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Comment on extracting α from B → ρρ
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Abstract

Recent experimental results on B → ρρ decays [1–3] indicate that the CP asymmetry Sρ+ρ− will

give an interesting determination of α = arg [−(VtdV
∗
tb)/(VudV

∗
ub)]. In the limit when the ρ width is

neglected, the B → ππ isospin analysis can also be applied to B → ρρ, once an angular analysis is

used to separate transversity modes. The present bound on the shift of Sρ+ρ− from the true sin 2α

is already stronger than it is for Sπ+π− . We point out a subtle violation of the isospin relations

when the two ρ mesons are observed with different invariant masses, and how to constrain this

effect experimentally.
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I. INTRODUCTION

Rates and polarization fractions for various B → ρρ decays have been recently mea-

sured [1–3]. First measurements of CP asymmetries in these modes are expected in the

near future. This note is a brief comment on the application of isospin analysis to these

modes, similar to that for ππ channels [4] to extract Standard Model parameters, and in

particular the CKM phase α ≡ φ2 ≡ arg [− (VtdV
∗
tb) / (VudV

∗
ub)], from these measurements.

It is important to constrain such CKM phases as precisely as possible in many independent

ways. Inconsistent results from different approaches could be an indicator of new physics as

various measurements that are related in the Standard Model can be affected differently by

possible contributions from physics beyond the Standard Model. Here we comment on the

need to parameterize the data to allow for the impact of possible I = 1 contributions that

can occur if the two ρ mesons have different masses.1

In the standard parameterization for the CKM matrix, the phase dependence of the

B → ρiρj decay amplitudes can be written as

Aij = Tije
+iγ + Pije

−iβ,

Āij = Tije
−iγ + Pije

+iβ, (1)

where Aij describe B+ and B0 decays, Āij describes B− and B0 decays, and β, γ (and

α = π− β − γ) are the angles of the unitarity triangle (for their precise definitions, see e.g.,

Ref. [5]). Tij is dominated by the tree diagram, while Pij comes primarily from so-called

penguin diagrams. An important role in the CP asymmetries in neutral B decays is played

by the B0 −B0 mixing amplitude, which has the following CKM phase dependence:

M12 = |M12|e2iβ. (2)

The dominant CP violating effect in the B → ρ+ρ− decay comes from the interference

between the B0−B0 mixing amplitude and T+−. As can be deduced from Eqs. (1) and (2),

this effect is sensitive to the phase α = π − β − γ (or φ2 = π − φ1 − φ3).

The time dependent CP asymmetry in B → ρ+ρ− can be parametrized as follows:

Γ(B0
phys(t) → ρ+ρ−)− Γ(B0

phys(t) → ρ+ρ−)

Γ(B0
phys(t) → ρ+ρ−) + Γ(B0

phys(t) → ρ+ρ−)
= S+− sin(∆mt)− C+− cos(∆mt) . (3)

1 By ρ mass we mean throughout this paper the invariant mass of the pion pair from the decay of that ρ.
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If |P+−/T+−| were zero, so that a single weak phase dominates the decay and if, in addition,

the final state were purely CP even, then S+− = sin 2α (and C+− = 0). A separation of

final CP eigenstates is possible with angular analysis [6]; as we will see below the data show

that the decays to charged ρ’s are dominantly longitudinally polarized and thus CP even.

Other CP violating effects in B → ρρ decays arise from the interference between the

T and P terms in Eq. (1) or from interference between mixing and P amplitudes. These

effects not only have different weak phase dependences, but also depend on the amplitude

ratio |P/T | and the strong phase arg(P/T ). These complicate the relationship between the

measured CP violation and the phase α. For a given final transversity σ (see discussion

below), this more complicated relation can be parametrized as follows:

Sσ
+− =

√
1− (Cσ

+−)2 sin(2α + 2δσ) . (4)

In the case of two pions, Gronau and London [4] showed how to use the six flavor-tagged

B → ππ rates and isospin symmetry to precisely determine α even in the presence of the

additional CP violating effects. Later work showed how one can use the isospin relations

to bound the uncertainties in α, even when sufficient data to complete the full analysis is

not available [7–9]. These methods can be applied also for the decays to two ρ mesons.

