i = 0; i.e., zero-mode states. Bassetto and col-

laborators [3] have shown that the computation of the spectrum of QCD(1 + 1) in
equal-time quantization requires the construction of the full spectrum of non pertur-
bative contributions (instantons). In contrast, in the light-front quantization of gauge
theory (where the k+ = 0 singularity of the instantaneous interaction is defined by
a simple infrared regularization), one obtains the correct spectrum of QCD(1 + 1)
without any need for vacuum-related contributions.

Light-front quantization can also be used to obtain a frame-independent formu-
lation of thermodynamics systems, such as the light-front partition function [4, 5, 6,
7, 8, 9, 10]. This application is particularly useful for relativistic systems, such as
the hadronic system produced in the central rapidity region of high energy heavy-ion
collisions.

The light-front quantization of gauge theory [11, 12, 13] is usually carried out in
the light-cone gauge A+ = A0 + Az = 0. In this gauge the A− field becomes a depen-
dent degree of freedom, and it can be eliminated from the Hamiltonian in favor of a set
of specific instantaneous light-front time interactions. In fact in QCD(1 + 1) theory,
the instantaneous interaction provides the confining linear x− interaction between
quarks. In 3 + 1 dimensions, the transverse field A⊥ propagates massless spin-one
gluon quanta with polarization vectors [14] which satisfy both the gauge condition
ε+
λ = 0 and the Lorentz condition k · ε = 0. The interaction Hamiltonian of QCD in

light-cone gauge can be derived by systematically applying the Dirac bracket method
to identify the independent fields [12, 15]. It contains the usual Dirac interactions
between the quarks and gluons, the three-point and four-point gluon non-Abelian in-
teractions, plus instantaneous gluon exchange and quark exchange contributions. The
renormalization constants in the non-Abelian theory have been shown [15] to satisfy
the identity Z1 = Z3 at one-loop order and are independent of the reference direction
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nµ. The QCD β function has also been computed at one loop [15]. Dimensional regu-
larization and the Mandelstam-Leibbrandt prescription [16, 17, 18] for LC gauge can
be used to define the Feynman loop integrations [19]. The M-L prescription has the
advantage of preserving causality and analyticity, as well as leading to proofs of the
renormalizability and unitarity of Yang-Mills theories [20]. The ghosts which appear
in association with the M-L prescription from the single poles have vanishing residue
in absorptive parts, and thus do not disturb the unitarity of the theory. It is also
possible to quantize QCD using light-front methods in covariant Feynman gauge [21].

The Heisenberg equation on the light-front is

HLC |Ψ〉 = M2|Ψ〉 . (1)

The operator HLC = P+P−−P 2
⊥, the “light-cone Hamiltonian”, is frame-independent.

The Heisenberg equation can in principle be solved by diagonalizing the matrix
〈n|HLC |m〉 on the free Fock basis: [13]

∑
m

〈n|HLC |m〉 〈m|ψ〉 = M2 〈n|Ψ〉 . (2)

The eigenvalues {M2} of HLC = H0
LC + VLC give the squared invariant masses of

the bound and continuum spectrum of the theory. The projections {〈n|Ψ〉} of the
eigensolution on the n-particle Fock states are the light-front wavefunctions. Thus
finding the hadron eigenstates of QCD is equivalent to solving a coupled many-body
quantum mechanical problem:

[
M2 −

n∑

i=1

m2 + k2
⊥

xi

]
ψn =

∑

n′

∫
〈n|VLC |n′〉ψn′ (3)

where the convolution and sum is over the Fock number, transverse momenta, plus
momenta, and spin projections of the intermediate states. The eigenvalues M are the
invariant masses of the complete set of bound state and continuum solutions.

