
Optimizing 10-Gigabit Ethernet for Networks of Workstations, Clusters, and Grids:
A Case Study ∗

Wu-chun Feng,† Justin (Gus) Hurwitz,† Harvey Newman,†† Sylvain Ravot,†† R. Les Cottrell,‡‡

Olivier Martin,‡ Fabrizio Coccetti,‡‡ Cheng Jin,†† Xiaoliang (David) Wei,†† and Steven Low††

†Los Alamos National Laboratory (LANL) ††California Institute of Technology (CalTech)
Computer & Computational Sciences Division Pasadena, CA 91125

Research and Development in Advanced Network Technology Charles C. Lauritsen Laboratory of High Energy Physics
Los Alamos, NM 87545 {newman,ravot}@caltech.edu

{feng,ghurwitz}@lanl.gov Computer Science & Electrical Engineering Dept.
{chengjin,weixl,slow}@caltech.edu

‡European Organization for Nuclear Research (CERN) ‡‡Stanford Linear Accelerator Center (SLAC)
Information Technology Division SLAC Computing Services

Geneva, Switzerland Menlo Park, CA 94025
{Olivier.Martin}@cern.ch {cottrell,cfabrizo}@SLAC.stanford.edu

Abstract
This paper presents a case study of the 10-Gigabit Ether-

net (10GbE) adapter from Intel R©. Specifically, with appropri-
ate optimizations to the configurations of the 10GbE adapter
and TCP, we demonstrate that the 10GbE adapter can perform
well in local-area, storage-area, system-area, and wide-area
networks.

For local-area, storage-area, and system-area networks in
support of networks of workstations, network-attached stor-
age, and clusters, respectively, we can achieve over 7-Gb/s
end-to-end throughput and 12-µs end-to-end latency between
applications running on Linux-based PCs. For the wide-area
network in support of grids, we broke the recently-set Inter-
net2 Land Speed Record by 2.5 times by sustaining an end-
to-end TCP/IP throughput of 2.38 Gb/s between Sunnyvale,
California and Geneva, Switzerland (i.e., 10,037 kilometers)
to move over a terabyte of data in less than an hour. Thus,
the above results indicate that 10GbE may be a cost-effective
solution across a multitude of computing environments.

∗This work was supported by the US DOE Office of Science through
LANL contract W-7405-ENG-36 Caltech contract DE-FG03-92-ER40701,
and SLAC contract DE-AC03-76SF00515. Additional support was provided
by NSF through grant ANI-0230967, AFOSR through grant F49620-03-1-
0119, and ARO through grant DAAD19-02-1-0283.

This paper is also available as the following LANL technical report:
LA-UR 03-5728, July 2003.

(c) 2003 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by a contractor or affiliate of
the [U.S.] Government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to do
so, for Government purposes only.

1. Introduction

Thirty years ago in a May 1973 memo, Robert Metcalfe
described the technology that would evolve into today’s ubiq-
uitous Ethernet protocol. By 1974, Metcalfe and his col-
league, David Boggs, built their first Ethernet; and by 1975,
they demonstrated what was at the time a dazzling 2.94 Mb/s
of throughput over the 10-Mb/s Ethernet medium. Since that
time, Ethernet has proliferated and evolved tremendously and
has done so in virtual lockstep with the ubiquitous TCP/IP
(Transmission Control Protocol / Internet Protocol) protocol
suite which was started at Stanford University in the summer
of 1973. Today’s Ethernet carries 99.99% of Internet pack-
ets and bears little resemblance to the original Ethernet [11].
About the only aspect of the original Ethernet that still re-
mains is its packet format.

So, even though the recently ratified 10-Gigabit Ether-
net (10GbE) standard differs from earlier Ethernet standards,
mainly with respect to operating only over fiber and only in
full-duplex mode, it still remains Ethernet, and more impor-
tantly, does not obsolete current investments in network in-
frastructure. Furthermore, the 10GbE standard ensures inter-
operability not only with respect to existing Ethernet but also
other networking technologies such as SONET (i.e., Ethernet
over SONET), thus paving the way for Ethernet’s expanded
use in metropolitan-area networks (MANs) and wide-area net-
works (WANs). Finally, while 10GbE is arguably intended
to ease migration to higher aggregate performance levels in
institutional network-backbone infrastructures, the results in
this paper will demonstrate 10GbE’s versatility in a myriad of
computing environments.

The remainder of the paper is organized as follows: Sec-
tion 2 briefly describes the architecture of the Intel 10GbE

SLAC-PUB-10198

Presented at SC'2003 - Supercomputing Conference, November 15-21, 2003, Phoenix, Arizona, USA

512K flash

82597EX
Intel

XAUI

4x3.125Gbps

4x3.125Gbps

G
X

X
S

C
P

S
M
A

P
RX

Optics
TX

Optics

Intel 1310nm Serial Optics

PCI−X Bus
(8.5Gbps)

P
C
I
−
X

D
M
A

M
A
C

PCS
8B/10B

3.125Gbps
SerDes

I/F XGM II

R

R

R

10.3Gbps OUT

10.3Gbps IN

Intel PRO/10GbE−LR

Figure 1. Architecture of the 10GbE Adapter

adapter. Section 3 presents the local-area network (LAN)
and system-area network (SAN) testing environments, exper-
iments, and results and analysis, and Section 4 does the same
for the wide-area network (WAN). Finally, we summarize and
conclude in Section 5.

2. Architecture of a 10GbE Adapter

The recent arrival of the IntelR© PRO/10GbE LRTM server
adapter paves the way for 10GbE to become an all-
encompassing technology from LANs and SANs to MANs
and WANs. This first-generation 10GbE adapter consists of
three major components: Intel 82597EXTM 10GbE controller,
512-KB of flash memory, and Intel 1310-nm serial optics, as
shown in Figure 1.

The 10GbE controller provides an Ethernet interface that
delivers high performance by providing direct access to all
memory without using mapping registers, minimizing pro-
grammed I/O (PIO) read access required to manage the de-
vice, minimizing interrupts required to manage the device,
and off-loading the host CPU of simple tasks such as TCP
checksum calculations. Its implementation is in a single
chip and contains both the medium-access control (MAC) and
physical (PHY) layer functions, as shown at the top of Fig-
ure 1. The PHY layer, to the right of the MAC layer in Fig-
ure 1, consists of an 8B/10B physical coding sublayer and a
10-gigabit media independent interface (XGM II). To the left
of the MAC layer is a direct-memory access (DMA) engine
and the “peripheral component interconnect extended” inter-
face (PCI-X I/F). The former handles the transmit and receive
data and descriptor transfers between the host memory and on-
chip memory while the latter provides a complete glueless in-

terface to a 33/66-MHz, 32/64-bit PCI bus or a 33/66/100/133-
MHz, 32/64-bit PCI-X bus.