The current experimental data implies that the B → ρρ case will give a better intermediate

result.

II. BOSE STATISTICS AND BROAD RESONANCES

The vector-vector decays of a spin zero B meson can have orbital angular momentum

L = 0, 1, or 2. Hence, for two vector particles, they include both even and odd CP modes.

Since the decaying B meson is spin 0, the total spin of the two vector mesons must be equal

to and oppositely aligned to the orbital angular momentum, L. Thus, in the case of two

identical vector mesons, such as two equal mass ρ mesons, independent of the value of L, the

combined space plus spin wave function of the the two identical vector mesons is symmetric

under particle exchange. Bose statistics then tells us that, just as in the case of two pions,

the isospin of the two ρ meson state must be symmetric under exchange of the particles,

3



thereby eliminating any possible I = 1 contributions.2

While the above argument is made in terms of the amplitudes of a given L, it applies for

all L. Thus it is equally valid when applied to the amplitudes expressed in any alternative

angular decomposition. The set of basis functions for describing the decays used in the

experimental analyses are labelled by the transversity σ = 0, ‖,⊥ of the ρ mesons (which

both must be the same since the initial state has spin zero). Thus, from this point on, our

discussion will be in this basis. Note that once this basis is chosen there is no longer any sense

in which one can separate the different orbital angular momentum contributions within a

given transversity-labelled state. Since transversity-labelled amplitudes are a choice of three

orthogonal angular basis functions for analyzing the decays, they contain the full angular

momentum information. Thus we have a complete set of amplitudes, Aσ
ij = A[B → (ρiρj)σ],

where σ is the transversity label and i and j are the charges of the two ρ mesons. The CP

of a given transversity state is well-defined, in the case at hand the states σ = 0 and ‖ are

CP even, while the σ =⊥ states are CP odd [6].

The above arguments for the absence of I = 1 in each transversity state do not apply

for general four-pion amplitudes. This contribution exists even when two pion pairs have

the same invariant mass and angular momentum. Indeed the fact that ρ mesons have

a significant width reintroduces the possibility of I = 1 contributions even for a pair of

longitudinally polarized ρ particles. In each B → ρρ event the invariant mass of each ρ is

measured, and the two values can differ by an amount of order of Γρ, or rather by the width

of the region allowed by experimental cuts on the data. The B → ρρ amplitude for two ρ

mesons with charges q1, q2, masses m1, m2 and helicities λ1 = λ2 can have a part which is

antisymmetric under the interchange of the values of m1 and m2, and thus, by Bose statistics,

this amplitude is also antisymmetric in the combined (space, spin, isospin) wave function,

thus allowing odd isospin, despite the fact that L = S. In contrast, the dependence of the

even-isospin amplitudes on the ρ masses is symmetric under interchange of m1 and m2. The

different isospin amplitudes do not interfere. Our main point in this note is that the fits to

data should explicitly include the possibility of the odd-isospin contribution in B → ρρ.

The size of the I = 1 contribution is a dynamical question; we make no prediction. We

2 In Section 6.1.2.2 of the Babar Physics Book [5] this argument is given correctly for the L = 0, 2 case.
However, an incorrect conclusion that isospin analysis is not possible for the L = 1 component is stated.
Mea culpa, HQ.
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cannot rule out the presence of I = 1 contributions of order (Γρ/mρ)
2 in the total rate. The

fact that this amplitude must vanish for equal ρ meson masses gives it a distinct distribution

as a function of m1 and m2 from the leading even-isospin terms. The leading contribution to

the rate due to the amplitude antisymmetric in m1 and m2 can be parameterized by adding

to the fits a term of the form
[
c

m1 −m2

mρ

]2 ∣∣∣Bρ(m
2
1)Bρ(m

2
2)

∣∣∣
2
, (5)

where Bρ(s) is the Breit-Wigner. This contribution vanishes where the even-isospin contri-

bution peaks. The I = 1 contributions in the ρ+ρ− and ρ±ρ0 channels are unrelated, while

there is no such contribution to ρ0ρ0. Note that even-isospin contributions of the same form

are also possible, e.g., from the cross-term in
[
a + b

(m1 −m2)
2

m2
ρ

]2 ∣∣∣Bρ(m
2
1)Bρ(m

2
2)

∣∣∣
2
. (6)

We expect a, b and c to be of the same order, so the even-isospin contribution proportional

to ab could be comparable to the I = 1 component.