If one imposes periodic boundary conditions in x− = t − z/c, then the plus mo-
menta become discrete: k+

i = 2π
L

ni, P
+ = 2π

L
K, where

∑
i ni = K [22, 23]. For a given

“harmonic resolution” K, there are only a finite number of ways positive integers ni

can sum to a positive integer K. Thus at a given K, the dimension of the resulting
light-front Fock state representation of the bound state is rendered finite without
violating boost invariance. The eigensolutions of a quantum field theory, both the
bound states and continuum solutions, can then be found by numerically diagonalizing
a frame-independent light-front Hamiltonian HLC on a finite and discrete momentum-
space Fock basis. Solving a quantum field theory at fixed light-front time can thus be
formulated as a relativistic extension of Heisenberg’s matrix mechanics. The contin-
uum limit is reached for K →∞. This formulation of the non-perturbative light-front
quantization problem is called “discretized light-cone quantization” (DLCQ) [23]. The
method preserves the frame-independence of the Front form.
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The DLCQ method has been used extensively for solving one-space and one-time
theories [13], including applications to supersymmetric quantum field theories [24]
and specific tests of the Maldacena conjecture [25]. There has been progress in sys-
tematically developing the computation and renormalization methods needed to make
DLCQ viable for QCD in physical spacetime. For example, John Hiller, Gary Mc-
Cartor, and I [26, 27, 28] have shown how DLCQ can be used to solve 3+1 theories
despite the large numbers of degrees of freedom needed to enumerate the Fock basis.
A key feature of our work is the introduction of Pauli Villars fields to regulate the UV
divergences and perform renormalization while preserving the frame-independence of
the theory. A recent application of DLCQ to a 3+1 quantum field theory with Yukawa
interactions is given in Ref. [26] One can also define a truncated theory by eliminat-
ing the higher Fock states in favor of an effective potential [29, 30, 31]. As discussed
below, spontaneous symmetry breaking and other nonperturbative effects associated
with the instant-time vacuum are associated with zero mode degrees of freedom in
the light-front formalism [32, 33].

Another important nonperturbative light-front method is the transverse lattice [34,
35, 36, 37] which utilizes DLCQ for the x− and x+ light-front coordinates together
with a spatial lattice in the two transverse dimensions. A finite lattice spacing a
can be implemented by choosing the parameters of the effective theory in a region
of renormalization group stability to respect the required gauge, Poincaré, chiral,
and continuum symmetries. For example, Dalley has recently computed the impact
parameter dependent quark distribution of the pion [38].

The Dyson-Schwinger method [39] can also be used to predict light-front wave-
functions and hadron distribution amplitudes by integrating over the relative k−

momentum of the Bethe-Salpeter wavefunctions to project dynamics at x+ = 0. Ex-
plicit nonperturbative light-front wavefunctions have been found in this way for the
Wick-Cutkosky model, including states with non-zero angular momentum [40]. One
can also implement variational methods, using the structure of perturbative solutions
as a template for the numerator of the light-front wavefunctions. I will discuss the
use of another light-front nonperturbative method, the light-front resolvent, below.

Light-front wavefunctions are the interpolating functions between hadrons and
their quark and gluon degrees of freedom in QCD [41]. For example, the eigensolution
of a meson, projected on the eigenstates {|n〉} of the free Hamiltonian HQCD

LC (g = 0)
at fixed light-front time τ = t + z/c with the same global quantum numbers, has the
expansion:

∣∣∣ΨM ; P+, ~P⊥, λ
〉

=
∑

n≥2,λi

∫
Πn

i=1

d2k⊥idxi

16π3
16π3δ


1−

n∑

j

xj


 δ(2)

(
n∑

`

~k⊥`

)
(4)

×
∣∣∣n; xiP

+, xi
~P⊥ + ~k⊥i, λi

〉
ψn/M(xi, ~k⊥i, λi).

The set of light-front Fock state wavefunctions {ψn/M} represents the ensemble of
quark and gluon states possible when the meson is intercepted at the light-front. The
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light-front momentum fractions xi = k+
i /P+

π = (k0 + kz
i )/(P

0 + P z) with
∑n

i=1 xi = 1

and ~k⊥i with
∑n

i=1
~k⊥i = ~0⊥ represent the relative momentum coordinates of the QCD

constituents; the scalar light-front wavefunctions ψn/M(xi, ~k⊥i, λi) are independent of
the hadron’s momentum P+ = P 0 + P z, and P⊥, reflecting the kinematical boost in-
variance of the front form. The physical transverse momenta are ~p⊥i = xi