As is already common practice with high-performance
adapters such as Myricom’s Myrinet [2] and Quadrics’ Qs-
Net [17], the 10GbE adapter frees up host-CPU cycles by per-
forming certain tasks (in silicon) on behalf of the host CPU.
In contrast to the Myrinet and QsNet adapters, however, the
10GbE adapter focuses on host off-loading of certain TCP/IP
tasks1 rather than on remote direct-memory access (RDMA)
and source routing. As a result, unlike Myrinet and Qs-
Net, the 10GbE adapter provides a general-purpose, TCP/IP-
based solution to applications, a solution that doesnot require
any modification to application codes to achieve high perfor-
mance, e.g., as high as 7 Gb/s between end-host applications
with an end-to-end latency as low as 12µs.

As we will see later, achieving higher throughput will re-
quire either efficient offloading of network tasks from soft-
ware to hardware (e.g., IETF’s RDMA-over-IP effort, known
as RDDP or remote direct data placement [19]) and/or sig-
nificantly faster machines with large memory bandwidth.
Achievingsubstantially higher throughput, e.g., approaching
10 Gb/s, willnot be possible until the PCI-X hardware bottle-
neck in a PC is addressed. Currently, the peak bandwidth of a
133-MHz, 64-bit PCI-X bus in a PC is 8.5 Gb/s (see left-hand
side of Figure 1), which is less than half the 20.6-Gb/s bidirec-
tional data rate (see right-hand side of Figure 1) that the Intel
10GbE adapter can support.

1Specifically, TCP & IP checksums and TCP segmentation.

3. LAN/SAN Tests

In this section, we present our LAN/SAN experimental re-
sults and analysis. The results here show that we can achieve
over 7 Gb/s of throughput and 12-µs end-to-end latency with
TCP/IP.

3.1. Testing Environments

We evaluate the performance of the Intel 10GbE adapter in
three different LAN/SAN environments, as shown in Figure 2:

(a) Direct single flow between two computers
connected back-to-back via a crossover cable,

(b) Indirect single flow between two computers
through a FoundryR© FastIronTM 1500 switch,

(c) Multiple flows through the Foundry FastIron
1500 switch,

where the computers that host the 10GbE adapters are either
Dell R© PowerEdgeTM 2650 (PE2650) servers or Dell Pow-
erEdge 4600 (PE4600) servers.

(Recently, we have also conducted additional back-to-back
tests on computer systems, provided by Intel, with a slightly
faster CPU and front-side bus (FSB). Given that we only had
these systems for a few days, we merely use the results from
these systems for anecdotal purposes as well as a “sanity-
check” on our more exhaustive tests on the Dell PowerEdge
servers.2)

Each PE2650 contains dual 2.2-GHz Intel XeonTM CPUs
running on a 400-MHz front-side bus (FSB), using a
ServerWorksR© GC-LE chipset with 1 GB of memory and a
dedicated 133-MHz PCI-X bus for the 10GbE adapter. The-
oretically, this architectural configuration provides 25.6-Gb/s
CPU bandwidth, up to 25.6-Gb/s memory bandwidth, and 8.5-
Gb/s network bandwidth via the PCI-X bus.

Each PE4600 contains dual 2.4-GHz Intel Xeon CPUs run-
ning on a 400-MHz FSB, using a ServerWorks GC-HE chipset
with 1 GB of memory and a dedicated 100-MHz PCI-X bus
for the 10GbE adapter. This particular configuration provides
theoretical bandwidths of 25.6-Gb/s, 51.2-Gb/s, and 6.4-Gb/s
for the CPU, memory, and PCI-X bus, respectively.

(The systems provided by Intel contain dual 2.66-GHz In-
tel Xeon CPUs running on a 533-MHz FSB, using Intel’s
E7505 chipset with 2 GB of memory and a dedicated 100-
MHz PCI-X bus for the 10GbE adapter. This architecture
provides theoretical bandwidths of 34-Gb/s, 25.6-Gb/s, and
6.4-Gb/s for the CPU, memory, and PCI-X bus, respectively.)

In addition to the above hosts, we use a Foundry FastIron
1500 switch for both our indirect single-flow and multi-flow
tests. In the latter case, the switch aggregates GbE and 10GbE

2We also have even more promising (but again, preliminary) 10GbE re-
sults on a 1.5-GHz Itanium-II system.

PE2650 PE2650

PE2650

FastIron
1500

PE2650

10GbE
 1GbE

FastIron
1500

PE2650

P
E
2
6
5
0

P
E
2
6
5
0

P
E
4
6
0
0

P
E
4
6
0
0

P
E
4
6
0
0

10GbE

10GbE 10GbE

(a) Direct single flow

(c) Multiple flows through the switch

(b) Indirect single flow

Figure 2. LAN/SAN Testing Environments

streams from (or to) many hosts into a 10GbE stream to (or
from) a single host. The total backplane bandwidth (480 Gb/s)
in the switch far exceeds the needs of our tests as each of the
two 10GbE ports is limited to 8.5 Gb/s.

From a software perspective, all the above hosts run current
installations of Debian Linux with customized kernel builds
and tuned TCP/IP stacks. Specific kernels that we used in-
clude 2.4.19, 2.4.19-ac4, 2.4.19-rmap15b, 2.4.20, and 2.5.44.
Because the performance differences between these various
kernel builds prove negligible, we do not report the running
kernel version in any of the results.

3.2. Experiments

In this paper, our experiments focus on the performance
of bulk data transfer. We use two tools to measure network
throughput — NTTCP [16] and Iperf [8] — and note that the
experimental results from these two tools correspond to an-
other oft-used tool callednetperf [14].

NTTCP and IPerf work by measuring the time required
to send a stream of data. Iperf measures the amount of data
sent over a consistent stream in a set time. NTTCP, attcp

variant, measures the time required to send a set number of
fixed-size packets. In our tests, Iperf is well suited for mea-
suring raw bandwidth while NTTCP is better suited for opti-
mizing the performance between the application and the net-
work. As our goal is to maximize performance to the applica-
tion, NTTCP provides more valuable data in these tests. We
therefore present primarily NTTCP data throughout the pa-
per. (Typically, the performance difference between the two is
within 2-3%. In no case does Iperf yield results significantly
contrary to those of NTTCP.)

To estimate the end-to-end latency between a pair of
10GbE adapters, we use NetPipe [15] to obtain an averaged
round-trip time over several single-byte, ping-pong tests and
then divide by two.

To measure the memory bandwidth of our Dell PowerEdge
systems, we use STREAM [10].

To estimate the CPU load across our throughput tests, we
sample/proc/loadavg at five- to ten-second intervals.

And finally, to better facilitate the analysis of data transfers,
we make use of two tools,tcpdump [21] and MAGNET [6].
tcpdump is commonly available and used for analyzing pro-
tocols at the wire level. MAGNET is a publicly available tool
developed in part by the co-authors from Los Alamos Na-
tional Laboratory. MAGNET allowed us to trace and profile
the paths taken by individual packets through the TCP stack
with negligible effect on network performance. By observing
a random sampling of packets, we were able to quantify how
many packets take each possible path, the cost of each path,
and the conditions necessary for a packet to take a “faster”
path. (We note that this is just one of many possible uses for
MAGNET.)