The question is whether the extraction of the leading even-isospin amplitudes [the a2 term

in Eq. (6)] is sensitive to possible contributions of the form (5). Independent of whether

the correction term is dominated by the c2 term of Eq. (5) or the interference of a and b in

Eq. (6), the stability of the fit for the a2 term can be tested. If the addition of terms of the

form (5) causes the value of the leading term to shift significantly then further tests must

be made to ensure a stable value for the on-peak amplitudes. If adding such a term does

not significantly change the result for the leading term, then we can be confident that the

correct on-peak amplitudes have been measured.

While the I = 1 contribution must be positive, the subleading even-isospin contributions

may have either sign. Thus, even if a fit to the data finds that contributions to the rate of

the form in Eq. (5) are small, that could still be due to cancellations. Such a cancellation

would be accidental in either the ρ+ρ− or the ρ±ρ0 channels, and it is unlikely to occur in

both. Thus, if the fits in both of these modes are insensitive to terms of the form (5), then it

is probably safe to assume that the I = 1 contributions are likewise small. But, as we stress

above, it is not the size of these terms that really matters here, but rather the stability of

the fit to the on-peak, equal mass, ρρ contribution, for which the isospin analysis is to be

carried out. If the fits are sensitive to terms of the form in Eq. (5), then further analysis,

and probably significantly more data is needed.
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As an alternative to fitting the data including terms of the form (5), one can eliminate

effects of any contributions of this form by decreasing the width of the ρ bands, ∆, used

in the fit (or imposing a cut on |m1 − m2|). Once the accepted ρ band is small enough,

the result will be stable against further reduction in its width, and also against changes

to the leading fit parameters when a term of the form (5) is added. At present, BaBar

uses a band 0.52 GeV < mππ < 1.02 GeV [2, 3] whereas BELLE accepts a narrower range,

0.65 GeV < mππ < 0.89 GeV [1]. The possible I = 1 contamination in the B → ρρ signal

diminishes for ∆ < Γρ at least as (∆/mρ)
2. If the extracted values of the rates are stable for

different values of ∆ that would indicate that the I = 1 contamination is small and we need

not worry further about these types of terms, whereas results that are sensitive to ∆ would

indicate that there is a contribution of this type that must be more carefully investigated,

or excluded by taking a smaller acceptance.

Clearly both the approach of adding parameters to the fit and the approach of narrowing

the acceptance have a statistical cost. We are hopeful that, even with the present data set,

one will be able to see that the impact of possible I = 1 terms is not large. If their effect

turns out to be important, then more data will be needed to eliminate their impact.

III. ISOSPIN RELATIONS

For each transversity, σ, the even-isospin amplitudes have relationships similar to that

for the two-pion amplitudes [4],

1√
2

Aσ
+− + Aσ

00 = Aσ
+0 ,

1√
2

Āσ
+− + Āσ

00 = Āσ
−0 . (7)

Each of these equations can be represented as a triangle in the complex plane. Note that

the triangles corresponding to the different transversity states can be different.

Tree diagrams contribute to both ∆I = 1/2 and 3/2 transitions to I = 0 and I = 2

final states, respectively. Since the gluon is isospin singlet, penguin diagrams contribute

only to ∆I = 1/2 transitions to I = 0 final states. Since the final ρ±ρ0 states have no

I = 0 component, Aσ
+0 and Āσ

−0 are pure tree amplitudes. Therefore, |Aσ
+0| = |Āσ

−0| and the

relative phase of these amplitudes is 2γ [see Eq. (1)]. The two triangles originating from
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Eqs. (7) for any given σ can thus be superimposed with a common base, Aσ
+0, if all the Āσ

ij

amplitudes are multiplied by a factor e2iγ.

