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Abstract

Theoretical and phenomenological evidence is now accumulating that the QCD
coupling becomes constant at small virtuality; i.e., αs(Q

2) develops an infrared fixed
point in contradiction to the usual assumption of singular growth in the infrared. For
example, the hadronic decays of the τ lepton can be used to determine the effective
charge ατ (m

2
τ ′) for a hypothetical τ -lepton with mass in the range 0 < mτ ′ < mτ . The

τ decay data at low mass scales indicates that the effective charge freezes at a value of
s = m2

τ ′ of order 1 GeV2 with a magnitude ατ ∼ 0.9±0.1. The near-constant behavior
of effective couplings suggests that QCD can be approximated as a conformal theory
even at relatively small momentum transfer and why there are no significant running
coupling corrections to quark counting rules for exclusive processes. The AdS/CFT
correspondence of large NC supergravity theory in higher-dimensional anti-de Sitter
space with supersymmetric QCD in 4-dimensional space-time also has interesting
implications for hadron phenomenology in the conformal limit, including an all-orders
demonstration of counting rules for exclusive processes and light-front wavefunctions.
The utility of light-front quantization and light-front Fock wavefunctions for analyzing
nonperturbative QCD and representing the dynamics of QCD bound states is also
discussed.
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1 The Infrared Behavior of the Effective QCD Cou-

plings ατ(s)

It is often assumed that color confinement in QCD can be traced to the singular
behavior of the running coupling in the infrared, i.e. “infrared slavery.” For example
if αs(q

2) → 1
q2 at q2 → 0, then one-gluon exchange leads to a linear potential at

large distances. However, theoretical [1, 2, 3, 4, 5] and phenomenological [6, 7, 8]
evidence is now accumulating that the QCD coupling becomes constant at small
virtuality; i.e., αs(Q

2) develops an infrared fixed point in contradiction to the usual
assumption of singular growth in the infrared. If QCD running couplings are bounded,
the integration over the running coupling is finite and renormalon resummations are
not required. If the QCD coupling becomes scale-invariant in the infrared, then
elements of conformal theory [9] become relevant even at relatively small momentum
transfers.

One can define the fundamental coupling of QCD from virtually any physical ob-
servable [10, 11]. Such couplings, called effective charges, are all-order resummations
of perturbation theory, so they correspond to the complete theory of QCD; it is thus
guaranteed that they are analytic and non-singular. For example, it has been shown
that unlike the MS coupling, a physical coupling is analytic across quark flavor thresh-
olds [12, 13]. Furthermore, a physical coupling must stay finite in the infrared when
the momentum scale goes to zero. In turn, this means that integrals over the run-
ning coupling are well defined for physical couplings. Once such a physical coupling
αphys(k

2) is chosen, other physical quantities can be expressed as expansions in αphys

by eliminating the MS coupling which now becomes only an intermediary [14]. In
such a procedure there are in principle no further renormalization scale (µ) or scheme
ambiguities. The physical couplings satisfy the standard renormalization group equa-
tion for its logarithmic derivative, dαphys/d ln k2 = β̂phys[αphys(k

2)], where the first two

terms in the perturbative expansion of the Gell-Mann Low function β̂phys are scheme-
independent at leading twist, whereas the higher order terms have to be calculated
for each observable separately using perturbation theory.

In a recent paper, Menke, Merino, and Rathsman [7] and I have presented a
definition of a physical coupling for QCD which has a direct relation to high precision
measurements of the hadronic decay channels of the τ− → ντh

−. Let Rτ be the
ratio of the hadronic decay rate to the leptonic one. Then Rτ ≡ R0

τ

[
1 + ατ

π

]
, where

R0
τ is the zeroth order QCD prediction, defines the effective charge ατ . The data

for τ decays is well-understood channel by channel, thus allowing the calculation of
the hadronic decay rate and the effective charge as a function of the τ mass below
the physical mass. The vector and axial-vector decay modes which can be studied
separately.

