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Abstract

We study the duality of N = 1 gauge theories in the presence of a massless adjoint

field. We calculate the superpotential using the factorization method and compare with

the result obtained by applying Kutasov duality. The latter result is just the leading term

of the former, indicating that Kutasov duality is exact only in the IR limit as claimed in

the original literature. We also study various checks for the equivalence of the calcula-

tional methods developed recently: factorization methods, diagrammatic expansion, loop

equations, integrating fluxes.
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1 Introduction

Recently, Dijkgraaf and Vafa discovered a surprising link between effective superpotentials of

supersymmetric gauge theories and the effective potential of an associated bosonic matrix model

[1]. This link allows one to obtain nonperturbative results by doing a perturbative calculation.

It is a powerful method to compute the effective superpotential of N = 1 gauge theories with

massive matter in tensor and fundamental representations. However, it is difficult to use this

method if the gauge theory contains massless adjoint fields.1 More recently, it is understood why

such a simplification can arise as a consequence of (super)symmetries by considering anomalous

Ward identities associated to the Konishi anomaly [2] (see also [3]), which turns out to be

the same as the loop equation in the matrix model. The loop equation is identical to the

minimization of the superpotential, which in turn requires that all periods of the generating

1-form on the Riemann surface defined by the superpotential are integers [4, 5, 6, 7]. By Abel’s

theorem, the 1-form must be a derivative of a meromorphic function ψ. Finally, the condition

that ψ be single valued on the reduced Riemann surface is the factorization of the Seiberg-

Witten curve of the original N = 2 theory to the reduced curve defined by the superpotential.

This completes the recipe for the solution to the problem and corresponds to extending the

earlier results of Vafa and his collaborators [8, 9] on the problem without fundamentals.

In a recent paper [11], we utilized Kutasov duality [12] and the gauge theoretic method

[13, 14] to find the superpotential of SU(Nc) gauge theory with Nf massive fundamental fields

and a massless adjoint field having nontrivial tree level superpotentials. More specifically, for

a theory with tree level superpotential

Wtree =
2∑

l=1

Tr(ml Q̃Φl−1Q) + 1
3
g trΦ3, (1.1)

we have

Weff = gΛ4
L Tr

(
m2m

−1
1

)
, (1.2)

To get this result, we first worked out the case where both the adjoint as well as the fundamental

fields are massless. Then Kutasov duality was used to map the result to the case where the

fundamental fields are massive.

In this paper, we will calculate the superpotential for the same theory using the method of

factorizing the Seiberg-Witten curve developed more recently [8, 9, 4, 15, 16]. We work out

1See however [17], where the case of massless fundamental fields is discussed.
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both two-cut as well as one-cut solutions. It turns out that the gauge theory result coincides

with the one-cut solution rather than the generic two-cut solution. In that case, what we found

is that the result obtained by duality [11] is just the leading term of what is found here. This

result can be interpreted as the statement that Kutasov duality holds only in the IR limit where

the scale of the theory Λ → 0.

The rest of the paper goes as follows: in section 2, we will briefly review the factorization

method used in this paper. In section 3, we will calculate the superpotential. In section 4,

we give an account for the equivalence of factorization of the Seiberg-Witten curve and the

minimization of the superpotential by an explicit calculation. Section 5 will give a summary

and the conclusion.

2 Matrix model and factorization of the Seiberg-Witten

curve

Here we give a lightning review of the necessary material. We start from the matrix model

partition function

Z =
1

vol(G)

∫
dΦdQidQ̃i exp


− 1

gs
W (Φ) − 1

gs

Nf∑
i=1

[
Q̃iΦQ

i −miQ̃iQ
i
] , (2.1)

where W (z) is a polynomial of order n+ 1. Diagonalizing Φ and integrating over Q and Q̃, we

get

Z ∼
∫ N∏

a=1

exp


− 1

gs
W (λa) + 2

N∑
a<b

log(λa − λb) −
Nf∑
i=1

∑
a

log(λa −mi)


 (2.2)

The saddle point equation in the limit gs → 0 and N → ∞ with S = gsN fixed, is called the

loop equation:

Sω2(z) +W ′
0(z)ω(z) +

1

4
f(z) = 0, (2.3)

where ω(z) is the resolvant defined as

ω(z) =
1

N
tr

(
1

Φ − z

)
=

1

N

∑
a

1

λa − z
(2.4)

and f is a polynomial of order n− 1 yet to be determined.
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The large N can be expressed in terms of density of eigenvalues ρ(λ) = 1
N

∑
a δ(λ − λa)

normalized by
∫
ρ(λ) = 1. In terms of it, ω(z) =

∫
dλρ(λ)