~P⊥+~k⊥i. The
λi label the light-front spin Sz projections of the quarks and gluons along the quanti-
zation z direction. The physical gluon polarization vectors εµ(k, λ = ±1) are specified
in light-cone gauge by the conditions k·ε = 0, η·ε = ε+ = 0. Each light-front Fock state
component then satisfies the angular momentum sum rule: Jz =

∑n
i=1 Sz

i +
∑n−1

j=1 lzj ;

the summation over orbital angular momenta lzj = −i
(
k1

j
∂

∂k2
j
− k2

j
∂

∂k1
j

)
derives from

the n−1 relative momenta. The numerator structure of the light-front wavefunctions
is in large part determined by the angular momentum constraints. Thus wavefunc-
tions generated by perturbation theory [42] provides a guide to the numerator struc-
ture of nonperturbative light-front wavefunctions. Karmanov and Smirnov [40] have
formulated a covariant version of light-front quantization by introducing a general null
vector nµ, n2 = 0 to specify the light-front direction x+ = x · n. All observables must
be invariant under variation of nµ; this generalized rotational invariance provides an
elegant generalization of angular momentum on the light-front [43].

A novel way to measure the light-front wavefunction of a hadron is to diffractively
or Coulomb dissociate it into jets [44]. Measurements by Ashery et al. [45] of the
diffractive dissociation of pions into dijets on heavy nuclei πA → qqA at FermiLab
show that the pion’s light-front qq wavefunction resembles the asymptotic solution to
the evolution equation for the pion’s distribution amplitude. The results also demon-
strate QCD color transparency – the color dipole moment of the pion wavefunction
producing high k⊥ jets interact coherently throughout the nucleus without absorp-
tion [46]. It would be very interesting to extend these measurements to the diffractive
dissociation of high energy protons into trijets.

Matrix elements of spacelike currents such as spacelike electromagnetic form fac-
tors at q+ = 0 have an exact representation in terms of simple overlaps of the light-
front wavefunctions in momentum space with the same xi and unchanged parton num-
ber n [47, 48, 49]. The Pauli form factor and anomalous moment are spin-flip matrix
elements of j+ and thus connect states with ∆Lz = 1 [49]. Thus, these quantities are
nonzero only if there is nonzero orbital angular momentum of the quarks in the proton.
The formulas for electroweak current matrix elements of j+ can be easily extended
to the T++ coupling of gravitons. In, fact, one can show that the anomalous gravito-
magnetic moment B(0), analogous to F2(0) in electromagnetic current interactions,
vanishes identically for any system, composite or elementary [42]. This important
feature, which follows in general from the equivalence principle [50, 51, 52, 53, 54], is
obeyed explicitly in the light-front formalism [42].

The light-front Fock representation also has direct application for the study of
exclusive B decays. For example, one can write an exact frame-independent repre-
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sentation of decay matrix elements such as B → D`ν from the overlap of n′ = n
parton conserving wavefunctions and the overlap of n′ = n − 2 from the annihi-
lation of a quark-antiquark pair in the initial wavefunction [55]. The off-diagonal
n + 1 → n − 1 contributions give a new perspective for the physics of B-decays. A
semileptonic decay involves not only matrix elements where a quark changes flavor,
but also a contribution where the leptonic pair is created from the annihilation of a qq′

pair within the Fock states of the initial B wavefunction. The semileptonic decay thus
can occur from the annihilation of a nonvalence quark-antiquark pair in the initial
hadron. Intrinsic charm |bucc > states of the B meson, although small in probability,
can play an important role in its weak decays because they facilitate CKM-favored
weak decays [56]. The “handbag” contribution to the leading-twist off-forward parton
distributions measured in deeply virtual Compton scattering has a similar light-front
wavefunction representation as overlap integrals of light-front wavefunctions [57, 58].

The distribution amplitudes φ(xi, Q) which appear in factorization formulae for
hard exclusive processes are the valence LF Fock wavefunctions integrated over the
relative transverse momenta up to the resolution scale Q [14]. These quantities spec-
ify how a hadron shares its longitudinal momentum among its valence quarks; they
control virtually all exclusive processes involving a hard scale Q, including form fac-
tors, Compton scattering and photoproduction at large momentum transfer, as well
as the decay of a heavy hadron into specific final states [59, 60].