Using an analysis of the τ data from the OPAL collaboration [15], we have found
that the experimental value of the coupling ατ (s) = 0.621 ± 0.008 at s = m2

τ corre-
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sponds to a value of αMS(M
2
Z) = (0.117-0.122)±0.002, where the range corresponds to

three different perturbative methods used in analyzing the data. This result is in good
agreement with the world average αMS(M

2
Z) = 0.117±0.002. However, from the figure

we also see that the effective charge only reaches ατ (s) ∼ 0.9 ± 0.1 at s = 1 GeV2,
and it even stays within the same range down to s ∼ 0.5 GeV2. This result is in good
agreement with the estimate of Mattingly and Stevenson [6] for the effective coupling
αR(s) ∼ 0.85 for

√
s < 0.3 GeV determined from e+e− annihilation, especially if one

takes into account the perturbative commensurate scale relation, ατ (m
2
τ ′) = αR(s∗),

where s∗ ' 0.10 m2
τ ′ . This behavior is not consistent with the coupling having a Lan-

dau pole, but rather shows that the physical coupling is close to constant at low
scales, suggesting that physical QCD couplings are effectively constant or “frozen” at
low scales.

Figure 1 shows a comparison of the experimentally determined effective charge
ατ (s) with solutions to the evolution equation for ατ at two-, three-, and four-loop
order normalized at mτ . At three loops the behavior of the perturbative solution
drastically changes, and instead of diverging, it freezes to a value ατ ' 2 in the
infrared. The reason for this fundamental change is, the negative sign of βτ,2. This
result is not perturbatively stable since the evolution of the coupling is governed by
the highest order term. This is illustrated by the widely different results obtained for
three different values of the unknown four loop term βτ,3 which are also shown† It is
interesting to note that the central four-loop solution is in good agreement with the
data all the way down to s ' 1 GeV2.

It has also been argued that αR(s) freezes perturbatively to all orders [3]. In fact
since all observables are related by commensurate scale relations, they all should have
an IR fixed point [4]. This result is also consistent with Dyson-Schwinger equation
studies of the physical gluon propagator [1, 2].

The results for ατ resemble the behavior of the one-loop “time-like” effective
coupling [17, 18, 19]

αeff(s) =
4π

β0

{
1

2
− 1

π
arctan

[
1

π
ln

s

Λ2

]}
(1)

which is finite in the infrared and freezes to the value αeff(s) = 4π/β0 as s → 0. It is
instructive to expand the “time-like” effective coupling for large s,

αeff(s) =
4π

β0 ln (s/Λ2)

{
1− 1

3

π2

ln2 (s/Λ2)
+

1

5

π4

ln4 (s/Λ2)
+ . . .

}

= αs(s)



1− π2β2

0

3

(
αs(s)

4π

)2

+
π4β4

0

5

(
αs(s)

4π

)4

+ . . .



 .

This shows that the “time-like” effective coupling is a resummation of (π2β2
0α

2
s )

n-
corrections to the usual running couplings. The finite coupling αeff given in Eq. (1)

†The values of βτ,3 used are obtained from the estimate of the four loop term in the perturbative
series of Rτ , KMS

4 = 25± 50 [16].
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Figure 1: The effective charge ατ for non-strange hadronic decays of a hypothetical
τ lepton with m2

τ ′ = s compared to solutions of the fixed order evolution equation
for ατ at two-, three-, and four-loop order. The error bands include statistical and
systematic errors.

obeys standard PQCD evolution at LO. Thus one can have a solution for the pertur-
bative running of the QCD coupling which obeys asymptotic freedom but does not
have a Landau singularity.

