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Abstract

We have proposed a new class of inflationary scenarios in which the first stage of
expansion is driven by “old” false vacuum inflation. This ends by nucleation of
a bubble, which then further inflates. Unlike the standard slow-roll scenarios the
“clock” ending the second inflationary phase is not a local order parameter, but
rather the average value of an oscillating scalar field, which locks the system at a
saddle point of the potential in a temporary inflationary state. Inflation ends when
the amplitude drops below a certain critical point and liberates the system from the
false vacuum state. The second stage of inflation has only about 50 e-foldings, a
number which is determined entirely by the ratio of the fundamental mass scales,
such as the Planck/string scale and the supersymmetry breaking scale. The density
perturbations are generated due to fluctuations of moduli-dependent Yukawa cou-
plings. In this note we explore the observable imprints in the fluctuation spectrum of
generic cross-couplings in the superpotential and in the Kähler potential. We show
that in the presence of generic non-renormalizable interactions in the superpoten-
tial between the fluctuating modulus and the oscillating inflaton, the amplitude of
the density perturbations is exponentially cut-off for sufficiently large wavelengths.
With reasonable choices of scales and interactions, this long wavelength cutoff can
occur at approximately the current horizon size. The perturbative corrections in
the Kähler potential give non-trivial potentially observable tilt and a running of the
spectral index which is different from the standard inflationary models.
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1 Introduction

In a recent paper [1], we suggested an inflationary scenario which builds on Guth’s
old inflation [2]. The basic idea is to start in a false vacuum as in old inflation, and
construct our observed universe from a single bubble of false vacuum decay. This re-
quires a brief period of inflation after bubble nucleation, and suitable mechanisms for
reheating and production of density perturbations within the bubble. This cosmo-
logical sequence is similar in spirit to “New” inflation [3], but the way it is achieved
in our scenario is dramatically different. The key difference is that the “clock” that
controls the expansion of the bubble is not a local order parameter, i.e., the slowly
rolling inflaton field. Instead, it is an averaged amplitude of a quickly oscillating
scalar field, that locks the system in an inflationary state. Simple toy models which
accomplish this aim were presented in [1]. They involve a rolling scalar field Φ which
stabilizes a second field φ in its false vacuum.1 The Φ field oscillations are redshifted
away during inflation, and eventually φ is destabilized and rolls to its true vacuum.

The idea of separating the inflationary “clock” from the velocity of the slowly
rolling scalar field goes back to Linde’s “Hybrid Inflation” [4], in which (in some
regimes) the inflation can be terminated almost instantly by triggering a phase
transition in the second field. However, the clock that triggers this transition is
still a local slowly-rolling field. In this respect our attitude is more radical, since
in our case what changes slowly is not a local scalar field, but rather its averaged
amplitude.

The chief merit of these models is that the required inflationary potentials are
natural from the viewpoint of softly broken supersymmetry, and do not have to
satisfy any restrictive slow-roll conditions. However some restrictive assumptions are
required to design full models with appropriate reheating and density perturbations.

In particular, for the choices of scales which are natural in the models of [1], it
is necessary to find a nonstandard way of generating the observed density perturba-
tions – given the low scale of inflation and the absence of slow-roll in the minimal
scenario, the perturbations generated by the inflaton are negligible. The decay-rate
fluctuation mechanism of [6, 7] is ideal for this purpose, and was suggested as an
appropriate framework. In this note, we point out that in models of this sort, generic
non-renormalizable couplings of the fluctuating modulus field χ of [6, 7] to the rolling
scalar field Φ which produces the bubble inflation can have striking observational
consequences. They give the χ field an effective mass mχ > H∗ during the early
e-foldings of the bubble inflation, leading to an absence of perturbations on the
largest scales! The perturbations turn on as the oscillation amplitude of Φ decays
away, and mχ relaxes to mχ << H∗. This can have two interesting consequences:
1) For reasonable choices of the Φ − χ coupling, one can design models where the

1The potentials studed in [1] are essentially identical to those which occur in hybrid inflation
[4], though we only use the potential in a small-field region where slow-roll inflation would not
occur. With different choices of parameters than we make, these potentials have also been studied
in connection with parametric resonance in [5].
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perturbations become negligible at scales close to our present horizon size. CMB
measurements at the largest scale are cosmic-variance limited, and so one would like
to find other consequences/predictions of such a scenario.
2) In the same class of scenarios, one finds that the spectral index n(k) has striking
behavior at the wavelengths where the χ field mass is passing through H∗. The form
of n(k) that one finds is unlike that which occurs in other inflationary models, and
is in principle a testable prediction.