The quark and gluon probability distributions qi(x,Q) and g(x,Q) of a hadron
can be computed from the absolute squares of the light-front wavefunctions, inte-
grated over the transverse momentum. All helicity distributions are thus encoded in
terms of the light-front wavefunctions [14]. The DGLAP evolution of the structure
functions can be derived from the high k⊥ properties of the light-front wavefunc-
tions. Similarly, the transversity distributions and off-diagonal helicity convolutions
are defined as a density matrix of the light-front wavefunctions. However, it is not
true that the leading-twist structure functions Fi(x,Q2) measured in deep inelastic
lepton scattering are identical to the quark and gluon distributions. It is usually
assumed, following the parton model, that the F2 structure function measured in
neutral current deep inelastic lepton scattering is at leading order in 1/Q2 simply
F2(x,Q2) =

∑
q e2

qxq(x,Q2), where x = xbj = Q2/2p · q and q(x,Q) can be computed
from the absolute square of the proton’s light-front wavefunction. Hoyer, Marchal,
Peigne, Sannino, and I have shown that this standard identification is incomplete [61];
one cannot neglect the interactions which occur between the times of the currents in
the current correlator even in light-cone gauge. For example, the final-state interac-
tions lead to the Bjorken-scaling diffractive component γ∗p → pX of deep inelastic
scattering. Since the gluons exchanged in the final state carry negligible k+, the
Pomeron structure function closely resembles that of the primary gluon. The struc-
ture function of the Pomeron distribution of a hadron is not derived from the hadron’s
light-front wavefunction and thus is not a universal quantity. The diffractive scatter-
ing of the fast outgoing quarks on spectators in the target in turn causes shadowing
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in the DIS cross section. Thus the depletion of the nuclear structure functions is not
intrinsic to the wave function of the nucleus, but is a coherent effect arising from the
destructive interference of diffractive channels induced by final-state interactions.

Measurements from HERMES, SMC, and Jlab show a significant single-spin asym-
metry in semi-inclusive pion leptoproduction γ∗(q)p → πX when the proton is polar-
ized normal to the photon-to-pion production plane. Hwang, Schmidt, and I [62] have
shown that final-state interactions from gluon exchange between the outgoing quark
and the target spectator system lead to single-spin asymmetries in deep inelastic
lepton-proton scattering at leading twist in perturbative QCD; i.e., the rescattering
corrections are not power-law suppressed at large photon virtuality Q2 at fixed xbj.
The existence of such single-spin asymmetries (the Sivers effect) requires a phase
difference between two amplitudes coupling the proton target with Jz

p = ±1
2

to the
same final-state, the same amplitudes which are necessary to produce a nonzero pro-
ton anomalous magnetic moment. The single-spin asymmetry which arises from such
final-state interactions is in addition to the Collins effect which measures the transver-
sity distribution δq(x,Q). These effects highlight the unexpected importance of final-
and initial-state interactions in QCD observables—they lead to leading-twist single-
spin asymmetries, diffraction, and nuclear shadowing, phenomena not included in
the light-front wavefunctions of the target. Alternatively, as discussed by Belitsky,
Ji, and Yuan [63], one can augment the light-front wavefunctions by including the
phases induced by initial and final state interactions. Such wavefunctions correspond
to solving the light-front bound state equation in an external field.

2 Light-Front Hadron Dynamics and the AdS/CFT

Correspondence

A precise correspondence has been established between quantum field theories and
string/M-theory on Anti-de Sitter spaces (AdS) [64], where strings live on the curved
geometry of the AdS space and the observables of the corresponding conformal field
theory are defined on the boundary of the AdS space. A remarkable consequence
of the AdS/CFT correspondence is the derivation [65] of dimensional counting rules
for the leading power-law fall-off of hard exclusive processes [66, 67]. The derivation
from supergravity/string theory does not rely on perturbation theory and thus is
more general than perturbative QCD analyses [14].