λ−z
and

ρ(λ) =
1

2πi
[ω(λ+ iε) − ω(λ− iε)] =

1

2πi
Disc[ω(z)]. (2.5)

The loop equation can be rewritten as a defining equation of a hyperelliptic Riemann surface

y2 = W ′
0(z)

2 + f(z), with y(z) = 2Sω(z) +W ′(z). (2.6)

The curve has n cuts in the z plane. The eigenvalues of Φ are distributed along the cuts

according to f . Let Ni be the number of eigenvalues along the i-th cut: Ni = N
∫
dλρ(λ),

and let Si := gsNi be finite in the limit N → ∞, gs → 0. Using the eq.(2.5), the latter can

be rewritten as Si = − 1
4πi

∮
Ai
y(z)dz, where Ai is a contour encircling the i-th cut. Following

[9, 7], we denote by P,Q the point z = ∞ on the two sheets of the hyperelliptic curve such

that y(P ) ∼ W ′
0(P ). The hyperelliptic curve can be given canonical homology cycles Ai(i =

1, ..., n− 1) and Bi = B̂i − B̂n(i = 1, ..., n− 1). When n = Nc, f and the Seiberg-Witten curve

were determined in [7] following the work in [9]. For n < Nc, this problem is solved in [7, 5].

The result is

Weff =

n∑
l=1

Nc,i
∂Fs

∂Si
+ Fd + 2πiτ0

n∑
l=1

Si. (2.7)

One can easily express the relevant quantities in terms of the integral of y’s over the infinite

cycles,
∂Fs

∂Si
= −1

2

∫
B̂i

ydz = −
∫ P

ei

ydz, Fd =
1

2

∫ P

mi

ydz, (2.8)

up to the integral constants cancelling the divergences, which are independent of S. Here, the

ei’s are the boundaries of the cuts. Finally we get

Weff = −
n∑

l=1

Nc,i

(∫ P

ei

ydz −W (P )

)
+

1

2

(∫ P

mi

ydz −W (P ) +W (mi)

)
+ 2πiτ0

n∑
l=1

Si. (2.9)

What is shown in [7, 5] is that the minimization of this superpotential is equivalent to the integer

periodicity along Ai and Bi cycles. By Abel’s theorem, the 1-form ω(z) must be a derivative

of a meromorphic function ψ, i.e., ω(z)dz = dψ. For Nf < 2Nc, ψ = P (z) +
√
P 2(z) − αB(z).

Finally, the condition that ψ be single valued on the reduced Riemann surface y2 = W ′2 + f is

the factorization of the Seiberg-Witten curve of the original N = 2 theory to the reduced curve

defined by the superpotential.

P 2
N(z) − αB(z) = F2m(z)H2

N−m(z),

W ′2
n+1(z) + fn−1(z) = F2m(z)Q2(z). (2.10)
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The sub-indices of the polynomials are their orders and the number of cuts m in eigenvalue space

is related to the order of F2m. This completes the recipe for the solution to the problem and

corresponds to extending the earlier result of Vafa and his collaborators [8, 9] on the problem

without fundamentals.

3 Cubic potential in the presence of fundamentals

We now evaluate the superpotential using the factorization method. We consider the simplest

nontrivial case: Nc = 3 and Nf = 2. We take the superpotential of the adjoint field Φ to be

W =
g

3
trΦ3 +

mφ

2
trΦ2 + λtrΦ, (3.1)

such that

W ′(z) = gz2 +mφz + λ. (3.2)

Since W ′ is of degree two, y =
√
W ′2 + f1 will have at most two cuts and the relevant Riemann

surface is of genus one, allowing an explicit study in terms of well known technology on the

torus.

3.1 One-cut case

First we solve the one-cut condition: W ′2
3 + f = F2 · Q2

1. It is easy to see that number of

unknowns is bigger than number of equations by 1. For a cubic potential, Q must be linear.

Hence we put Q = x− x3. Then

(x2 +
mφ x

g
+
λ

g
)2 +

f1 x+ f0

g2
= (x− x1) (x− x2) (x− x3)

2 (3.3)

We introduce the variables ∆ := (x1 − x2)/2 and T := (x1 + x2)/2. After some algebra, we can

show that x3 can be determined by ∆ from the equation

W ′(x3) +
1

2
g∆2 = 0, (3.4)

and T, f0, f1 can be determined in terms of ∆, x3 as follows;

T = −mφ/g + x3, f1 = (g∆)2(2x3 +
mφ

g
), f0 = g∆2(mφx3 + 2λ+

3

4
g∆2). (3.5)
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To determine ∆, we must use the factorization condition,