The near constancy of the effective QCD coupling at small scales helps explain
the empirical success of dimensional counting rules for the power law fall-off of form
factors and fixed angle scaling. As shown in the references [20, 21], one can calculate
the hard scattering amplitude TH for such processes [22] without scale ambiguity
in terms of the effective charge ατ or αR using commensurate scale relations. The
effective coupling is evaluated in the regime where the coupling is approximately
constant, in contrast to the rapidly varying behavior from powers of αs predicted
by perturbation theory (the universal two-loop coupling). For example, the nucleon
form factors are proportional at leading order to two powers of αs evaluated at low
scales in addition to two powers of 1/q2; The pion photoproduction amplitude at fixed
angles is proportional at leading order to three powers of the QCD coupling. The
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essential variation from leading-twist counting-rule behavior then only arises from the
anomalous dimensions of the hadron distribution amplitudes.

Parisi [23] has shown that perturbative QCD becomes a conformal theory for β →
0 and zero quark mass. There are a number of useful phenomenological consequences
of near conformal behavior: the conformal approximation with zero β function can
be used as template for QCD analyses [24, 25] such as the form of the expansion
polynomials for distribution amplitudes [9, 26]. The near-conformal behavior of QCD
is also the basis for commensurate scale relations [14] which relate observables to
each other without renormalization scale or scheme ambiguities [27]. An important
example is the generalized Crewther relation [28]. In this method the effective charges
of observables are related to each other in conformal gauge theory; the effects of the
nonzero QCD β− function are then taken into account using the BLM method [29]
to set the scales of the respective couplings. Since the QCD running couplings are
bounded, integration over the running coupling is finite, and the arguments leading
to renormalon resummations do not result. The magnitude of the corresponding
effective charge [20] αexclusive

s (Q2) = Fπ(Q2)/4πQ2F 2
γπ0(Q2) for exclusive amplitudes is

connected to ατ by a commensurate scale relation. Its magnitude: αexclusive
s (Q2) ∼ 0.8

at small Q2, is sufficiently large as to explain the observed magnitude of exclusive
amplitudes such as the pion form factor using the asymptotic distribution amplitude.

2 AdS/CFT and Near-Conformal Field Theory

As shown by Maldacena [30], there is a remarkable correspondence between large NC

supergravity theory in a higher dimensional anti-de Sitter space and supersymmet-
ric QCD in 4-dimensional space-time. String/gauge duality provides a framework
for predicting QCD phenomena based on the conformal properties of the ADS/CFT
correspondence. For example, Polchinski and Strassler [31] have shown that the
power-law fall-off of hard exclusive hadron-hadron scattering amplitudes at large mo-
mentum transfer can be derived without the use of perturbation theory by using
the scaling properties of the hadronic interpolating fields in the large-r region of
AdS space. Thus one can use the Maldacena correspondence to compute the lead-
ing power-law falloff of exclusive processes such as high-energy fixed-angle scattering
of gluonium-gluonium scattering in supersymmetric QCD. The resulting predictions
for hadron physics effectively coincide [31, 32, 33] with QCD dimensional counting
rules:[34, 35, 36]

dσH1H2→H3H4

dt
=

F (t/s)

sn−2
(2)

where n is the sum of the minimal number of interpolating fields. (For a recent
review of hard fixed θCM angle exclusive processes in QCD see the references [37].) As
shown by Brower and Tan [32], the non-conformal dimensional scale which appears
in the QCD analysis is set by the string constant, the slope of the primary Regge
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trajectory Λ2 = α′R(0) of the supergravity theory. Polchinski and Strassler [31] have
also derived counting rules for deep inelastic structure functions at x → 1 in agreement
with perturbative QCD predictions [38] as well as Bloom-Gilman exclusive-inclusive
duality.

The supergravity analysis is based on an extension of classical gravity theory
in higher dimensions and is nonperturbative. Thus the usual analyses of exclusive
processes, which were derived in perturbation theory can be extended by the Malda-
cena correspondence to all orders. An interesting point is that the hard scattering
amplitudes which are normally or order αp

s in PQCD appear as order αp/2
s in the

supergravity predictions. This can be understood as an all-orders resummation of
the effective potential [30, 39].