The corrections from nonconformal effects in QCD are caused by quantum cor-
rections and quark masses and should be moderate in the ultraviolet region. Theo-
retical [68, 69, 70, 71] and phenomenological [72, 73] evidence is now accumulating
that the QCD coupling becomes constant at small virtuality; i.e., αs(Q

2) develops an
infrared fixed point. Indeed, QCD appears to be a nearly-conformal theory even at
moderate momentum transfers [74].

Recently Guy de Téramond and I have shown how counting rules for the nominal
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power-law fall-off of light-front wavefunctions at large relative transverse momentum
can be obtained from the AdS/CFT correspondence [75]. The goal is to use the
AdS/CFT correspondence in the conformal domain to constrain the form of the light-
front wavefunctions of hadrons in QCD. To do this, we consider the dual string
theory at finite ’t Hooft coupling gsNC , the product of the string constant gs ∼ g2

Y M

and the number of colors. The power-law fall-off of light-front Fock-state hadronic
wavefunctions then follows from the scaling properties of string states in the large-r
region of the AdS space as one approaches the boundary from the interior of AdS
space.

Consider an operator Ψ
(n)
h which creates an n-partonic Fock state by applying

n-times a†(k+, ~k⊥) to the vacuum state, creating n-constituent individual states with

plus momentum k+ and transverse momentum ~k⊥. Integrating over the relative co-
ordinates xi and ~k⊥i for each constituent, we find the ultraviolet behavior of Ψ

(n)
h

Ψ
(n)
h (Q) ∼

∫ Q2

[d2~k⊥]n−1[a†(~k⊥)]n ψn/h(~k⊥) ∼ Q−∆, (5)

where the operator a†(~k⊥) scales as 1/k⊥ at large ~k2
⊥. The string state scales as Q−∆

near the AdS boundary. The dimension of the state ∆ tracks with the number of
constituents since each interpolating fermion and gauge field operator has a minimum
twist (dimension minus spin) of one. With the identification ∆ = n (modulo anoma-
lous dimensions), the power-law behavior of the light-front wavefunctions for large
~k2
⊥ then follows: ψn/h(~k⊥) →

(
~k2
⊥

)1−n
.

The angular momentum dependence of the light-front wavefunctions also follow
from the near-conformal properties of the AdS/CFT correspondence [75]. The orbital
angular momentum component of the hadron wavefunction is constructed in terms
of powers |`z

i | of the n− 1 transverse momenta k±i⊥ = k1
i ± ik2

i . We thus can obtain a
model the hard component of the light-front wavefunction

ψn/h(xi, ~k⊥i, λi, lzi) ∼ (gs NC)
1
2
(n−1)

√
NC

n−1∏

i=1

(k±i⊥)|lzi|




Λo

M2 −∑
i

~k2
⊥i

+m2
i

xi
+ Λ2

o




n+|lz |−1

,

(6)
The scaling properties of the hadronic interpolating operator in the extended AdS/CFT
space-time theory thus determines the scaling of light-front hadronic wavefunctions
at high relative transverse momentum. The scaling predictions agree with the per-
turbative QCD analysis given in Ref. [76], but the AdS/CFT analysis is performed
at strong coupling without the use of perturbation theory. Remarkably, the usual
perturbative normalization factor (g2

Y MNC)n−1 is replaced by (g2
Y MNC)

n−1
2 . The nor-

malization factor The near-conformal scaling properties of light-front wavefunctions
lead to a number of other predictions for QCD which are normally discussed in the
context of perturbation theory, such as constituent counting scaling laws for the lead-
ing power fall-off of form factors and hard exclusive scattering amplitudes for QCD
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processes. The ratio of Pauli to Dirac baryon form factor have the nominal asymp-
totic form F2(Q

2)/F1(Q
2) ∼ 1/Q2, modulo logarithmic corrections, in agreement with

the perturbative results of Ref. [77]. This analysis can also be extended to study the
spin structure of scattering amplitudes at large transverse momentum and other pro-
cesses which are dependent on the scaling and orbital angular momentum structure
of light-front wavefunctions.