Electroweak penguin amplitudes, unlike gluonic penguins, contribute to both ∆I = 1/2

and 3/2 and hence cannot be distinguished from the tree amplitudes by their isospin struc-

ture. Since electroweak penguins contribute to both Tij and Pij in Eq. (1), one impact of

such terms would be a possible difference between A+0 and e2iγĀ−0. The size of corrections

that contribute to |A+0| 6= |Ā−0| can be constrained by measuring these two rates. The

average of the BABAR [2] and BELLE [1] results is

A∓0 =
|Ā−0|2 − |A+0|2
|Ā−0|2 + |A+0|2 = −0.09± 0.16 ,

f0 =
|Ā0

−0|2 + |A0
+0|2

|Ā−0|2 + |A+0|2 = 0.96+0.04
−0.06 . (8)

These results are consistent with the isospin relationship A∓0 = 0, though with current

precision the test is not particularly stringent. Given this, there is residual uncertainty

in the extracted value of α that is not constrained by the isospin analysis. There is no

calculation of electroweak penguin amplitudes from first principles; estimates of their impact

on the determination of α in the B → ππ isospin analysis ranges from negligible to less than

5◦− 10◦ [10]. This effect is expected to be similar in B → ρρ, although a dedicated analysis

is warranted since the matrix elements are different. At the present level of accuracy it is

reasonable to assume that this contribution is small compared to the uncertainties that are

bounded by the isospin analysis; we will neglect it in what follows.

Once the branching ratios B[B → (ρiρj)σ] = |Aσ
ij|2 are measured, one can construct the

two triangles and use this construction to measure the relative phase between Aσ
+− and

e2iγĀσ
+− [4]. This phase is 2δσ defined in Eq. (4). It arises from a combination of relative

weak and strong phases and the relative magnitudes of the T+− and P+− contributions,

none of which can be reliably calculated. Using the two-triangle construction to determine

2δσ, there is a fourfold ambiguity in the value of this phase, coming from the four possible

orientations of the two triangles relative to their common base.

Until the flavor-tagged branching fractions, B[B0 → (ρ0ρ0)σ] and B[B0 → (ρ0ρ0)σ], are

separately measured, one cannot determine δσ. However, one can bound it. Among the

three averaged branching ratios (summed over transversities),

B+− =
1

2

(
|A+−|2 + |Ā+−|2

)
,
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B+0 =
1

2

(
|A+0|2 + |Ā−0|2

)
,

B00 =
1

2

(
|A00|2 + |Ā00|2

)
, (9)

the first two have been measured and there is an upper bound on the third. This provides

an upper bound on Bσ
00 for any σ. It is significantly smaller than the rate for the dominant

longitudinal mode in the other channels. This allows us to place a significant bound on δ0,

using the construction described above. Explicitly, the bound reads [7, 8]3

cos 2δ0 ≥ 1− 2B0
00

B0
+0

+
(B0

+− − 2B0
+0 + 2B00)

2

4B0
+−B0

+0

. (10)

This bound can be further strengthened if experiments constrain C0
+− [9] and C0

00.

IV. CORRECTIONS PROPORTIONAL TO 1 − f0

For both B → ρ+ρ− and B → ρ±ρ0, experiments have determined that the longitudinal

fraction f0 is close to 100% [see Eq. (14)]. Thus, even if the experiments do not distinguish

the asymmetry in the longitudinal mode alone, one can use the total asymmetry to constrain

the longitudinal asymmetry. Since we already know from the data that the decay is almost

purely longitudinal, the correction is small, of O(1−f0). Using S+− =
∑

σ fσS
σ
+− and C+− =

∑
σ fσC

σ
+−, the differences between the transversity-summed CP violating asymmetries and

those in the longitudinal mode are given by

S0
+− − S+− = (1− f0)

(
S0

+− −
S
‖
+− + S⊥+−

2

)
−

(
f‖ − f⊥

) S
‖
+− − S⊥+−

2
,

C0
+− − C+− = (1− f0)