The superstring theory results are derived in the limit of a large NC [40]. For
gluon-gluon scattering, the amplitude scales as 1/N2

C . Frampton has shown how to
extend the analysis to the fundamental representation [41]. For color-singlet bound
states of quarks, the amplitude scales as 1/NC . This large NC-counting in fact corre-
sponds to the quark interchange mechanism [42]. For example, for K+p → K+p scat-
tering, the u-quark exchange amplitude scales approximately as 1

u
1
t2

, which agrees
remarkably well with the measured large θCM dependence of the K+p differential
cross section [43]. This implies that the nonsinglet Reggeon trajectory asymptotes to
a negative integer [44], in this case, lim−t→∞ αR(t) → −1.

Pinch contributions corresponding to the independent scattering mechanism of
Landshoff [45] are absent in the superstring derivation. This can be understood by
the fact that amplitudes based on gluon exchange between color-singlet hadrons is
suppressed at large NC [46]. Furthermore, the independent scattering amplitudes are
suppressed by Sudakov form factors which fall faster than any power in a theory with
a fixed-point coupling such as conformal QCD [36, 47].

The leading-twist results for hard exclusive processes correspond to the suppres-
sion of hadron wave functions with non-zero orbital angular momentum, which is the
principle underlying the selection rules corresponding to hadron helicity conserva-
tion [48]. The suppression can be understood as follows: the LF wave function with

nonzero angular momentum in the constituent rest frame
∑~ki = 0 can be determined

by iterating the one gluon exchange kernel. They then have the structure [49, 50]

ψLz=1 =
~S · n̂× ~k⊥
D(k2

⊥, x)
ψLz=0 (3)

or

ψLz=1 =
ε̂ · n̂× ~k⊥
D(k2

⊥, x)
ψLz=0 (4)

where the light-front energy denominator D(k2
⊥, x) ∼ k2

⊥ at high transverse momen-
tum, n̂ is the light-front quantization direction, and ε̂ is a spin-one polarization vector.
This leads to the Λ/Q suppression of spin-flip amplitudes in QCD. For example, such
wave functions lead to the large momentum transfer prediction ALL ∼ 1/3 for pp → pp
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elastic scattering [46] at large angles and momentum transfer and the asymptotic pre-
diction F2(t)/F1(t) ∝ t−2 modulo powers of log t [51].

3 Light-Front Quantization

The concept of a wave function of a hadron as a composite of relativistic quarks
and gluons is naturally formulated in terms of the light-front Fock expansion at fixed
light-front time, τ = x·ω. The four-vector ω, with ω2 = 0, determines the orientation
of the light-front plane; the freedom to choose ω provides an explicitly covariant
formulation of light-front quantization [52]. Although LFWFs depend on the choice
of the light-front quantization direction, all observables such as matrix elements of
local current operators, form factors, and cross sections are light-front invariants –
they must be independent of ωµ.

The light-front wave functions (LFWFs) ψn(xi, k⊥i
, λi), with xi = ki·ω

P·ω ,
∑n

i=1 xi =
1,

∑n
i=1 k⊥i

= 0⊥, are the coefficient functions for n partons in the Fock expansion,
providing a general frame-independent representation of the hadron state. Matrix
elements of local operators such as spacelike proton form factors can be computed
simply from the overlap integrals of light front wave functions in analogy to nonrela-
tivistic Schrödinger theory. In principle, one can solve for the LFWFs directly from
the fundamental theory using methods such as discretized light-front quantization,
the transverse lattice, lattice gauge theory moments, or Bethe–Salpeter techniques.
The determination of the hadron LFWFs from phenomenological constraints and from
QCD itself is a central goal of hadron and nuclear physics. Reviews of nonperturba-
tive light-front methods may be found in the references [53, 52, 54, 55]. One can also
project the known solutions of the Bethe–Salpeter equation to equal light-front time,
thus producing hadronic light-front Fock wave functions. A potentially important
method is to construct the qq̄ Green’s function using light-front Hamiltonian theory,
with DLCQ boundary conditions and Lippmann-Schwinger resummation. The ze-
ros of the resulting resolvent projected on states of specific angular momentum Jz

can then generate the meson spectrum and their light-front Fock wavefunctions. The
DLCQ properties and boundary conditions allow a truncation of the Fock space while
retaining the kinematic boost and Lorentz invariance of light-front quantization.