3 Spontaneous Symmetry Breaking and Light-Front

Quantization

An important question is how one implements spontaneous symmetry breaking in the
light-front, such as chiral symmetry in QCD or the Higgs mechanism in the Standard
Model. In the case of the Schwinger model QED(1+1), degenerate vacua arise when
one allows for a nonzero contribution x−-independent contribution to the constrained
ψ− = ψ−(x+) field. Thus zero modes of auxiliary fields distinguish the θ-vacua
of massless QED(1 + 1) [33, 78, 79] corresponding to large gauge transformations.
Zero-modes are also known to provide the light-front representation of spontaneous
symmetry breaking in scalar theories [80]. It is expected that chiral symmetry break-
ing in QCD arises from a τ− independent contribution to the constrained ψ− fields
when the u and d quark masses are ignored. The existence of such vacua also leads
to new effective interactions in the light-front Hamiltonian.

One can use light-front quantization of the SU(2)W×U(1)Y [81] standard model to
obtain a new perspective on the Higgs mechanism and spontaneous symmetry break-
ing [82, 83, 84] One first separates the quantum fluctuations from the corresponding
zero-longitudinal-momentum-mode variables and then applies the Dirac procedure in
order to construct the Hamiltonian. The interaction Hamiltonian of the Standard
Model can be written in a compact form by retaining the dependent components A−

and ψ− in the formulation. Its form closely resembles the interaction Hamiltonian of
covariant theory, except for the presence of additional instantaneous four-point inter-
actions. The resulting Dyson-Wick perturbation theory expansion based on equal-LF-
time ordering allows one to perform higher-order computations in a straightforward
fashion. The singularities in the noncovariant pieces of the field propagators can be
defined using the causal ML prescription for 1/k+. The power-counting rules in LC
gauge then become similar to those found in covariant gauge theory. The only ghosts
which appear in the formalism are the n · k = 0 modes of the gauge field associated
with regulating the light-cone gauge prescription. For example, consider the Abelian
Higgs model. The interaction Lagrangian is

L = −1

4
FµνF

µν + |Dµφ|2 − V (φ†φ) (7)

where
Dµ = ∂µ + ieAµ, (8)
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and
V (φ) = µ2φ†φ + λ(φ†φ)2, (9)

with µ2 < 0, λ > 0. The complex scalar field φ is decomposed as

φ(x) =
1√
2
v + ϕ(x) =

1√
2
[v + h(x) + iη(x)] (10)

where v is the k+ = 0 zero mode determined by the minimum of the potential:
v2 = −µ2

λ
, h(x) is the dynamical Higgs field, and η(x) is the Nambu-Goldstone field.

The quantization procedure determines ∂ ·A = Mη, the ’t Hooft condition. One can
now eliminate the zero mode component of the Higgs field v which gives masses for
the fundamental quantized fields. The A⊥ field then has mass M = ev and the Higgs
field acquires mass m2

h = 2λv2 = −2µ2. Similarly, in the case of the Standard model,
the zero mode of the Higgs field couples to the gauge boson and Fermi fields through
its Yukawa interaction. The zero mode can then be eliminated from the theory in
favor of mass terms for the fundamental matter fields in the effective theory. The re-
sulting masses are identical to those of the usual Higgs implementation of spontaneous
symmetry breaking in the Standard Model. A new aspect of LF quantization is that
the third polarization of the quantized massive vector field Aµ with four momentum
kµ has the form E(3)

µ = nµM/n · k. Since n2 = 0, this non-transverse polarization
vector has zero norm. However, when one includes the constrained interactions of the
Goldstone particle, the effective longitudinal polarization vector of a produced vector
particle is E

(3)
eff µ = E(3)

µ − kµ k · E(3)/k2 which is identical to the usual polarization

vector of a massive vector with norm E
(3)
eff · E(3)

eff = −1. Thus, unlike the conven-
tional quantization of the Standard Model, the Goldstone particle only provides part
of the physical longitudinal mode of the electroweak particles. The massive gauge
field propagator has well-behaved asymptotic behavior in accordance with a renor-
malizable theory, and the massive would-be Goldstone fields can be taken as physical
degrees of freedom. Spontaneous symmetry breaking is thus implemented in a novel
way when one quantizes the Standard Model at fixed light-front time τ = x+. The LF
vacuum remains equal to the perturbative vacuum; it is unaffected by the occurrence
of spontaneous symmetry breaking. In effect, one can interpret the k+ = 0 zero mode
Higgs field as an x−-independent external field, analogous to an applied constant
electric or magnetic field in atomic physics. In this interpretation, the zero mode is a
remnant of a Higgs field which persists from early cosmology; the LF vacuum however
remains unchanged and unbroken.