3.3. Experimental Results

This section presents an abridged account of the optimiza-
tions that we implemented to achieve greater than 4 Gb/s of
throughput for a single TCP/IP flow between a pair of low-
end 2.2-GHz Dell PE2650s. For a more in-depth discussion
of each optimization step, we refer the reader to [7].

We begin our experiments with a stock TCP stack. From
this starting point, we implement optimizations one by one
to improve network performance between two identical Dell
PE2650s connected via 10GbE, as shown in Figure 2(a).

The more common device and TCP optimizations result in
little to no performance gains. These optimizations include
changing variables such as the device transmit queue lengths
and the use of TCP timestamps.

3.3.1 Bandwidth

Before commencing our formal testing, we tune the TCP
window sizes by calculating the ideal bandwidth-delay
product and setting the TCP window sizes accordingly [22].

Running in a LAN or SAN, we expect this product to be
relatively small, even at 10GbE speeds. The initial latency
numbers that we observed are 19µs running back-to-back
and 25 µs running through the Foundry switch. At full
10GbE speed, this results in a maximum bandwidth-delay
product of about 48 KB, well below the default window
setting of 64 KB. At observed speeds, the maximum product
is well under half of the default. In either case, these values
are within the scope of the default maximum window settings.

Stock TCP
We begin with single-flow experiments across a pair of un-

optimized (stock) Dell PE2650s using standard 1500-byte and
9000-byte (jumboframe) maximum transfer units (MTUs). In
their stock (i.e., default) configurations, the dual-processor
PE2650s have a standard maximum PCI-X burst transfer size
— controlled by the maximum memory read byte count (MM-
RBC) register — of 512 bytes and run a symmetric multi-
processing (SMP) kernel. In each single-flow experiment,
NTTCP transfers 32,768 packets ranging in size from 128
bytes to 16 KB at increments ranging in size from 32 to 128
bytes.

Figure 3 shows the baseline results. Using a larger MTU
size produces 40-60% better throughput than the standard
1500-byte MTU. For 1500-byte MTUs, the CPU load is
approximately 0.9 on both the send and receive hosts while
the CPU load is only 0.4 for 9000-byte MTUs. We observe
bandwidth peaks at 1.8 Gb/s with a 1500-byte MTU and 2.7
Gb/s with a 9000-byte MTU.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 2048 4096 6144 8192 10240 12288 14336 16384

M
bi

t/s
ec

Payload Size (bytes)

"1500MTU,SMP,512PCI"
"9000MTU,SMP,512PCI"

Figure 3. Throughput of Stock TCP: 1500- vs.
9000-byte MTU

Stock TCP + Increased PCI-X Burst Size
Next, we increase the PCI-X burst transfer size (i.e., MM-

RBC register) from 512 bytes to 4096 bytes. Although this
optimization only produces a marginal increase in throughput
for 1500-byte MTUs, it dramatically improves performance

with 9000-byte MTUs. The peak throughput increases to
over 3.6 Gb/s, a throughput increase of 33% over the baseline
case, while the average throughput increases to 2.63 Gb/s, an
increase of 17%. The CPU load remains relatively unchanged
from the baseline numbers reported above.

Stock TCP + Increased PCI-X Burst Size + Uniprocessor
At the present time, the P4 Xeon SMP architecture assigns

each interrupt to a single CPU instead of processing them
in a round-robin manner between CPUs. Consequently,
our next counterintuitive optimization is to replace the
SMP kernel with a uniprocessor (UP) kernel. This change
further improves average throughput for 9000-byte MTUs by
approximately 10% to 2.9 Gb/s. For 1500-byte MTUs, the
average and maximum throughputs increase by about 25%
and 20% to 2.0 Gb/s and 2.15 Gb/s, respectively. In addi-
tion, the CPU load was uniformly lower than in the SMP tests.

TCP with Oversized Windows + Increased PCI-X Burst
Size + Uniprocessor

Though we calculated that the default window sizes
were much larger than the bandwidth-delay product, we
improve throughput further by setting the window size to
be four times larger than the default setting (and roughly
ten times larger than the actual bandwidth-delay product).
That is, we set the receive socket buffer to 256 KB in
/proc/sys/net/ipv4/tcp rmem. With a 256-KB
socket buffer, the peak bandwidth increases to 2.47 Gb/s with
1500-byte MTUs and 3.9 Gb/s with 9000-byte MTUs, as
shown in Figure 4. A detailed discussion of this particular
optimization will be presented in Section 3.5.1.

Tuning the MTU Size
We achieve even better performance with non-standard

MTU sizes. Figure 5 shows that the peak bandwidth achieved
is 4.11 Gb/s with an 8160-byte MTU.3 This result is a direct
consequence of Linux’s memory-allocation system. Linux
allocates memory from pools of “power-of-2” sized blocks,
An 8160-byte MTU allows an entire packet, i.e., payload +
TCP/IP headers + Ethernet headers, to fit in a single 8192-
byte block whereas a 9000-byte MTU requires the kernel to
allocate a 16384-byte block, thus wasting roughly 7000 bytes.

The above discussion leads us to our next logical step —
using the largest MTU that the Intel 10GbE adapter can sup-
port, namely 16000 bytes. With a 16000-byte MTU, the peak
throughput achieved is 4.09 Gb/s, virtually identical to the
8160-byte MTU case. However, the average throughput with
the larger MTU is clearly much higher, as shown in Figure 5.
The surprisingly marginal increase in throughput is due to the
sender’s congestion window artificially limiting throughput,
as discussed in more detail in Section 3.5.1. It is worth noting

38160-byte MTUs can be used in conjunction with any hardware that sup-
ports 9000-byte MTUs.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 2048 4096 6144 8192 10240 12288 14336 16384

M
bi

t/s
ec

Payload Size (bytes)

"1500MTU,UP,4096PCI,256kbuf,medres"
"9000MTU,UP,4096PCI,256kbuf,medres"

Figure 4. Throughput of TCP with Oversized
Windows and Increased PCI-X Burst Size Run-
ning on a Uniprocessor Kernel

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 2048 4096 6144 8192 10240 12288 14336 16384

M
bi

t/s
ec

Payload Size (bytes)

1GbE (Theoretical)

Myrinet (Theoretical)

Quadrics (Theoretical)

10GbE (Actual)

"16000MTU,UP,4096PCI,256kbuf,medres"
"8160MTU,UP,4096PCI,256kbuf,medres"

Figure 5. Throughput of Cumulative Optimiza-
tions with Non-Standard MTUs

that larger MTUs, and consequently, larger block sizes are not
without consequences. Using larger blocks places far greater
stress on the kernel’s memory-allocation subsystem because
it is generally harder to find the contiguous pages required for
the larger blocks.

(Note: As points of reference, Figure 5 also labels
the theoretical maximum bandwidths for Gigabit Ethernet,
Myrinet [12, 13], and QsNet [17]. A more detailed discussion
of these interconnects versus 10-Gigabit Ethernet is presented
in Section 3.5.4.)

3.3.2 Latency

Although our experiments did not focus on optimizations with
respect to latency, we are acutely aware that low latency is crit-
ical for scientific applications such as global climate model-

ing [24]. Therefore, we report our preliminary latency results
here, demonstrate how end-to-end latency can be improved,
and suggest other avenues for improvement.