The organization of this note is as follows. In §2, we describe the scenario of
[1]. In §3, we show how the imprinting of density perturbations can be influenced
by generic non-renormalizable couplings between the inflaton Φ and the fluctuating
modulus field χ. In three brief appendices, we address several questions about
the approximations that yield our inflationary scenario. We explain how the small
numbers in our potentials come naturally from soft susy breaking scenarios, we
show that tunneling to nonzero values of φ or φ̇ is highly unlikely (such paths are
quickly drawn back to the one we considered in [1]), and we show that perturbative
annihilation of Φ quanta has a negligible influence on our scenario.

Several other ideas about producing features in the CMB at low l have been
proposed, see e.g. [8, 9, 10, 11, 12, 13, 14] and references therein. In particular in
section IIIB of [13], similar potentials to ours are discussed in a different regime, in
exploring a different idea about the same problem.

2 Scenario

The basic building block of our “locked” inflationary scenario is a system of two
scalar fields Φ and φ with an unsuppressed cross-coupling in the potential,

Φ2φ2, (1)

such that when either of the fields is large, the other one acquires a big mass and gets
“nailed” to a zero value. This is a characteristic feature of the “hybrid” model [4],
where this coupling traps one field in a false vacuum, while the other is slowly-rolling.
The regime that we are exploring, however, does not rely on the slow-roll.

We assume that the self-interaction potentials V (Φ) and V (φ) are generated as
a result of supersymmetry-breaking effects in the Kähler potential, and are such
that the system has: 1) a false minimum at some φ = 0, Φ = Φfalse ∼ MP ,
2) a true minimum at φ = φtrue, Φ = 0, and 3) a saddle point at φ = Φ = 0.
Inflation starts in the false vacuum, where φ has a mass ∼ MP , and cannot affect the
tunneling dynamics. So Φ tunnels towards the saddle point, and materializes at some
initial value ∼ MP or so. Throughout this process, the φ field is superheavy and is
firmly fixed at zero value (since this has caused some confusion, see the appendix
for elaboration on this point). After bubble nucleation, Φ rolls towards the saddle
point and oscillates about it. These oscillations induce an effective positive mass2

term for the φ field, and prevent an instability in the φ-direction from developing.

3



Hence the system is locked in a temporary false vacuum state, with energy density
consisting of the constant false vacuum potential energy at the saddle point, plus
the energy density of the oscillator, which redshifts as matter.

Eventually, the oscillator energy density becomes sub-dominant and the system
inflates. Since Φ is a very weakly self-coupled field, we shall ignore the non-linear
part of its self-interactions after tunneling and will only keep the harmonic term in
the potential. The potential then has the form

m2

Φ Φ2 + Φ2φ2 + V (φ) (2)

where V (φ) is a self-coupling potential of φ, which has a maximum at φ = 0 and a
minimum at φ = φtrue.

Before discussing V (φ), let us briefly discuss corrections to the potential of Φ.
Since inflation breaks supersymmetry (spontaneously), the perturbative corrections
to the Kähler potential arising from φ-loops will correct the potential of Φ, even
if all other corrections are absent [15]. The resulting one-loop Coleman-Weinberg
potential for Φ >> m2

soft behaves as

Vone−loop ≃ m2
soft

32π2
|Φ|2ln(|Φ|), (3)

where m2 is a soft mass of φ. The cancellation of the Φ4 term among bosons and
fermions is a general consequence of supersymmetry, which holds even though we
evaluate corrections along the inflationary trajectory where SUSY is spontaneously
broken [15]. It is clear that in our case, these correction are so small that they
are unimportant for the inflationary dynamics. However, as we shall see, similar
corrections may play an important role in creating a non-trivial tilt in the spectrum
of perturbations.

