
SLAC-PUB-10229

October 2003

Transverse deflections in a cavity due to

the short-range longitudinal wake∗

K.L.F. Bane, T. Raubenheimer, G. Stupakov, J. Wu

Stanford Linear Accelerator Center,

Stanford University, Stanford, CA 94309

∗Work supported by the Department of Energy, contract DE-AC03-76SF00515

1



INTRODUCTION AND CONCLUSION

Consider an ultra-relativistic electron bunch passing through a (cylindrically symmetric)

multi-cell linac cavity that is filled with fundamental mode rf. It is well known that this

bunch—on entering the cavity—experiences a focusing kick, and—on exiting the cavity—a

defocusing kick, even though the mode is cylindrically symmetric. The effects of these kicks

in linacs tend to be significant only in low energy regions.

Tracking computer programs such as MAD [1] and LIAR [2] include a simple model of

these kicks, one based on calculations of W.H. Panofsky [3]. According to this model the

effect is represented by two thin lenses positioned at the ends of the cavity, with the strength

of the lenses dependent on the accelerating gradient in the cavity. However, a beam will

itself excite wakefields that modify its energy gain in a cavity, a modification that depends

also on longitudinal position within the bunch. The program LIAR extends Panofsky’s rf

kick model to include this modification to the effective gradient experienced by different

parts of the beam. In this report we investigate how the wakefields affect the rf cavity kicks.

In particular, we are interested in the case when the wakefields are a significant perturbation

to the problem, such as when, for example, the beam traverses an empty cavity (one with

no rf).

In this report we have shown that one can calculate the transverse kicks when one knows

the time-dependent variation of the longitudinal wake forces on axis. The variation in gradi-

ent due to wakefields, however, will in general differ from that due to normal rf acceleration.

In particular, transients at the ends of structures, and—for constant gradient structures—

an increase in gradient amplitude from beginning to end of the cavity, will mean that the

model of focusing/defocusing edges, used for rf acceleration, will be inaccurate. Finally, we

conclude that the method LIAR uses to treat the effect of rf focusing in the presence of

wakefields on beam orbit is approximately correct.
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TRANSVERSE DEFLECTIONS

Transverse deflection during the passage of a short beam through a cavity can be analyzed

using an equation derived for the analysis of rf deflections in Ref. [3]. The equation relates a

particle’s trajectory in the cavity r(z) with the gamma factor γ(z); the variation of γ is due

to acceleration, dγ/dz = eEz/mc2. Using the notation p(z) = γ(z)r′(z), where the prime

denotes derivative with respect to z, the equations read:

p′ = −1

2
rγ′′ , r′ =

p

γ
. (1)

As follows from the derivation, these equations assume axisymmetric fields and the paraxial

approximation for the trajectory, and they are valid for arbitrary γ(z).
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FIG. 1: Accelerating gradient in structures, to good approximation, can be considered as

flat, with sharp edges at the entrance to and exit from each cavity. Shown is a sketch of

γ′(z) for three structures.

If acceleration is provided by external rf, the function γ ′(z) has a form shown in Fig. 1.

(Actually, γ ′ is not constant inside the structure; it oscillates on the scale of the structure

cell. This effect, however, is usually small.) At the entrance and exit of cavities, the second

derivative can be approximated as γ ′′ = ±γ′δ(z − zedge) and integration of the first of Eq.

(1) through the edge of the cavity gives for the change of p′:

∆p′|edge = ∓1

2
rγ′ , (2)

which is the well known focusing-defocusing effect at the cavity edges.

Now, if γ ′ is due only to the short-range wake in the bunch, there are important differences

in the behavior of γ ′. First, the wakefield takes some distance—the so-called catch-up
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distance—to establish itself. For the NLC structure and bunch length (rms length σz =

100 µm), the catch-up distance is 10–15 cells. Second, the bunch generated fields do not

normally disappear abruptly at the ends of the structures and may persist for some distance

beyond them. Third, there may also be relatively larger modulation in γ ′ due to the wake

forces within a structure than is the case for rf. Hence, for the same 3 structures, an expected

qualitative profile of γ ′ is similar to that shown in Fig. 2.

z
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FIG. 2: The decelerating gradient due to the short range wake has a transient at the

beginning of the first structure. It may oscillate from iris to iris, and not vanish to zero in

the short regions between structures.