Our latency measurements, running NetPipe between a pair
of 2.2-GHz Dell PowerEdge 2650s, produce 19-µs end-to-end
latency when the machines are connected back-to-back and
25-µs end-to-end latency when going through the Foundry Fa-
stIron 1500 switch. As the payload size increases from one
byte to 1024 bytes, latencies increase linearly in a stepwise
fashion, as shown in Figure 6. Over the entire range of pay-
loads, the end-to-end latency increases a total of 20% such that
the back-to-back latency is 23µs and the end-to-end latency
through the switch is 28µs.

To reduce these latency numbers even further, particularly
for latency-sensitive environments, we trivially shave off an
additional 5µs (i.e., down to 14-µs end-to-end latency) by
simply turning off a feature calledinterrupt coalescing (Fig-
ure 7). In our bandwidth tests and the above latency tests in
Figure 6, we had configured the 10GbE adapters with a 5-µs
interrupt delay. This delay is the period that the 10GbE card
waits between receiving a packet and raising an interrupt to
signal packet reception. Such a delay allows multiple packet
receptions to be coalesced into a single interrupt, thus reduc-
ing the CPU load on the host at the expense of latency.

From the perspective of the host system, newer versions
of Linux (which we have yet to test) implement a New API
(NAPI) for network processing. This NAPI allows for better
handling of network adapters (or network interface cards) that
support hardware-based interrupt coalescing by coalescing the
software processing of packets from the network adapter’s
ring buffer. The older API queues each received packet sep-
arately, regardless of whether multiple packets are received
in a single interrupt, resulting in wasted time in an interrupt
context to process each individual packet. In the NAPI, the
interrupt context only queues the fact that packets are ready
to be processed and schedules the packets to be received from
the network interface card later, outside the scope of the in-
terrupt context. This approach provides two major benefits:
(1) less time spent in an interrupt context and (2) more ef-
ficient processing of packets, which ultimately decreases the
load that the 10GbE card places on the receiving host. (In sys-
tems where the host CPU is a bottleneck, it would also result
in higher bandwidth.)

Newer versions of Linux also support TCP Segmentation
Offload (TSO, also known as Large Send), another offload
feature supported by Intel’s 10GbE adapters. TSO allows the
transmitting system to use a large (64 KB) “virtual” MTU.
The 10GbE card then re-segments the payload into smaller
packets for transmission. As the NAPI does for receiving
systems, the implementation of TSO should reduce the CPU
load on transmitting systems, and in many cases, will increase
throughput.

 1.2e-05

 1.4e-05

 1.6e-05

 1.8e-05

 2e-05

 2.2e-05

 2.4e-05

 0 128 256 384 512 640 768 896 1024

S
ec

on
ds

Payload Size (bytes)

Figure 6. End-to-End Latency in Test Configu-
ration

 1.2e-05

 1.4e-05

 1.6e-05

 1.8e-05

 2e-05

 2.2e-05

 2.4e-05

 0 128 256 384 512 640 768 896 1024

S
ec

on
ds

Payload Size (bytes)

Figure 7. End-to-End Latency without Interrupt
Coalescing

3.4. Anecdotal Results

In addition to the more thorough experimental results
above, we have preliminary results on machines that we had
very limited access to. The first set of these machines, pro-
vided by Intel and described briefly in Section 3.1, primar-
ily differ from the Dell PE2650s by having dual 2.66-GHz
CPUs and a 533-MHz FSB. The essentially “out-of-box” per-
formance of the 10GbE adapters on these machines was 4.64-
Gb/s in a back-to-back configuration. (It is worth noting that
this performance required TCP timestamps to be disabled be-
cause enabling timestamps reduced throughput by approxi-
mately 10%. The reason for this behavior is explained in
Section 3.5.2). Latency numbers between these machines ap-
peared to be up to 2µs less than those seen between the Dell
PE2650s, indicating that end-to-end latencies could reach as
low as 12µs.

We also have anecdotal 10GbE results for a 1-GHz quad-
processor Itanium-II system. Specifically, multiple 1GbE
clients were aggregated through a 10GbE switch into a sin-
gle 1-GHz quad-processor Itanium-II system with a 10GbE
adapter. Performing the same set of optimizations, as de-
scribed above, on the Itanium-II system produces a unidirec-
tional throughput of 7.2 Gb/s.

3.5. Discussion of LAN/SAN Results

This subsection presents a more detailed analysis of our
experiments, proposes ways to improve performance further,
and puts our 10GbE results in context with respect to other
network interconnects.

3.5.1. LAN/SAN TCP Windows

Back in Section 3.3, the “9000-byte MTU” throughput results
in Figure 3 showed a marked dip for payload sizes between
7436 and 8948 bytes (as well as a series of smaller, but higher
frequency, dips across all payload sizes). Even optimizing the
PCI-X burst transfer size and using a uniprocessor kernel did
not eliminate the marked dip; however, oversizing the TCP
windowsdid eliminate the marked dip, as shown in Figure 4.

Using tcpdump and by monitoring the kernel’s internal
state variables with MAGNET, we trace the causes of this be-
havior to inefficient window use by both the sender and re-
ceiver. Briefly, the throughput dips are a result of (1) a large
Maximum Segment Size (MSS4) relative to the ideal window
size and (2) Linux’s TCP stack keeping both the advertised
and congestion windows MSS-aligned.5

On the receive side, the actual advertised window is sig-
nificantly smaller than the expected value of 48 KB, as cal-
culated in Section 3.3. This behavior is a consequence
of Linux’s implementation of the Silly Window Syndrome
(SWS) avoidance algorithm [3]. Because the advertised win-
dow is kept aligned with the MSS, it cannot be increased by
small amounts.6 The larger that the MSS is relative to the
advertised window, the harder it becomes to increase the ad-
vertised window.7

On the sender side, performance is similarly limited be-
cause the congestion window is kept aligned with the MSS [1].
For instance, with a 19-µs latency, the theoretical ideal win-
dow size for 10GbE is about 48 KB. With a 9000-byte MTU
(8948-byte MSS with options), this translates to about 5.5
packets per window. Thus, neither the sender nor the receiver
can transfer 6 complete packets; both can do at best 5 packets.
This immediately attenuates the ideal data rate by nearly 17%.

4Loosely speaking, MSS = MTU – packet headers.
5Linux is not unique in this behavior; it is shared by most modern TCPs.
6The window is aligned by advertised window =

(int)(available window
MSS

) ∗ MSS. This rounds the windowdown to
the nearest increment of MSS bytes.

7We note that this is actually an argument fornot increasing the MTU size.

The effect can be even more severe with smaller
bandwidth-delay products, as shown in Figure 8. Such a situ-
ation can arise on either the send or receive side. We describe
the send-side case as it is easier to understand — the theoreti-
cal (or ideal) window size is a hard limit that the sender cannot
exceed (e.g., 26 KB in Figure 8). Because the congestion-
control window must be MSS-aligned on the sender side, the
actual congestion-control window is only 18 KB, or 31% less
than the allowable 26-KB window.