P 2(x) − 4Λ2Nc−Nf

Nf∏
i=1

(x−mi) = F2(x)H
2(x). (3.6)

For Nc = 3, Nf = 2, and setting m1 = m2 = m, we have the factorized version

P (x) − 2 εΛ2 (x−m) = (x− x1) (x− h1)
2,

P (x) + 2 εΛ2 (x−m) = (x− x2) (x− h2)
2. (3.7)

Since we are mainly interested in the SU(3) case, we impose the traceless condition explicitly:

x1 + 2h1 = 0, x2 + 2h2 = 0. (3.8)

Then eq. (3.7) gives

3T∆ = 4εΛ2, 3T 2∆ + ∆3 + 8εΛ2m = 0, (3.9)

and ∆ is determined by

∆4 + 8εmΛ2∆ +
16

3
Λ4 = 0. (3.10)

Similarly, T is determined by

T 4 + 2mT 3 +
16

27
Λ4 = 0. (3.11)

For Λ � m, we can solve for ∆ and T in terms of a power series in Λ. There are two real

solutions: One solution is of integer powers in Λ;

∆ = −2

3

Λ2

m
− 2Λ6

81m5
− 8Λ10

2187m9
− 44Λ14

59049m13
+O(Λ18),

T = −2m+
2Λ4

27m3
+

2Λ8

243m7
+

10Λ12

6561m11
+O(Λ16). (3.12)

It turns out that this solution does not correspond to the result obtained in gauge theory. The

other solution is of fractional power in Λ: T ∼ −(2/3)(Λ4/m)1/3 and ∆ ∼ −2(εmΛ2)1/3. In

order to understand this latter solution, we introduce ΛL
3 = mΛ2. In fact ΛL is precisely the

low energy quantum scale appearing in the field theory analysis that is defined by

Λ2Nc−Nf detm = Λ2Nc
L . (3.13)

In terms of ΛL, the second solution is analytic in ΛL and given by

T = −2 Λ2
L

3m
− 2 Λ4

L

27m3
− 2 Λ6

L

81m5
− 70 Λ8

L

6561m7
− 308 Λ10

L

59049m9
− 2 Λ12

L

729m11

− 21736 Λ14
L

14348907m13
− 111826 Λ16

L

129140163m15
+O(Λ20

L ), (3.14)
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∆/ε = −2 ΛL +
2

9m2
Λ3

L +
4

81m4
Λ5

L +
40

2187m6
Λ7

L +
2

243m8
Λ9

L

+
728

177147m10
Λ11

L +
10472

4782969m12
Λ13

L +
8

6561m14
Λ15

L +O(Λ17
L ). (3.15)

3.1.1 massless adjoint

Finally, we can calculate the superpotential for the massless adjoint field,

Weff = gu3 =
g

4
(T + ∆)3 − 2gεΛ3

L, (3.16)

as a power series in ΛL:

Weff = −2 g

m
ΛL

4 +
4 g

27m3
ΛL

6 +
2 g

81m5
ΛL

8 +
16 g

2187m7
ΛL

10

+
2 g

729m9
ΛL

12 +
208 g

177147m11
ΛL

14 + O(ΛL
16). (3.17)

Notice the absence of a term proportional to Λ3
L and the independence of the superpotential

of the choice of ε = ±1. In fact, there is no term with an odd power of ΛL. Considering the

structure of eq. (3.16) and the Λ dependence of T , ∆ in eqs. (3.14),(3.15), this result seems to

be rather nontrivial.

3.1.2 massive adjoint

For the case when the adjoint field is massive in the SU(3) theory, all the calculations are the

same except that

Weff = gu3 +mφu2. (3.18)

Using

u2 := 3(T + ∆)2/4 − 2εΛ3
L/m, (3.19)

the superpotential is calculated to be

Weff = 3mφ ΛL
2 + (−2 g

m
− 1

3

mφ

m2
) ΛL

4 + (
4 g

27m3
− 1

27

mφ

m4
) ΛL

6

+ (
2 g

81m5
− 7

729

mφ

m6
) ΛL

8 + (
16 g

2187m7
− 22

6561

mφ

m8
) ΛL

10 + (
2 g

729m9

− 1

729

mφ

m10
) ΛL

12 + (
208 g

177147m11
− 988

1594323

mφ

m12
) ΛL

14 + O(ΛL
16). (3.20)
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3.2 Generic two-cut case

We can consider an N = 1 theory with superpotential W as a deformation of an N = 2 theory

with particular moduli parameters for which the following equation holds:

PNc(x; up)
2 − 4Λ2Nc−Nf

Nf∏
i=1

(x−mi) = H2
N−n(x)