4 The Non-Perturbative Light-Front T-Matrix

The light-front formalism can be used to construct the T−matrix of QCD or other
quantum field theories using light-front time-ordered perturbation theory. The appli-
cation of the light-front time evolution operator P− to an initial state systematically
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generates the tree and virtual loop graphs of the T -matrix in light-front time-ordered
perturbation theory. Given the interactions of the light-front interaction Hamilto-
nian, any amplitude in QCD and the electroweak theory can be computed. At higher
orders, loop integrals only involve integrations over the momenta of physical quanta
and physical phase space

∏
d2k⊥idk+

i . Renormalized amplitudes can be explicitly
constructed by subtracting from the divergent loops amplitudes with nearly identi-
cal integrands corresponding to the contribution of the relevant mass and coupling
counter terms (the “alternating denominator method”) [85]. The natural renormal-
ization scheme to use for defining the coupling in the event amplitude generator is a
physical effective charge such as the pinch scheme [86]. The argument of the coupling
is then unambiguous [87]. The DLCQ boundary conditions can be used to discretize
the phase space and limit the number of contributing intermediate states without
violating Lorentz invariance. This provides an “event amplitude generator” for high
energy physics reactions where each particle’s final state is completely labelled in
momentum, helicity, and phase. Since one avoids dimensional regularization and
nonphysical ghost degrees of freedom, this method of generating events at the am-
plitude level could provide a simple but powerful tool for simulating events both in
QCD and the Standard Model.

One can use a similar method to construct the T matrix to any given order of
perturbation theory or maximal Fock number. The Lippmann-Schwinger method
T = HI + HIGT provides nonperturbative resummation at any stage. One can also
use an elementary field to project out states with specific hadronic quantum numbers.
The zeroes of the resolvent of the projected Green’s function should determine the
mass and light-front wavefunctions of the bound states of the theory with the same
hadronic numbers as that of the elementary field. A related method for calculating
scattering amplitudes using the Lanczos algorithm has been proposed by Hiller [88].

5 Nonperturbative Anomalous Moment Calcula-

tions

One of the most challenging problems in quantum electrodynamics is to compute
the anomalous magnetic moment of the leptons without recourse to perturbation
theory [89, 90]. In recent work, John Hiller and Gary McCartor and I [91, 92, 93] have
shown how such a program can be implemented using light-front methods to construct
the Fock components of the physical electron nonperturbatively. The generalized
Pauli-Villars method with ghost metric fermion fields ψPV can be used to regulate
the ultraviolet divergences. If one rewrites the theory in terms of the zero mode
fermion fields, ψ ± ψPV , then instantaneous fermion exchange interactions do not
appear in the light-front Hamiltonian. In addition, the constraint equation for the
zero-norm fermion field does not require inverting a covariant derivative. Thus one
can implement light-front quantization of gauge theory in a covariant gauge such as
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the Feynman gauge [21]. If one truncates the Fock space with a maximal number of
constituents N , the method includes perturbative contributions to order n = N − 1.
The N−particle truncated result for the lepton anomalous moment thus has the form

aN =
n∑

i=1

ci αi + ∆αN

where ∆ remains dependent on the PV masses since the mass renormalization counter
term is not itself cancelled in the N−particle Fock state. This residual dependence is
similar to the factorization scale dependence which occurs when one separates hard
and soft effects in factorization analyses. It is possible to make nonperturbative
predictions by relating the anomalous moment to other observables, or to optimize
the values of the cutoffs using theoretical criteria, such as minimization of estimated
errors.
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