Best possible
window
due to MSS

Theoretical
(~26KB)
or advertised
window

~9K MSS

~9K MSS

~9K MSS

Figure 8. Ideal vs. MSS-allowed Window

In addition to the above inefficiencies, thefull socket-buffer
memory (as allocated for window use by the kernel) on the re-
ceive maynever be available to be advertised as the window.
That is, although the window that the receiver advertises is a
function of the available buffer memory, there is no require-
ment that this available buffer memory be a multiple of the
MSS. As a result, the amount of memory that isnot a multiple
of the MSS is simply wasted.

To further complicate matters, the MSS is not necessarily
constant between communicating hosts, i.e., the sender’s MSS
is no necessarily equal to the receiver’s MSS. Why is this an
issue? Consider a sender MSS of 8960 bytes and a receiver
MSS of 8948 bytes and let the receiver have 33,000 bytes of
available socket memory.8 The receiver will then advertise a
window of (int) 33000

8948 ∗ 8948 = 26, 844 bytes, or 19% less
than the available 33,000 bytes. With a sender MSS of 8960
bytes, the maximum size that the congestion window can be,
due to the fact that the congestion window must be kept MSS-
aligned, is(int) 26844

8940 ∗8940 = 17, 920 bytes, or 33% less than
the receiver’s advertised window and nearly 50% smaller than
the actual available socket memory of 33,000 bytes. If win-
dow scaling is used (as is becoming more prevalent with the
proliferation of gigabit-per-second networks in the wide-area
network), the situation is exacerbated even further because the
accuracy of the window diminishes as the scaling factor in-

8We frequently observe such a situation, i.e., the sender using a larger
MSS value than the receiver, in our tests. This is apparently a result of how
the receiver estimates the sender’s MSS and might well be an implementation
bug.

creases. Even without scaling, in this example, the sender and
receiver are both artificially limiting the bandwidth by a total
of nearly 50%.

To overcome the above problems, network researchers rou-
tinely (and in many cases, blindly) increase the default socket
buffer sizes even further until performance improves. How-
ever, this is a poor “band-aid” solution in general. There
should be no need to set the socket buffer to many times the
ideal window size in any environment; in a WAN environ-
ment, setting the socket buffer too large can severely impact
performance, as noted in Table 1. Furthermore, the low laten-
cies and large MSS in LAN/SAN environments are contrary
to this “conventional wisdom” of setting the window/buffer
size so large. In addition, the above solution does not prevent
the sender from being artificially limited by the congestion
window, as noted earlier. Better solutions might include the
following:

• Modifying the SWS avoidance and congestion-window
algorithms to allow for fractional MSS increments when
the number of segments per window is small.

• Making “better” (or at least, more conservative) adaptive
calculations of the MSS on the receive side.

• Allowing the sender to incrementally decrease the MSS
if the congestion window is locked in a steady state.

In summary, although larger MTUs tend to improve net-
work throughput and reduce CPU load, they magnify prob-
lems that were not as apparent with the standard 1500-byte
MTU, particularly in a LAN/SAN environment. Specifi-
cally, a large MSS relative to the ideal window size (as
in a LAN/SAN) and TCP’s “enforcement” of MSS-aligned
windows results in lower-than-expected, highly-fluctuating
throughput.

(Interestingly, we first ran into these problems when work-
ing with IP over the Quadrics interconnect. The problem man-
ifested itself to a lesser extent due to the lower data rates of
Quadrics QsNet (3.2 Gb/s). However, as latency decreases,
bandwidth increases, and perhaps most importantly, MTU
size increases [9], this problem will only exacerbate itself fur-
ther.)

3.5.2. Analysis of Performance Limits

Given that the hardware-based bottleneck in the Dell PE2650s
is the PCI-X bus at 8.5 Gb/s, the peak throughput of 4.11 Gb/s
is only about half the rate that we expect.

In all of our experiments, the CPU load remains low
enough to indicate that the CPU is not a primary bottleneck.
This is supported by the fact that disabling TCP timestamps
on the PE2650s yields no increase in throughput; disabling
timestamps gives the CPU more time for TCP processing and
should therefore yield greater throughput if the CPU were a

bottleneck. Furthermore, by moving from 1500- to 9000-byte
MTUs, we typically expect a performance increase of 3x-6x
if the CPU were the bottleneck. Our results show an increase
of only 1.5x-2x.

It is possible that the inherent complexity of the TCP re-
ceive path (relative to the transmit path) results in a receive-
path bottleneck. In addition, while we have anecdotal evi-
dence that the ServerWorks GC-LE chipset is capable of sus-
taining better than 90% of the PCI-X bandwidth it has not
been confirmed. In short, both the TCP receive path and the
actual PCI-X bus performance are potential bottlenecks. To
evaluate both, we conduct multi-flow testing of the 10GbE
adapters through our Foundry FastIron 1500 switch. These
tests allow us to aggregate nearly 16 Gb/s from multiple
1GbE-enabled hosts to one or two 10GbE-enabled hosts (or
vice versa).

In the first set of tests, we transmit to (or from) a single
10GbE adapter. These tests identify bottlenecks in the receive
path, relative to the transmit path, by multiplexing the process-
ing required for one path across several machines while keep-
ing the aggregated path to (or from) a single 10GbE-enabled
Dell PE2650 constant. These results unexpectedly show that
the transmit and receive paths are of statistically equal perfor-
mance. Given the relative complexity of the receive path com-
pared to the transmit path, we initially expect to see better per-
formance when the 10GbE adapter is transmitting to multiple
hosts than when receiving from multiple hosts. Previous expe-
rience provides a likely explanation for this behavior. Packets
from multiple hosts are more likely to be received in frequent
bursts than are packets from a single host, allowing the receive
path to benefit from interrupt coalescing, thereby increasing
the receive-side bandwidth relative to transmit bandwidth.9

Multiplexing GbE flows across two 10GbE adapters on in-
dependent buses in a single machine yields results statistically
identical to those obtained using a single 10GbE adapter. We
can therefore rule out the PCI-X bus as a primary bottleneck.
In addition, this test also eliminates the 10GbE adapter as a
primary bottleneck.

Using the Dell PE4600s and Intel-provided dual 2.66-GHz
systems, we determine that memory bandwidth is not a likely
bottleneck either. The PE4600s use the GC-HE chipset, of-
fering a theoretical memory bandwidth of 51.2 Gb/s; the
STREAM [10] memory benchmark reports 12.8-Gb/s mem-
ory bandwidth on these systems, nearly 50% better than that
of the Dell PE2650s. Despite this higher memory bandwidth,
we observe no increase in network performance. There are,
unfortunately, enough architectural differences between the
PE2650 and PE4600 that further investigation is required.

The Intel-provided systems, however, further confirm that
memory bandwidth is not a likely bottleneck. STREAM re-
sults for the PE2650s and Intel-provided systems are within
a few percent of each other. However, the Intel-provided sys-

9This confirms results in [4], albeit by very different means.

tems achieved 4.64 Gb/s with virtually no optimizations while
the heavily optimized PE2650s only reached 4.11 Gb/s. This
difference in performance, better than 13%, cannot be ac-
counted for by differences in the memory bandwidth alone.
A more likely, but related, explanation is the change in front-
side bus (FSB) speed. Further investigation is needed, how-
ever, before making such a conclusion.