One of the central issues in the analysis of fundamental hadron structure is the
presence of non-zero orbital angular momentum in the bound-state wave functions.
The evidence for a “spin crisis” in the Ellis-Jaffe sum rule signals a significant orbital
contribution in the proton wave function [56, 57]. The Pauli form factor of nucleons
is computed from the overlap of LFWFs differing by one unit of orbital angular
momentum ∆Lz = ±1. Thus the fact that the anomalous moment of the proton is
non-zero requires nonzero orbital angular momentum in the proton wavefunction [58].
In the light-front method, orbital angular momentum is treated explicitly; it includes
the orbital contributions induced by relativistic effects, such as the spin-orbit effects
normally associated with the conventional Dirac spinors.
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In recent work, Dae Sung Hwang, John Hiller, Volodya Karmonov [50], and I have
studied the analytic structure of LFWFs using the explicitly Lorentz-invariant formu-
lation of the front form. Eigensolutions of the Bethe-Salpeter equation have specific
angular momentum as specified by the Pauli-Lubanski vector. The corresponding
LFWF for an n-particle Fock state evaluated at equal light-front time τ = ω · x
can be obtained by integrating the Bethe-Salpeter solutions over the corresponding
relative light-front energies. The resulting LFWFs ψI

n(xi, k⊥i) are functions of the
light-cone momentum fractions xi = ki · ω/p · ω and the invariant mass squared of

the constituents M2
0 = (

∑n
i=1 kµ

i )2 =
∑n

i=1 [
k2
⊥+m2

x
]i and the light-cone momentum

fractions xi = k · ω/p · ω each multiplying spin-vector and polarization tensor invari-
ants which can involve ωµ. The resulting LFWFs for bound states are eigenstates of
the Karmanov–Smirnov kinematic angular momentum operator [59]. Thus LFWFs
satisfy all Lorentz symmetries of the front form, including boost invariance, and they
are proper eigenstates of angular momentum.

4 AFS/CFT Correspondence and Light-Front Wave-

functions

One can also use the scaling properties of the hadronic interpolating operator in the
extended AdS/CFT space-time theory to determine the scaling of light-front hadronic
wavefunctions at high relative transverse momentum. De Teramond and I [46] have
also shown how the angular momentum dependence of the light-front wavefunctions
also follow from the conformal properties of the AdS/CFT correspondence. The
scaling and conformal properties of the AdS/CFT correspondence leads to a hard
component of the light-front Fock state wavefunctions of the form:

ψn/h(xi, ~k⊥i, λi, lzi) ∼ (gs NC)
1
2
(n−1)

√
NC

n−1∏

i=1

(k±i⊥)|lzi|




Λo

M2 −∑
i

~k2
⊥i

+m2
i

xi
+ Λ2

o




n+|lz |−1

,

(5)
where gs is the string scale and Λo represents the basic QCD mass scale. The scaling
predictions agree with the perturbative QCD analysis given in the references [49], but
the AdS/CFT analysis is performed at strong coupling without the use of perturba-
tion theory. The near-conformal scaling properties of light-front wavefunctions lead
to a number of other predictions for QCD which are normally discussed in the context
of perturbation theory, such as constituent counting scaling laws for the leading power
fall-off of form factors and hard exclusive scattering amplitudes for QCD processes.
The ratio of Pauli to Dirac baryon form factor have the nominal asymptotic form
F2(Q

2)/F1(Q
2) ∼ 1/Q2, modulo logarithmic corrections, in agreement with the per-

turbative results [51]. Our analysis can also be extended to study the spin structure
of scattering amplitudes at large transverse momentum and other processes which
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are dependent on the scaling and orbital angular momentum structure of light-front
wavefunctions.
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