We shall assume that V (φ) is a typical potential for a field which is a super-
symmetric flat direction, whose potential comes entirely from the Kähler potential
after supersymmetry-breaking. The corrections to the Kähler potential that induce
the φ VEV may come either from tree-level gravity-mediated susy-breaking or from
perturbative renormalization due to matter loops. In the former case the VEV at
the true minimum is typically φtrue ∼ MP , whereas in the latter case we may have
φtrue << MP . Both possibilities are considered in the appendix. Irrespective of
the precise form of these corrections, for the flat direction fields whose potentials
and preferred VEVs are generated as a result of soft supersymmetry breaking, the
following is true in general. The curvature at φ = 0 is ∼ m2

soft, and the value of the
false vacuum energy is

V (0) = m2

soft(
φp

true

MP
p−2

) (4)

for some p. For instance for the model discussed in §2 of [1], one has p = 4.
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The inflationary Hubble parameter in such a model is given by H∗ ∼ msoft (
φtrue

MP
)p/2.

The bubble size today is:

Rtoday ∼ c
5p

6

(

MP

H∗

)

7
6 1

Ttoday

(5)

where c = φtrue/MP . This expression was derived as follows. The initial value of the
Φ field inside the bubble is Φin ∼ MP . Hence the initial energy density is m2

softM
2
P ,

and the initial Hubble H ∼ msoft, which also sets the size of most generic bubble to
be ∼ 1/msoft. If φtrue << MP , initially the energy of Φ-oscillations dominates and
there is an interval of matter-dominated expansion until the energy of oscillations
becomes sub-dominant to V (0) (that is until the amplitude of Φ becomes less than
MP cp/2). During the matter-dominated interval the bubble interior grows by a factor
c−

p

3 , after which inflation begins and the universe begins to exponentially expand.
The expansion factor during the subsequent phase of locked inflation is given by

eN =

(

cp/2−1 φtrue

msoft

)
2
3

. (6)

Finally there is an additional expansion factor after reheating

TR

Ttoday
∼

√
H∗MP

Ttoday
(7)

Combining all the factors, we find equation (5).

3 Density perturbations

The density perturbations are generated through the “decay-rate-fluctuation” mech-
anism of references [6, 7]. The idea is that the decay rate Γ of the field φ (or some
other field responsible for the reheating, as in §4.2 of [1]) is controlled by a fluctuat-
ing modulus field. This is reasonably motivated by string theory, where couplings of
the low energy fields are set by the expectation values of moduli. Let χ be a modulus
that controls the decay rate of φ. If the mass of χ is an order of magnitude smaller
than H∗, fluctuations will be imprinted in χ during inflation. These χ fluctuations
will translate into density perturbations because they will lead to fluctuations in the
φ decay rate during reheating. The resulting density perturbations are given by

δρ

ρ
= − 2

3

δΓ

Γ
(8)

Because δΓ ∝ δχ, the spectrum of perturbations will be set by the spectrum of χ
fluctuations.

Our main point is the following. In the presence of generic Planck scale sup-
pressed interactions between χ and the oscillating inflaton field, the resulting spec-
trum is very peculiar and exhibits a sharp cut-off at large wavelengths, which is
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potentially observable. Imagine that χ and Φ have the following generic coupling in
the potential, arising from a coupling in the superpotential:

Φn

Mn−2

P

χ2 (9)

Then, the fluctuations in χ at the beginning of inflation will be strongly suppressed,
due to its high effective mass

µ2
eff =

〈Φn
in〉

Mn−2

P

e−
3
2
nN + µ2, (10)

where 〈Φ〉 is the amplitude of oscillations and N is the number of e-foldings since the
start of inflation. µ is the “bare” mass of χ, which for us means the full contribution
to the mass arising from the the Kähler potential (generally field-dependent). We
assume it to be somewhat below H∗. Fluctuations of χ then are governed by the
following equation

¨δχk + 3 H ˙δχk + ( µ2

eff + k2/a2 ) δχk = 0 (11)

So χ can only start to fluctuate after its effective mass drops below µc ≃ H∗, which
happens only some critical number Nc of e-foldings after the onset of inflation.
Hence, density perturbations should be cut-off at large scales.