All of the above results are supported by Linux’s packet
generator. The packet generator bypasses the TCP/IP and
UDP/IP stacks entirely. It is a kernel-level loop that transmits
pre-formed “dummy” UDP packets directly to the adapter
(that is, it is single-copy). We observe a maximum band-
width of 5.5 Gb/s (8160-byte packets at approximately 88,400
packets/sec) on the PE2650s when using the packet generator.
This rate is maintained when additional load is placed on the
CPU, indicating that the CPU is not a bottleneck. Because the
packet generator is single-copy (as opposed to the IP stack’s
triple-copy), memory bandwidth is not a limit to its perfor-
mance. Our observed TCP bandwidth, which isnot single-
copy, is about 75% of the packet generator bandwidth. It is
reasonable to expect, however, that the TCP/IP stack would
attenuate the packet generator’s performance by about 25%.
While this does not demonstratively rule out memory band-
width as a bottleneck, it does indicate the the observed perfor-
mance is in line with what we should expect were the memory
bandwidth not a bottleneck.

Overall, we are left to believe that the host software’s abil-
ity to move data between every component in the system is
likely the bottleneck. Given that the Linux kernel’s packet
generator reports a maximum total bandwidth of approxi-
mately 5.5 Gb/s on the PE2650s, this movement of data at-
tenuates throughput by 3 Gb/s (i.e., 8.5 Gb/s - 5.5 Gb/s) and is
the primary bottleneck toward achieving higher performance.

3.5.3. Breaking the Bottlenecks

To improve network performance, contemporary network
adapters provide various means for reducing the load on the
host operating system and hardware. These methods, often-
times referred to as “offload” techniques, attempt to move net-
working tasks from the host processor to the adapter. A few of
these techniques have been discussed above, e.g., TSO, check-
sum offloading, and interrupt coalescing. While each of these
techniques do offer measurable performance gains, their main
benefit is in decreasing the load on the host CPU rather than
substantially improving throughput and end-to-end latency.

However, in all of our experiments, we have seen that CPU
load is not the primary bottleneck. Thus, the host system’s
bandwidth is more likely I/O-limited than CPU-limited. So,
the key to improving bandwidth is to either improve the host
system’s ability to move data, decrease the amount of data that
needs to be moved, or decrease the number of times that the
data needs to be moved across the memory bus [18, 19].

The two prevailing approaches towards improving TCP/IP
performance are TCP offload engines (TOEs) and RDMA
over IP [19]. The former will offload the entire TCP stack into
the silicon of the network adapter while the latter will lever-
age the use of a processor on the network adapter to run TCP
software and enable direct data placement from the network
adapter into application space (RDMA over IP), thus elimi-
nating excessive copying across the memory bus and virtually
eliminating processing load from the host CPU.

It is our belief that TOE isnot the best solution for a
general-purpose TCP. Many previous attempts at TOE engines
failed because design and implementation errors are virtu-
ally impossible to change once they are cast in silicon (un-
less an FPGA, field-programmable gate array, or other field-
upgradable processor is used). In a TOE, the TCP implemen-
tation is effectively hidden from the host CPU software, mak-
ing it difficult to interface with. Hardware design and produc-
tion costs are significantly larger than with so-called “dumb”
adapters. Most importantly, the adapter must still transfer
data across the memory and I/O buses, introducing a poten-
tial source of data errors,errors that a TOE has no way to
detect or correct.

Our experience has shown that hardware can have design
defects that lead to data errors. In high-load environments,
heat, high bit rates, or poor hardware designs often contribute
in error rates far higher than predicted by hardware manufac-
turers [20]. This is especially the case with “bleeding edge”
and other high-performance hardware. For instance, in our
educated opinion, received TCP data shouldnot be check-
summed in the adapter; rather they must be computed once
the data has reached the system’s main memory. Unfortu-
nately, current proposals for TOEs perform checksums in the
adapter.

Rather than implement a complete TOE, we would like to
see an implementation of a TCP header-parsing engine, e.g.,
a la ST [18]. Briefly, such an engine would use a hash ta-
ble of established sockets to transfer the payload of incoming
packets directly into user memory. The headers would then be
passed on to the kernel for normal processing. In the event of
out-of-order packets, or other TCP circumstances that cannot
be handled on a fast path, the adapter passes the entire packet
on to the kernel for traditional processing.

Such an implementation requires a small amount of logic
and buffer memory on the adapter itself as well as a simple
interface for interacting with the kernel. Furthermore, this ap-
proach keeps the TCP logic on the host while allowing the
adapter to transfer the payload. It also isolates TCP from
hardware-dependent design decisions and allows for an easy
upgrade, maintenance, and development path for the TCP.

An additional possibility that we hope to see implemented
in the future is the placement of network adapters on the
Memory Controller Hub (MCH), typically found on the
Northbridge. Intel’s Communication Streaming Architecture

(CSA) [5] is such an implementation for Gigabit Ethernet.
Placing the adapter on the MCH allows for the bypass of the
I/O bus. By eliminating the I/O bus, we eliminate both an
important bottleneck and a source of data errors. In addition,
the adapter is better enabled to compute the checksum of the
payload once placed in system memory. Such a computation
would significantly improve the accuracy and reliability of the
checksums.

3.5.4. Putting the 10GbE LAN/SAN Numbers in Perspec-
tive

We now turn to discuss the actual performance that one can
expect out of Gigabit Ethernet, Myrinet, and even QsNet
(rather than the theoretical maximums shown in Figure 5) in
order to provide a better reference point for the 10GbE results.

Our extensive experience with 1GbE chipsets (e.g., In-
tel’s e1000 line and Broadcom’s Tigon3) allows us to achieve
near line-speed performance with a 1500-byte MTU in a
LAN/SAN environment with most payload sizes. With ad-
ditional optimizations in a WAN environment, similar perfor-
mance can be achieved but with a 9000-byte MTU.10

For comparison to Myrinet, we report Myricom’s pub-
lished performance numbers for their adapters [12, 13]. Using
their proprietary GM API, sustained unidirectional bandwidth
is 1.984 Gb/s and bidirectional bandwidth is 3.912 Gb/s. Both
of these numbers are within 3% of the 2-Gb/s unidirectional
hardware limit. The GM API provide latencies on the order of
6 to 7µs. To use this API, however, may oftentimes require
rewriting portions of legacy applications’ code.

Myrinet provides a TCP/IP emulation layer to avoid this
problem. The performance of this layer, however is notably
less than that of the GM API. Bandwidth drops to 1.853 Gb/s,
and latencies skyrocket to over 30µs.

Our experiences with Quadrics’ QsNet produced unidirec-
tional bandwidth and latency numbers of 2.456 Gb/s and 4.9
µs, respectively, using QsNet’s Elan3 API. As with Myrinet’s
GM API, the Elan3 API may require application codes to
rewrite their network code, typically from a sockets API to
Elan3 API. To address this issue, Quadrics also has a highly
efficient implementation of TCP/IP that produces 2.240 Gb/s
of bandwidth and under 30-µs latency. For additional perfor-
mance results, see [17].