RELATION BETWEEN R
′
AND γ

′
TO FIRST ORDER

Consider a test particle in an ultra-relativistic bunch traversing a cylindrically symmetric

accelerating structure. We can demonstrate that under typical conditions Eq. (1) implies

that ∆r′(z) ≡ r′(z) − r′0 (subscript 0 indicates an initial parameter of the test particle) is,

to first order, proportional to γ ′(z).

Let us assume that the relative change of the test particle’s energy while in the structure

is small compared to 1 [∆γ/γ0 � 1], and that r′0L/r0 � 1 (L is structure length). We can

show that these assumptions are consistent with the relation ∆r/r0 � 1 also being true.

So let us, for the moment, include this relation as an assumption. Given the assumptions,

Eq. (1) can be integrated to give

∆r′

r
≈ −1

2

γ′

γ
. (3)
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Note that the simple model of acceleration of Fig. 1 implies thin lenses at the ends of each

structure, with inverse focusing lengths f−1 = ±γ′/(2γ). Integrating once more we obtain

ln
(

r

r0

)

≈ −1

2
ln

(

γ

γ0

)

+ r′0

∫ z

z0

dz′

r
, (4)

which we see is a result consistent with ∆r/r0 � 1. Finally, we can write

∆r

r0

≈ −1

2

∆γ

γ0

+
r′0∆z

r0

. (5)

We have shown that, for any test particle, if the relative energy change in a structure is

small, and if the incoming slope is also small, ∆r′ is approximately proportional to γ ′ and

given by the simple expression Eq. (3). Note that Eq. (5) implies that how LIAR treats

the effect on orbit sufficiently downstream of a structure (where Ez and thus γ′ are again

0) is approximately correct. Finally, note that we have discussed the first order effect of

rf focusing, i.e. the effects linear in ∆γ/γ0. This leads also to correction to the Twiss

parameters, but the correction is to second order in ∆γ/γ0. Higher order effects in rf

focusing, not considered here, can be found in the literature, e.g. Rosenzweig, et al [4].

However, for a realistic set of parameters for the NLC structure [5], the higher order effects

of rf focusing are only a few percent of the first order effect we consider here.

NUMERICAL EXAMPLE

To study the time development of the longitudinal wakefield of a short bunch passing

through an accelerator structure, we perform numerical calculations using TBCI [6] on a

model of the so-called H60VG3 cavity (see Fig. 3) [5]. This cavity is a 5π/6 (phase advance)

disk-loaded structure containing 55 cells; it is detuned (nearly constant gradient) with iris

radius decreasing and cell gap length increasing as one moves from beginning to end of the

cavity. Our model differs slightly from the real cavity: the iris radii are not rounded and the

cavity radii are taken to be a constant 10.9 mm (our short beam, however, never “sees” the

outer cavity walls). The period is 10.9 mm; the iris radius varies from 5.5 mm to 3.9 mm;

the gap varies from 6.3 mm to 7.55 mm. The cavity cells (total length 60 cm) are connected

to beam pipes; the exit beam pipe in our model is 40 cm long, allowing the wakefields time
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to catch up to the (on-axis) beam. Our driving bunch is longitudinally Gaussian with rms

length 0.2 mm. Note that the nominal bunch length in the NLC linac will be 0.1 mm. The

bunch length for our model was taken to be larger due to computational limitations.

FIG. 3: Structure geometry used in the wakefield calculation: an H60VG3 cavity is is

connected to beam pipes.