To estimate Nc recall that inflation begins when the amplitude of Φ ∼ MP cp/2,
and after this point it decays as 〈Φ〉 = MP cp/2 e−

3
2
N . Thus, we find

e−Nc ∼
(

H∗

MP

)

4
3n

c−
p

3 (12)

Correspondingly the maximal wavelength beyond which perturbations will be sup-
pressed is given by

k−1

c ∼ c
p

3

(

MP

H∗

)

7
6
− 4

3n 1

Ttoday
(13)

Taking c = 1 and p = 4 (as in [1]), with H∗ ∼ 10−12 GeV (to allow TeV
reheating), this is roughly the size of the present horizon (∼ 1028 cm) for n = 6.
For the more generically expected n = 4, one would have to choose smaller values
for H∗ and/or c to accommodate a sufficiently small wavelength to be relevant to
observations in our horizon.

It is well known that cosmic variance bounds make it difficult to improve our
certainty about the significance of the observed low quadrupole and octupole in the
CMB. However, the measurements of the spectral index n(k) will improve in the
future. With this in mind, let us now discuss the k-dependence of the cut-off. The
perturbations generated at N < Nc (that today have k < kc) are suppressed as

δN < Nc
∼ H∗ e

−2πµ(t)
H∗ = H∗ e−2π e−(N−Nc) 3n

4 (14)
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This can be simply understood: de Sitter space has a Gibbons-Hawking temperature
H∗

2π
[18], and (14) is just a reflection of the Boltzmann-suppressed excitations of a

massive field at this temperature. Hence today we should see a sharp cut-off in the
perturbation amplitude at large scales with the following k-dependence

∼ e−2π( kc
k )

3n
4

. (15)

This is a very sharp cut-off even for the lowest possible choice of n = 4, and implies
an abrupt decline in the spectrum for k < kc.

The fit of the observed data to a perturbation spectrum with a sharp cut-off
was done in reference [13], according to which the best fit occurs for k−1

c ∼ 1028cm.
Although our cutoff is smoother than the one postulated by the authors of [13], from
the existing analysis it seems difficult to distinguish between the two possibilities,
and more precise studies are needed.

Because our cut-off is so sharp for k < kc, it would be difficult to distinguish this
mechanism from others which produce a sharp cutoff based on that feature alone.
However, we also have a very different prediction for the behavior of the spectral in-
dex n(k) on scales k > kc. In particular, the way the tilt is imprinted in the spectral
index is very different from the standard inflationary case. In slow roll inflation, the
primary source for the tilt is the fact that the Hubble parameter inevitably changes
during the last 60 or so e-foldings, resulting in a subsequent change of the pertur-
bation amplitude (this is the reason that in standard inflationary models, having
n = 1 is unnatural). For a thorough discussion of the perturbations in standard
inflation, see e.g. [16]. In our scenario, the Hubble parameter is essentially constant
throughout the inflationary period and its evolution cannot result in a tilt. A tilt is
nevertheless generated during the evolution of χ-fluctuations on superhorizon scales,
due to the simple fact that different wavelengths spent different amounts of time
before finally being translated into density perturbations by reheating.

After a given wavelength of χ crosses outside the inflationary horizon (or more
precisely, after k/a < 1/µ), the k2-term in equation (11) becomes subdominant
and the mode is almost frozen, apart from the fact that the small “bare” mass term
µ2 very slowly pushes it down. As stated above, this mass term comes from the
Kähler potential, and is assumed to be somewhat below H∗. Because χ and Φ are
most likely coupled through the Kähler potential, µ is not in general a constant
throughout the inflation, but rather undergoes some change itself.