In summary, when comparing TCP/IP performance across
all interconnect technologies, our established 10GbE through-
put number (4.11 Gb/s) is over 300% better than GbE, over
120% better than Myrinet, and over 80% than QsNet while our
established 10GbE latency number (19µs) is roughly 400%
better than GbE and 50% better than Myrinet and QsNet. Our
preliminary 10GbE throughput number of 7.2 Gb/s on the
Itanium-II systems is nearly 700% better than GbE, nearly

10Internet2 Land Speed Record set on November 19, 2002: single-stream
TCP/IP of 923 Mb/s over a distance of 10,978 km.

300% better than Myrinet, and over 200% better than Qs-
Net. Finally, even when comparing our 10GbE TCP/IP perfor-
mance numbers with the numbers from other interconnects’
specialized network software (e.g., GM and Elan3), we find
the 10GbE performance to be highly competitive — gener-
ally better with respect to throughput and slightly worse with
respect to latency.

4. WAN Tests

In this section, we provide a brief account of our wide-area
network tests, and more specifically, our Internet2 Land Speed
Record effort back in February 2003.

4.1. Environment

In this section, we present the performance of our 10GbE
adapters across a WAN that stretched from Sunnyvale, Cal-
ifornia to Geneva, Switzerland (i.e., 10,037 kilometers), as
shown in Figure 9. The WAN utilized a loaned Level3 OC-
192 POS (10 Gb/s) circuit from the Level3 PoP at Sunnyvale
to StarLight in Chicago and then traversed the transatlantic
LHCnet OC-48 POS (2.5 Gb/s) circuit between Chicago and
Geneva.

At Sunnyvale, the OC-192 POS circuit originated at a
Cisco GSR 12406 router and was connected to a Juniper
T640 (NSF TeraGrid router) at Starlight in Chicago. The
TeraGrid router then crossed over to a Cisco 7609 router be-
fore heading overseas to a Cisco 7606 router in Geneva. In
traversing roughly halfway across the world, our WAN traffic
crossed two different autonomous systems: AS75 (TeraGrid)
and AS503 (CERN).

At each end point, we had a dual 2.4-GHz Intel Xeon PC
with 2 GB of memory and a dedicated 133-MHz PCI-X bus
for the 10GbE adapter. Each node ran Linux 2.4.19 with
jumbo frames and optimized its buffer size to be approxi-
mately the bandwidth-delay product, i.e.,

echo ‘‘4096 87380 128388607’’ >
/proc/sys/net/ipv4/tcp_rmem

echo ‘‘4096 65530 128388607’’ >
/proc/sys/net/ipv4/tcp_wmem

echo 128388607 > /proc/sys/net/core/wmem_max
echo 128388607 > /proc/sys/net/core/rmem_max

/sbin/ifconfig eth1 txqueuelen 10000
/sbin/ifconfig eth1 mtu 9000

4.2. Experiment & Result

The additive increase, multiplicative decrease (AIMD) al-
gorithm governs TCP’s bandwidth through a sender-side state
variable called the congestion window. The AIMD algorithm
modifies the size of the congestion window according to the
network conditions. Without any packet loss, the congestion

Figure 9. 10-Gigabit Ethernet WAN Environment

window normally opens at a constant rate of one segment per
round-trip time; but each time a congestion signal is received
(i.e., packet loss), the congestion window is halved.

However, as the bandwidth and latency increase, and
hence, increasing the bandwidth-delay product, the effect of a
single packet loss is disastrous in these long fat networks with
gargantuan bandwidth-delay products. For example, in future
scenarios, e.g., 10-Gb/s connection from end-to-end between
Geneva and Sunnyvale, Table 1 shows how long it takes to
recover from a packet loss and eventually return to the origi-
nal transmission rate (prior to the packet loss), assuming that
the congestion window size is equal to the bandwidth-delay
product when the packet is lost.

To avoid this problem, one simply needs to reduce the
packet-loss rate. But how? In our environment, packet loss
is due exclusively to congestion in the network, i.e., packets
are dropped when the number of unacknowledged packets ex-
ceeds the available capacity of the network. In order to reduce
the packet-loss rate, we must “stop” the increase of the con-
gestion window before it reaches a congested state. Because
explicit control of the congestion-control window is not possi-
ble, we turn to the flow-control window (TCP buffer sizing) to
implicitly cap the congestion-window size to the bandwidth-
delay product of the wide-area network so that the network
approaches congestion but avoids it altogether.

As a result, using only a single TCP/IP stream between
Sunnyvale and Geneva, we achieved an end-to-end through-
put of 2.38 Gb/s over a distance of 10,037 kilometers. This
translates into moving a terabyte of data in less than one hour.

Why is this result so remarkable? First, it is well-known
that TCP end-to-end throughput is inversely proportional to
round-trip time; that is, the longer the round-trip time (in this
case, 180 ms, or approximately 10,000 times larger than the
round-trip time in the LAN/SAN), the lower the throughput.

Second, given that the bottleneck bandwidth is the transat-
lantic LHCnet OC-48 POS at 2.5 Gb/s, achieving 2.38 Gb/s
means that the connection operated at roughly 99% payload
efficiency. Third, the end-to-end WAN throughput is actu-
ally larger than what an application user typically sees in a
LAN/SAN environment. Fourth, our results smashed both the
single- and multi-stream Internet2 Land Speed Records by 2.5
times.

5. Conclusion

With the current generation of SAN interconnects such as
Myrinet and QsNet being theoretically hardware-capped at 2
Gb/s and 3.2 Gb/s, respectively, achieving over 4 Gb/s of end-
to-end throughput with 10GbE makes it a viablecommod-
ity interconnect for SANs in addition to LANs. However,
its Achilles’ heel is its 12-µs (best-case) end-to-end latency,
which is 1.7 times slower than Myrinet/GM (but over two
times faster than Myrinet/IP) and 2.4 times slower than Qs-
Net/Elan3 (but over two times faster than QsNet/IP). These
performance differences can be attributed mainly to the host
software.

In recent tests on the dual 2.66-GHz CPUs with 533-
MHz FSB Intel E7505-based systems running Linux, we have
achieved 4.64 Gb/s throughput “out of the box.” The great-
est difference between these systems and the PE2650s is the
FSB, which indicates that the CPU’s ability to move — but
not process — data, might be an important bottleneck. These
tests have not yet been fully analyzed.

To continue this work, we are currently instrumenting the
Linux TCP stack with MAGNET to perform per-packet profil-
ing and tracing of the stack’s control path. MAGNET allows
us to profile arbitrary sections of the stack with CPU-clock
accuracy, while 10GbE stresses the stack with previously im-

Path Bandwidth Assumption RTT (ms) MSS (bytes) Time to Recover

LAN 10 Gbps 1 1460 428 ms
Geneva - Chicago 10 Gb/s 120 1460 1 hr 42 min
Geneva - Chicago 10 Gb/s 120 8960 17 min

Geneva - Sunnyvale 10 Gb/s 180 1460 3 hr 51 min
Geneva - Sunnyvale 10 Gb/s 180 8960 38 min

Table 1. Time to Recover from a Single Packet Loss

possible loads. Analysis of this data is giving us an unprece-
dentedly high-resolution picture of the most expensive aspects
of TCP processing overhead [4].