The longitudinal wake (the integrated longitudinal voltage per charge) for our example is

shown in Fig. 4; the driving bunch shape, with head to the left, is also shown. Also shown,

by the dashed curve, is the steady-state wake model applied to the dimensions of the average

cell, i.e. the point charge wake Wδ(s) = Z0c/(πa2)e−
√

s/s0 with s0 = 0.41a1.8g1.6/L2.4, where

s the longitudinal position, Z0 = 377 Ω, c the speed of light, a the iris radius, g the gap,

and L the period [7]. For the average cell: a = 4.7 mm and g = 6.9 mm. The fact that

the 2 curves in the figure are nearly identical indicates that, down to our bunch length, the

effect of the transients on the wake is very small. The computed loss factor is 0.28 MV/nC,

which is equivalent to 0.47 MV/nC/m of structure. We note that the wake is capacitive.

The longitudinal electric field experienced by 3 different test particles in the bunch as

function of z = ct, with t the time, is shown in Fig. 5. Curves are shown for test particles

at the center of the bunch, and at ±σz away from bunch center. The vertical lines locate

the ends of the cavity. Note that the field is normalized to the bunch charge Q. Note also

that the total integral of these curves gives the wakefield at the test particle locations.

We see in all 3 curves an initial transient, a region where the amplitude of the field

rises gradually (due to the constant gradient nature of the cavity), and a final transient

region. The results differ significantly from the behavior sketched in Fig. 1—the approximate

behavior of the field due to fundamental mode rf in the structure. For example, for the bunch

center test particle the initial transient regime reaches ∼ 7 cm beyond the beginning of the
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FIG. 4: The longitudinal wakefield excited by a σz = 0.2 mm Gaussian bunch in the H60VG3

cavity, as obtained by TBCI. The dashed curve gives the results of the steady-state wake

model. The dotted curve gives the bunch shape, with the head on the left.

cavity, the intermediate region has a slope of ∼ −0.3 MV/nC/m2 and lasts ∼ 53 cm; the

final transient begins ∼ 2 cm beyond the end of the cavity and lasts ∼ 18 cm. Note that in

the NLC linac, most cavities will be close to neighboring cavities (7.6 cm separation), which

will modify the transients somewhat. Note also that, although for longer bunches we might

expect to see oscillations in the fields within the cavity (as sketched in Fig. 2), due to the

high frequencies excited by our short driving bunch, we see no such oscillations.

To obtain an idea of the strength of the rf focusing effect in the NLC, let us consider the

following parameters: bunch charge Q = 1.6 nC, bunch length σz = 100 µm; beam energy

E = 8 GeV (beginning of linac), accelerating gradient G = 50 MV/m. From additional

TBCI calculations we find that, for σz = 100 µm in our example structure, the loss factor

increases by a factor 1.4 over the σz = 200 µm case. So for the design bunch length the

gradient due to the wakefield, at the center of the bunch, is ∼ −1.1 MV/m, or about −2%

of the accelerating gradient due to the applied rf. Therefore, the cavity focusing due to the

wake alone is also about 2% of that due to the rf (and in the opposite direction). The focal

lengths of the effective thin lenses at the ends of the structure are very large, f ≈ ∓16 km

(at the entrance there is defocusing, at the exit focusing). In more detail: since the distance
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FIG. 5: The longitudinal electric field experienced by 3 different test particles as function

of distance within the structure of Fig. 3. The vertical lines locate the ends of the cavity.

of the transients scales as 1/σz, we expect that the initial transient at e.g. the center of the

bunch to reach ∼ 14 cm beyond the beginning of the cavity, and the final transient begins

∼ 4 cm beyond the end of the cavity and lasts ∼ 36 cm (if the cavities are separated by at

least 36 cm).

Such a picture gives an idea how, when a beam traverses an empty cavity, the induced

electric field—and therefore r′—differ from the case when the cavity is filled with rf, and

differs with what LIAR calculates. Nevertheless, after the beam leaves the cavity the orbit

as calculated by LIAR will tend to be approximately correct.
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