For µ2(t) << H2
∗ , the ¨δχk term in equation (11) is subdominant, and the evo-

lution of the fluctuations on superhorizon scales is given by the following equation:

δχk ∝ e−
∫ t

0

µ2(τ)
3H∗

dτ (16)

Remembering that k ∝ e−H∗t, this can be recast as

δχk ∝ k
1
t

∫ t

0

µ2(τ)

3H2
∗

dτ
(17)
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This implies that the spectral index is given by

n − 1 =
1

t

∫ t

0

µ2(τ)

3H2
∗

dτ (18)

and for the running we have

dn

d lnk
=

1

(lnk)2

∫ t

0

µ2(τ)

3H∗
dτ +

1

lnk

µ2(t)

3H2
∗

(19)

For the particular case of a constant µ2 we would immediately get

n − 1 =
µ2

3H2
∗

(20)

However, in general µ(t) won’t be constant, even after the contribution from the
cross couplings in the superpotential become negligible. This is because of the cross
couplings between χ and Φ in the Kähler potential. It follows from the standard
rules for supersymmetric Lagrangians that these couplings are universally suppressed
by the soft supersymmetry breaking scale (the Kähler potential couplings can only
contribute in the scalar potential if the auxiliary F -component of at least one of
the chiral superfields is non-zero, see the appendix for a detailed discussion). In our
case the susy breaking scale is ∼ H2

∗ , and so the corrections to µ2 coming from the
Kähler potential can generically be parameterized as

µ2 = H2

∗

(

α0 + α1 ln(|Φ|) + α2 (ln(|Φ|))2 + · · ·+ (|Φ|/MP )n + · · ·
)

(21)

where we have explicitly separated the Φ-independent (α0-term) and the different
types of Φ-dependent contributions. The α-coefficients parameterize their strength
relative to the tree-level soft supersymmetry breaking measured by H∗.

Because the amplitude of Φ decreases exponentially quickly, the power-law terms
very quickly diminish after the onset of inflation, and cannot produce any observ-
able effect. The log-terms in contrast change very slowly, and have a potentially
observable late time effect. So we shall now focus on these terms. Their origin is
the perturbative renormalization of the Kähler potential. Because, unlike the super-
potential, the Kähler metric is not protected by any non-renormalization theorem,
it is unnatural to assume any strong suppression of the α-coefficients. We shall
take their typical value to be roughly a one or two-loop factor times a number of
order one. Taking into account the explicit time-dependence of the Φ-amplitude,
and using equations (18) and (19), we arrive at the following expressions for the tilt

n − 1 =
α0

3
+

α1

4
ln

k

k0

+
α2

4
ln2 k

k0

(22)

and the running
dn

d lnk
=

α1

4
+

α2

2
ln

k

k0

(23)
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The k-dependence of the above cosmological parameters is rather striking and differ-
ent from the known inflationary models. The precise values of the α-coefficients are
model dependent, but their natural values are consistent with the present WMAP
data and are potentially detectable in the future. According to this data [19], for
instance, for k0 = 0.002 Mpc−1, the central value of our α1

2
is around 0.077. This is

certainly consistent with the natural assumption that α1 is a one-loop factor.

A Appendix

A.1 Moduli potentials

Let us briefly discuss the origin of V (φ). According to our assumption, φ is some
supersymmetric flat direction field, and thus V (φ) should vanish in an exact susy
limit. Supersymmetry breaking effects transmitted through the Kähler potential
induce a non-zero V (φ) with a minimum at φ = φtrue. We shall distinguish two
possibilities. The first is when the relevant Kähler terms come from tree-level gravity
mediated supersymmetry breaking. In such a case the Kähler metric can be taken
to be

K = Θ+Θ + Θ+Θ f

(

φ

MP

)

+ ... (24)

Here Θ is the “spurion” superfield whose F -term breaks supersymmetry ΘF = M2,
and f is some generic polynomial function

f = λ1

φ2

M2
P

+ λ2

φ4

M4
P

+ ... (25)

with λi ∼ 1. After substituting the value of this F -term into (24), we generate the
following effective potential for φ, at the leading order in the expansion in powers
of f

V (φ) ≃ −M4 f

(

φ

MP

)

(26)

Note the over-all minus sign in the potential relative to the Kähler potential. If
λ1 > 0, the potential has a maximum at φ = 0, as we need in our inflationary
scenario. Since the higher order terms only become significant for φ ∼ MP , the
minimum of the potential will be established only at some large value φtrue ∼ MP .