While a better understanding of current performance bot-
tlenecks is essential, the authors’ past experience with Myrinet
and Quadrics leads them to believe that an OS-bypass proto-
col, like RDMA over IP, implemented over 10GbE would re-
sult in throughput approaching 8 Gb/s, end-to-end latencies
below 10µs, and a CPU load approaching zero. However, be-
cause high-performance OS-bypass protocols require an on-
board (programmable) network processor on the adapter, the
10GbE adapter from Intel currently cannot support an OS-
bypass protocol.

The availability of 10-Gigabit Ethernet provides a remark-
able opportunity for network researchers in LANs, SANs,
MANs, and even WANs in support of networks of worksta-
tions, clusters, distributed clusters, and grids, respectively.
The unprecedented (commodity) performance offered by the
Intel PRO/10GbE server adapter also enabled us to smash
the Internet2 Land Speed Record (http://lsr.internet2.edu) on
February 27, 2003, by sustaining 2.38 Gb/s across 10,037 km
between Sunnyvale, California and Geneva, Switzerland, i.e.,
23,888,060,000,000,000 meters-bits/sec.

Acknowledgements

First and foremost, we would like to thank the Intel team
— Patrick Connor, Caroline Larson, Peter Molnar, and Marc
Rillema of the LAN Access Division — for their tremendous
support of our research efforts and Eric Weigle for his assis-
tance throughout this project.

With respect to the wide-area network,none of the research
(e.g., Internet2 Land Speed Record) would have been possi-
ble without the generous support and contributions of many
people and institutions. From an infrastructure standpoint,
we thank Linda Winkler and Tom DeFanti from Argonne Na-
tional Laboratory and the University of Illinois of Chicago,
respectively, for the use of a Juniper T640 TeraGrid router at
Starlight in Chicago. Equipment-wise, in addition to Intel, we
thank

• Paul Fernes from Level(3) Communications for the OC-
192 link from Sunnyvale to Chicago,

• Doug Walsten from Cisco Systems for the 10GbE switch
support in Sunnyvale, and

• Peter Kersten and John Szewc from Foundry Networks
for providing Los Alamos National Laboratory with a
10GbE switch to run their LAN/SAN tests on.

If any of the above infrastructure pieces would have fallen
through, no attempt at the Internet2 Land Speed Record would
have ever been made.

Last, but not least, we gratefully acknowledge the invalu-
able contributions and support of the following colleagues
during our record-breaking effort on the Internet2 Land Speed
Record: Julian Bunn and Suresh Singh of Caltech; Paolo
Moroni and Daniel Davids of CERN; Edoardo Martelli of
CERN/DataTAG; Gary Buhrmaster of SLAC; and Eric Wei-
gle and Adam Engelhart of Los Alamos National Labora-
tory. In addition, we wish to thank the Internet2 consortium
(http://www.internet2.edu) for creating a venue for “supernet-
working” achievements.

References

[1] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Con-
trol,” RFC-2581, April 1999.

[2] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz,
J. Seizovic, and W. Su, “Myrinet: A Gigabit-Per-Second Local
Area Network,”IEEE Micro, Vol. 15, No. 1, January/February
1995.

[3] D. Clark, “Window and Acknowledgment Strategy in TCP,”
RFC-813, July 1982.

[4] D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An Analy-
sis of TCP Processing Overhead,”IEEE Communications, Vol.
27, No. 6, June, 1989, pp. 23-29.

[5] “Communication Streaming Architecture: Reducing the PCI
Network Bottleneck,” Intel Whitepaper 252451-002. Available
at: http://www.intel.com/design/network/papers/252451.htm.

[6] M. K. Gardner, W. Feng, M. Broxton, A Engelhart, and
G. Hurwitz, “MAGNET: A Tool for Debugging, Analysis
and Reflection in Computing Systems,”Proceedings of the
3rd IEEE/ACM International Symposium on Cluster Comput-
ing and the Grid (CCGrid’2003), May 2003.

[7] G. Hurwitz, and W. Feng, “Initial End-to-End Performance
Evaluation of 10-Gigabit Ethernet,”Proceedings of Hot Inter-
connects 11 (HotI’03), August 2003.

[8] “Iperf 1.6 - The TCP/UDP Bandwidth Measurement Tool,”
http://dast.nlanr.net/Projects/ Iperf/.

[9] M. Mathis, “Pushing Up the Internet MTU,”Presentation to
Miami Joint Techs, Feburary 2003.

[10] J. McCalpin, “STREAM: Sustainable Memory Bandwidth
in High-Performance Computers,” http://www.cs.virginia.edu/
stream/.

[11] R. Metcalfe and D. Boggs, “Ethernet: Distributed Packet
Switching for Local Computer Networks,”Communications
of the ACM, Vol. 19, No. 5, July 1976.

[12] “Myrinet Ethernet Emulation (TCP/IP & UDP/IP) Perfor-
mance,” http://www.myri.com/myrinet/performance/ ip.html.

[13] “Myrinet Performance Measurements,” http://www.myri.com/
myrinet/performance/index.html.

[14] “Netperf: Public Netperf Homepage,” http://www.netperf.org/.
[15] “NetPIPE,” http://www.scl.ameslab.gov/netpipe/.
[16] “NTTCP: New TTCP program,” http://www.leo.org/˜ el-

mar/nttcp/.
[17] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg,

“The Quadrics Network: High-Performance Clustering Tech-
nology,” IEEE Micro, Vol. 22, No. 1, January/Feburary 2002.

[18] I. Philp and Y.-L. Liong, “The Scheduled Transfer (ST) Pro-
tocol,” 3rd International Workshop on Communication, Ar-
chitecture, and Applications for Network-Based Parallel Com-
puting (CANPC’99), Lecture Notes in Computer Science, Vol.
1602, January 1999.

[19] A. Romanow, and S. Bailey, “An Overview of RDMA over IP,”
Proceedings of the First International Workshop on Protocols
for Fast Long-Distance Networks (PFLDnet 2003), Feburary
2003.

[20] J. Stone, and C. Partridge, “When the CRC and TCP Check-
sum Disagree,”Proceedings of ACM SIGCOMM 2000, August
2000.

[21] “TCPDUMP Public Repository,” http://www.tcpdump.org.
[22] B. Tierney, “TCP Tuning Guide for Distributed Application

on Wide-Area Networks,” USENIX;login:, Vol. 26, No. 1,
February 2001.

[23] S. Ubik, and P. Chimbal, “Achieving Reliable High Perfor-
mance in LFNs,” Proceedings of Trans-European-Research
and Education Networking Association Networking Confer-
ence (TERENA 2003), May 2003.

[24] W. Washington and C. Parkinson,An Introduction to Three-
Dimensional Climate Modeling, University Science Books,
1991.