(
C0

+− −
C
‖
+− + C⊥

+−
2

)
−

(
f‖ − f⊥

) C
‖
+− − C⊥

+−
2

. (11)

The Sσ
+− and Cσ

+− asymmetries in each of the transversity channels can in principle be

anywhere from −1 to +1 subject to the constraints (Sσ
+−)2+(Cσ

+−)2 ≤ 1. Thus, the maximal

deviations of the measured asymmetries from those for the longitudinal modes are

|S0
+− − S+−| ≤ (1− f0)

(
1 + |S0

+−|
)
,

|C0
+− − C+−| ≤ (1− f0)

(
1 + |C0

+−|
)
. (12)

3 The bound in [8], quoted in Eq. (10), is the same as the one in Eq. (2.15) of [7] up to terms of
O[(B00/B+0)2, (B+−/B+0 − 2)2], where [8] is more restrictive. In [8], the weaker bound in Eq. (2.12)
of [7], cos 2δ0 ≥ 1− 2B0

00/B0
+0, is referred to as the Grossman-Quinn bound.
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In reality, we expect the error in estimating S0
+− to be smaller than this upper bound. To

zeroth order in |P σ
+−/T σ

+−| we have S
‖
+− = −S⊥+− = S0

+−. Consequently, we obtain

S0
+− − S+− = (1− f0 − f‖ + f⊥) S0

+− +O[(1− f0) |P+−/T+−| ] . (13)

One further issue that must be considered is the impact of non-resonant contributions to

B meson decays to four pions, and that of other resonances that yield the same final state in

this analysis. These could contribute with opposite CP to that of the dominant longitudinal

mode. Since the angular distribution given by the decay of a spin-1 longitudinally-polarized

meson is quite restrictive, the contamination due to all such contributions is effectively

included in the error of 1 − f0, the fraction of non-longitudinal contributions. Thus the

uncertainty due to these contributions is taken into account by allowing for the uncertainties

in Eq. (12) when determining the CP asymmetries in the longitudinal mode.

V. NUMERICAL RESULTS

The experimental values given by BABAR for the three averaged branching ratios defined

in Eq. (9) are [2, 3]

B+− = (27+7+5
−6−7)× 10−6 , (f0)+− = 0.99+0.01

−0.07 ± 0.03 ,

B+0 = (22.5+5.7
−5.4 ± 5.8)× 10−6 , (f0)+0 = 0.97+0.03

−0.07 ± 0.04 ,

B00 < 2.1× 10−6 (90% CL) , (14)

while BELLE obtained [1]

B+0 = (31.7± 7.1+3.8
−6.7)× 10−6, (f0)+0 = 0.948± 0.106± 0.021 . (15)

We take B+− = B0
+− and B+0 = B0

+0, thus introducing errors of order (1 − f0). These

are much smaller than the present experimental errors on B+− and B+0 and therefore can

be neglected. We use the following averages, based on (14) and (15):

B0
+− = (27± 9)× 10−6,

B0
+0 = (26± 6)× 10−6,

B0
00 = (0.6+0.8

−0.6)× 10−6. (16)
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The value of B00 is based on scaling the number of signal events given in Ref. [2] and

conservatively assuming the efficiency for (f0)00 = 1, which yields the largest rate [11].

The first question to be asked is whether the rates in Eq. (16) are consistent with isospin

symmetry. Note that in the B0
00 → 0 limit, we must have B0

+− = 2B0
+0. The central values

in (16) imply a small B0
00 but B0

+− ∼ B0
+0, thus the consistency with the isospin constraints

is limited. Indeed, a statistical analysis [12] of the rates in Eq. (16) finds the goodness of

the fit is only 24%. Since this confidence level is not extremely small, in the following we

derive limits on δ0 assuming that isospin symmetry holds.4 Using the isospin constraints as

coded in [12] and the branching ratios in Eq. (16), we obtain the 90% CL bound:

cos 2δ0 > 0.83 , (17)

or, equivalently,

|δ0| < 17◦. (18)

Note that even though the statistical significance of B0
+−−2B0

+0 +2B00 6= 0 is small, the last

term in Eq. (10) does play a role. Had we ignored it, we would have obtained cos 2δ0 > 0.80.