If, however, φ has some unsuppressed interactions with other gauge or chiral
superfields, the minimum can be established at values much smaller than MP . The
reason is that the perturbative renormalization of the Kähler potential can dominate
over the gravity-mediated higher corrections. The classic example of spontaneous
symmetry breaking due to perturbative Kähler renormalization is Witten’s “inverse
hierarchy” mechanism [20]. Another simple example is the flip of the sign of the
gravity-mediated soft mass for φ due to perturbative running. The effective potential
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for φ then can be approximated as

V (φ) = m2

soft φ
2 (1 + α ln(φ/MP )) + MP − suppressed corrections (27)

where α is the renormalization loop factor, and m2
soft = −λ1 M4/M2

P is the leading
term in the gravity mediated contribution in (26). Choosing λ1 < 0, the minimum
at φ = 0 will only get destabilized after renormalization effects are included. For
α << 1 the minimum then will be developed at

φtrue ∼ e−
2
α MP (28)

This gives us a natural mechanism for designing models that have c < 1.

A.2 Off-trail tunneling

We are assuming that for the generic bubble the initial condition of the system
after tunneling is Φ = Φin, φ = 0. This is well justified for the following reason.
When the system sits in the false vacuum state Φ = Φfalse ∼ MP , φ = 0, the
curvature of the potential in the φ direction is ∼ M2

P , and in the Φ direction it is
only ∼ H2. The energetically most favorable trajectory goes through the barrier,
which is the maximum of the self-interaction potential of Φ. In the generic bubble,
Φ cannot tunnel all the way to Φ = 0, but instead will be materialized at some
Φin ∼ MP on the other side of the barrier. In the language of tunneling, this is
because the relevant instanton is the Hawking-Moss instanton [17] which tunnels to
the top of the barrier, not the true vacuum. In the language of stochastic inflation
[21], this is because one fluctuates to the top of the hill and then rolls down, instead
of fluctuating directly to the true vacuum.

Hence everywhere around the tunneling trajectory of interest φ has a Planck scale
mass. Since the energy scales involved in the tunneling dynamics are much smaller, it
is obvious that φ can be integrated out and cannot influence the tunneling dynamics.
However, let us try to keep the track of φ explicitly, and see what happens if the
system instead tunnels to some point Φin ∼ MP , φin 6= 0. Since φ has a Planckian
mass, tunneling to such a point would be equivalent to exciting a condensate of φ
particles with an occupation number Nφ ∼ MP φ2

in, and an energy density

ρφ ∼ M2

P φ2

in. (29)

Unless φin < H∗, the resulting energy density is bigger than the inflationary energy
density, and nucleation of such a bubble will be suppressed by an additional expo-
nential factor ∼ φin

H∗

. On the other hand if φin < H∗, the system will very quickly be
pulled back to the point φ = 0 due to an almost instant decay of the φ-condensate.
Indeed, the decay rate of such a condensate into Φ-particles is Γ ∼ mφ ∼ MP

(given the Planckian expectation value of Φ). This is much faster than one inverse
oscillation time in the Φ-direction (and also much faster than the expansion rate
of the Universe H∗). So φin will decay to φ = 0 well before the system has any
chance to reach the saddle point. Similar remarks obviously apply to tunneling to
a configuration with φ̇ 6= 0.
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A.3 Decay rate of Φ

One might worry that perturbative annihilation of Φ particles to φ particles could
lead to an earlier end of the locked inflation than the naive estimate suggests. Here
we argue that in fact, these decays are negligible.

The naive perturbative decay rate Φ Φ → φ φ is

Γ2Φ→2φ ∼ mΦ (30)

(the dimensionless coupling is set to one). This is only applicable, however, for
small oscillation amplitudes. It does not take into account the non-perturbative
effect of the Φ condensate on the φ mass, which blocks the process. This can be
understood as follows. During most of the oscillation time φ is much heavier than
Φ, and annihilation is blocked. The process is allowed in a very narrow time interval
(per each oscillation), during which φ is lighter than Φ. The corresponding fraction
of time per oscillation when the annihilation is allowed is mΦ

〈Φ〉
. Therefore to first

approximation, we can model the system by saying that the annihilation rate will
be suppressed to roughly

Γ2Φ→2φ ∼ m2
Φ

〈Φ〉 (31)

This is negligible compared to the expansion rate of the Universe H∗, and is highly
inefficient.
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