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The electromagnetic radiative “penguin” decays b → sγ, b → dγ are sensitive to physics beyond the Standard
Model. We present recent studies made with the BABAR detector at the PEP-II asymmetric e+e− storage ring.

1. Introduction

The radiative b → sγ, b → dγ transitions occur
by the electromagetic “penguin ” loop diagram in
the Standard Model. These decays are sensitive
to the CKM matrix elements Vtd and Vts and to
new virtual high mass particles such as a charged
Higgs appearing in the loop causing deviations
in the rate [1] and possibly introducing a new
CP -violating phase. The Standard Model pre-
dictions [2] for the leading exclusive decays B →
K∗γ (b → sγ) and the as yet unobserved B → ργ
(b → dγ) decay suffer from large uncertainties
compromising the sensitivity to both CKM ma-
trix elements and new physics. However in the
ratio B(B → ργ)/B(B → K∗γ) some of these un-
certainties cancel and a competitive measurement
of Vts/Vtd is possible. We present measurements
of the exclusive decay, B(B → K∗γ) [5], the CP-
violating charge asymmetry, Acp(B → K∗γ) and
results of a search for B → ργ and B → ωγ [6].

The predictions for the inclusive rates [3] are
more precise as quark-hadron duality is believed
to be a good approximation so that B → Xsγ =
b → sγ. We present two measurements of B(B →
Xsγ) using both a semi-inclusive [8] and a fully
inclusive technique [7]. The photon energy spec-
trum from the B → Xsγ measured with the semi-
inclusive technique is also used to extract values
for the HQET parameters λ and λ1.

The data were collected with the BABAR detec-
tor [9] at the PEP-II asymmetric e+(3.1 GeV) –
e−(9 GeV) storage ring. We use Monte Carlo sim-
ulations of the BABAR detector based on GEANT
4.0 [10] to optimize our selection criteria,to deter-

mine signal efficiencies, and in some cases to es-
timate backgrounds. These simulations take ac-
count of varying detector conditions and beam
backgrounds.

The event selection for both the exclusive and
inclusive analysis begins by requiring a high-
energy radiative photon candidate. A photon
candidate is defined as a localized energy max-
imum in the calorimeter. It must be isolated by
from any other photon candidate or track and
have a lateral energy profile consistent with a pho-
ton shower. We veto photons from a π0(η).

2. B(B → K∗γ) and Acp(B → K∗γ)

The details of the event selection are described
in [5]. The K∗ is reconstructed from K+, K0

S ,
π− and π0 candidates through the four modes
K∗0 → K+π−, K0

S
π0 and K∗+ → K+π0, K0

S
π+

and combined with a high energy photon to form
a B meson candidate. The dominant background
is from continuum production from continuum
qq production, where q can be a u,d,s or c
quark, with the high-energy photon originating
from initial-state radiation or from π0 and η de-
cays. The continuum background is produced
above threshold and so is lorentz boosted to a
“jet-like” topology in contrast to the signal which
is produced isotropically. Event topology vari-
ables are used to suppress the background. Fi-
nally we construct from the B candidates two in-
dependent variables ∆E and mES used to extract
the signal yield. We define ∆E = E∗

B − Ebeam

and mES =
√

E∗2
beam − p∗2B where E∗

B and p∗B are
the energy and momentum of the reconstructed
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B, computed in the center of mass frame of the
e+e− and Ebeam is the precisely known beam
energy. These variables exploit the fact that the
beam energy is equal to the energy of the pro-
duced B but more accurately known than the de-
tector reconstructed energy measurement.
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Figure 1. mES for the B → K∗γ candidates. The
solid and dashed curves show respectively the fit-
ted signal-plus-background and the background
alone.

The analysis is performed on 22.7 million BB
pairs. Figure 1 shows the mES distributions for
the four decay modes. The signal is extracted
from a maximum likelihood fit. The background
is modeled by a threshold function [4]. The mea-
sured branching fractions and CP − violating
charge asymmetries are summarised in Table 1.
The branching fractions are roughly a factor of
two lower than the next-to-leading order Stan-
dard Model predictions and in agreement with
previous measurements [11].

3. Search for B → ργ and B → ωγ

The analysis, described in detail in reference
[6], is considerably more challenging than the
B → K∗γ measurements. The signal rate is

Table 1
The measured branching fraction B(B → K∗γ)
and ACP for each of the decay modes.

Mode B(B → K∗γ) ACP (signal)
-±stat. ± sys. (±stat. ± sys.)

×10−5

K+π− 4.24 ± 0.41 ± 0.22 −0.049 ± 0.094 ± 0.012
K0

Sπ0 4.10 ± 1.71 ± 0.42
K0

Sπ+ 3.01 ± 0.76 ± 0.21 −0.190 ± 0.210 ± 0.012

K+π0 5.52 ± 1.07 ± 0.38 0.044 ± 0.155 ± 0.021

expected to be of order 50 times smaller than
B → K∗γ (B[B+ → ρ+γ] = (0.9−1.5)×10−6 [2])
with significantly higher continuum backgrounds
and additional backgrounds from b → sγ pro-
cesses. The decay B → ργ is reconstructed with
ρ0 → π+π− and ρ+ → π+π0, while B0 → ωγ
is reconstructed with ω → π+π−π0. Continuum
backgrounds are suppressed with event topology
variables, vertexing and flavor tagging. The vari-
ables are combined into a neural net, trained on
Monte Carlo, and validated with several data con-
trol samples. A dedicated pion selector has been
developed for this analysis optimized to reject the
kaon fake background from b → sγ processes.
The analysis was performed “blind” on 84.4 mil-
lion BB pairs. Figure 2 shows the ∆E,mES dsitri-
butions for the data after all cuts. The signal
yield is estimated from a multi-dimensional max-
imum likelihood fit. The results are given in ta-
ble 2. No signal is observed and we set 90 %
confidence limits.