It is interesting that the small value of B00/B+0 already puts an upper bound on C+−,

the measure of direct CP violation. For each transversity component, the isospin relations

imply, for Bσ
00/Bσ

+0 < 1/2,

|Cσ
+−| < 2

√√√√ Bσ
00

Bσ
+0

−
( Bσ

00

Bσ
+0

)2

. (19)

The 90% CL bound on B0
00/B0

+− that can be extracted from Eq. (16) yields, to leading order

in the small quantity 1− f0,

|C0
+−| < 0.53 . (20)

VI. CONCLUSIONS

The present measurements of the rates of the various B → ρρ decays already yield

significant limits on the uncertainty in the extraction of α from the CP violating asymmetry

in B0 and B0 decays to ρ+ρ−. Given the large branching fractions of these channels, we

look forward to an asymmetry measurement in the near future which will determine α with

4 It was pointed out in Ref. [3] that the small upper bound on B00/B+0 constrains the penguin pollution.
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interesting precision. To ensure the accuracy of the results it is important to include an

isospin-1 contribution in the fits to data, as in Eq. (5), constrained to vanish when the two ρ

mesons have equal masses. We do not expect the impact of this contribution to be large, but

it could introduce changes of order (Γρ/mρ)
2 to the best fit parameters. Once this effect is

constrained experimentally and the CP-violating quantity S+− is measured, B → ρρ decays

promise to provide the best model independent determination of the parameter α for some

time to come.

Acknowledgments

We thank Y. Frishman, J. Fry, W. Goldberger, A. Gritsan, Y. Grossman, S. Laplace,

G. Raz, A. Schwimmer and T. Volansky for useful discussions. We thank the Aspen Center

for Physics for hospitality, that is where this work was initiated. The work of A.F. was

supported in part by the U.S. National Science Foundation under grant NSF-PHY-9970781.

Z.L. was supported in part by the Director, Office of Science, Office of High Energy and

Nuclear Physics, Division of High Energy Physics, of the U.S. Department of Energy under

Contract DE-AC03-76SF00098 and by a DOE Outstanding Junior Investigator award. Y.N.

is supported by the Israel Science Foundation founded by the Israel Academy of Sciences and

Humanities, by EEC RTN contract HPRN-CT-00292-2002, by a Grant from the G.I.F., the

German-Israeli Foundation for Scientific Research and Development, and by a grant from

the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel. The work

of H.Q. was supported by the Department of Energy, contract DE-AC03-76SF00515.

[1] J. Zhang et al. [BELLE Collaboration], hep-ex/0306007.

[2] B. Aubert et al. [BABAR Collaboration], hep-ex/0307026.

[3] B. Aubert et al. [BABAR Collaboration], hep-ex/0308024.

[4] M. Gronau and D. London, Phys. Rev. Lett. 65, 3381 (1990).

[5] P. F. Harrison and H. R. Quinn (editors), The Babar Physics Book, SLAC Report 504 (1998).

[6] I. Dunietz, H. R. Quinn, A. Snyder, W. Toki and H. J. Lipkin, Phys. Rev. D 43, 2193 (1991).

[7] Y. Grossman and H. R. Quinn, Phys. Rev. D 58, 017504 (1998) [hep-ph/9712306].

11



[8] M. Gronau, D. London, N. Sinha and R. Sinha, Phys. Lett. B 514, 315 (2001) [hep-

ph/0105308].

[9] J. Charles, Phys. Rev. D 59, 054007 (1999) [hep-ph/9806468].

[10] For a review, see: M. Ciuchini, talk at CKM Angles and BaBar Planning Workshop, http://

www.slac.stanford.edu/BFROOT/www/Public/Physics/ckm2003_workshop/ciuchini.pdf.

[11] We thank Andrei Gritsan for providing us with this estimate.
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