Table 2
The signal yields and errors obtained from the sig-
nal extraction fit, and the 90 % Confidence Limit.

Mode Yield 90% C.L.
(Events) ×10−6

B0 → ρ0γ 4.8 ± 5.2 1.4
B+ → ρ+γ 6.2 ± 5.5 2.3
B0 → ωγ 0.1 ± 2.3 1.9

The limits for the individual modes can be com-
bined assuming isospin symettry to give B(B →
ργ) < 1.9 × 10−6 at 90 % C.L.. In addition this
limit can be compared to the measured B(B →
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Figure 2. ∆E vs. mES for a.) B0 → ρ0γ, b.)
B+ → ρ+γ and c.) B0 → ωγ candidates. The
boxes indicate the blinded region.

K∗γ) above to give B(B → ργ)/B(B → K∗γ) <
0.047 at 90 % C.L.

4. Measurement of B(B → Xsγ) using a
“semi-inclusive” technique

The fragmentation of the s-quark in the b → sγ
transistion results in final states, Xs, contain-
ing kaons and pions proceeding through a com-
plicated resonance structure. One technique to
measure the inclusive rate is to attempt to re-
construct all possible Xs states. However, we
are not sensitive to states containing a K0

L while
the prohibitively large combinatorics from high
multiplicity modes and modes with K0

S → π0π0

limit the fraction of accessible modes to approx-
imately 50 %. We recomstruct the Xsin the
K+π−, K0

Sπ0, K+π−π0, K0
Sπ+π−, K+π−π+π−,

K0
S
π+π−π0 K+π0, K0

S
π+, K+π−π+, K0

S
π+π0,

K+π−π+π0, K0
S
π+π−π+ modes in 22.7 million

BB pairs. The basic reconstruction technique is
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Figure 3. Branching fraction as a function of Eγ .
The errors are purely statistical.

essentially the same as for the B → K∗γ analysis
described above, except that there are additional
backgrounds from BB decays and cross-feed be-
tween the modes. The analysis is described in
detail in reference [8]. The Xsis divided into sev-
eral mXs(dual to E∗

γ) bins and the signal yield
extracted from a fit to mES for each of these
bins. Figures 3 and 4 show the resultant E∗

γand
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mXsspectra respectively. The first moment of the
E∗

γ spectra can be used to extract a measurement
of the HQET parameter Λ(α2

s, 1/M3
B) [13]. We

find < Eγ > |Eγ>2.094 GeV = 2.35 ± 0.04 (stat) ±
0.04 (syst) GeV from which we derive Λ = 0.37±
0.09 (stat) ± 0.07 (syst) ± 0.10 (model) GeV.
The parameter Λ then provides information to
help constrain the parameters in the fit to the
mXsspectrum shown in fig 4 used to extract
B(b → sγ) = 4.3 ± 0.5 (stat) ± 0.8 (syst) ±
1.3 (model) · 10−4 and λ1 = −0.24+0.03

−0.04 (stat) ±
0.02 (syst)+0.15

−0.21 (model) [ GeV/c2]2. consistent
with standard model predictions [3] and previ-
ous measurements [12]. Note that this technique
gives large systematic errors due to uncertainties
in the fragmentation model and resonance struc-
ture of the Xs.
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Figure 4. Superposition of the predicted spec-
trum for mb = 4.79 GeV/c2 and mb =
4.65 GeV/c2 on the observed hadronic mass spec-
trum.

5. Measurement of B(B → Xsγ) using a
“Fully-inclusive” technique

The semi-inclusive measurement of B(B →
Xsγ) offers a powerful technique to suppress
backgrounds but the sensitivity to the details of
the Xsfragmentation incurs large systematic un-
certainties. A fully inclusive measurement sensi-
tive to 100 % of the decay is highly desirable but
complicated by the large backgrounds as shown

in Figure 5. Here for pedagogical purposes we
have selected a high energy photon using stan-
dard quality cuts from a sample of signal and
continuum and BB Monte Carlo. To reduce
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Figure 5. The energy distribution, in the Υ(4s)
center of mass, of simulated photon candidates,
after “photon quality” cuts. Shown are B →
Xsγ signal (dark shading), BB background (grey
shading) and continuum background (unshaded),
all normalized to 54.6 Million BB.

these backgrounds while remaining insensitive to
the Xsfragmentation we employ a lepton tagging
technique. The analysis is described in detail in
reference [7]. The tagging reduces the continuum
background by 3 orders of magnitude but at a
cost of low efficiency (≈ 0.5%). Also a significant
BB background remains which must be estimated
by Monte Carlo. Figure 6 shows the E∗

γ spec-
trum for data with the estimated background.
We find B(B → Xsγ) = 3.88 ± 0.36(stat.) ±
0.37(syst.) ±0.43

0.23 (model) × 10−4. The dominant
systematic uncertainty is from the modelling of
the BB background which has been compared to
data control samples. The measurement is consis-
tent with both Standard Model expectations [3]
and previous measurments [12]



5

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
0

100

200

300

400

500

600

700

800

900

 (GeV)γ
*E

E
ve

nt
s/

10
0 

M
eV

Figure 6. The E∗
γdistribution of on-resonance
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