1

g2
n+1

(W ′2 + f), (3.21)

where PN (x) = det(x− Φ) for Nf < Nc.
2 This corresponds to the Q = 1 case in (2.10). This

equation dictates that, apart from the n photons, there should be N − n extra massless fields

like monopoles and dyons. Notice that if we let the coefficient of highest power be 1, there are

Nc + (Nc − n) + n parameters and 2Nc equations. Therefore, given W ′ and the matter part

4Λ2Nc−Nf
∏Nf

i=1(x −mi), both the moduli of the Seiberg-Witten curve, PN , as well as those of

the monopoles, HN−n, are uniquely fixed. For the parameters satisfying this factorization, the

glueball fields Si are also determined in terms of the classical data of W,mi and the quantum

scale Λ.

For our case Nf = 2, Nc = 3, we carry out the factorization under the assumption that all

fundamental hypermultiplets have the same mass m :

P 2
3 − 4Λ4(x−m)2 = (x− a1)

2(W ′2 + f)/g2. (3.23)

Notice that the left hand side is factorized canonically, one of (P3 ± 2Λ2(x−m)) must have the

factor (x− a1)
2. Let

P3 − 2εΛ2(x−m) = (x− a1)
2(x− a2), (3.24)

with ε = ±1. Then,

P3 + 2εΛ2(x−m) = (x− a1)
2(x− a2) + 4εΛ2(x−m). (3.25)

Therefore we can identify

(W ′2 + f)/g2 = (x− a1)
2(x− a2)

2 + 4εΛ2(x−m)(x− a2). (3.26)

2For Nf > Nc, the eq.(3.21) should be replaced by:

(PN (x; up) +
1
4
Λ2Nc−Nf QNf−Nc)

2 − 4Λ2Nc−Nf

Nf∏
i=1

(x − mi) = H2
N−n(x)

1
g2

n+1

(W ′2 + f), (3.22)

with Q =
∑Nf−Nc

i xNf−Nc−iti(m).

8



Since f is at most linear in x, we can determine f and ai in terms of classical data and Λ by

the identification

W ′/g = (x− a1)(x− a2) + 2εΛ2,

f/g2 = 4εΛ2(a1 −m)(x− a2) − 4Λ4. (3.27)

Therefore a1, a2 are solutions of W ′/g − 2εΛ2 = 0:

a1, a2 = −mφ

2g
±
√
m2

φ

4g2
− λ

g
+ 2εΛ2. (3.28)

Since f = −4gSx+ f0, the factorization determines the exact value of gluino condensate:

S = εgΛ2


−mφ

2g
−m+

√
m2

φ

4g2
− λ

g
+ 2εΛ2


 . (3.29)

To calculate the superpotential in this case, we use the method of [8].

P3(x) = (x− a1)
2(x− a2) + 2εΛ2(x−m) :=

Nc=3∑
i=0

sNc−ix
i. (3.30)

Using Newton’s relation, ksk +
∑

r rursk−r = 0,

u1 = −s1, u2 = −s2 +
1

2
s2
1, u3 = −s3 + s2s1 − 1

3
s3
1. (3.31)

And we get

u1 = 2a1 + a2,

u2 =
1

2
(2a2

1 + a2
2) − 2εΛ2,

u3 =
1

3
(2a3

1 + a3
2) − 2εΛ2(2a1 + a2 −m). (3.32)

Therefore

Weff = gu3 +mφu2 + λu1

= 2W (a1) +W (a2) − 2εΛ2(mφ + g(2a1 + a2 −m)). (3.33)

Notice that the minimization of Weff w.r.t. ai gives

W ′(ai) = 2gεΛ2, for i = 1, 2. (3.34)
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This is consistent with the factorization result (3.27). After some calculation using (3.28), we

get

Weff = −3

2

λmφ

g
+

1

4

m3

g2
+ (mφ + 2gm)εΛ2 +

(
2

3
λ− m2

φ

6g
− 4

3
gεΛ2

)√
m2

φ

4g2
− λ

g
+ 2εΛ2 (3.35)

This result contains both the disk as well as the sphere contribution as argued in [15].

In the case of SU(3), we have to impose the traceless condition: u1 = dWeff/dλ = 2a1+a2 =

0. Together with a1 + a2 = −mφ/g, this gives us

a1 = mφ/g, a2 = −2mφ/g, λ = 2gεΛ2 − 2m2
φ/g. (3.36)

Notice that a1, a2 became the same as the classical solution of W ′. Then, the gluino condensate

is given by

S = εΛ2g

(
mφ

g
−m

)
, for SU(3). (3.37)

The superpotential for SU(3) can be simplified to

Weff =
m3

φ

g2
− 2εΛ2(mφ − gm). (3.38)

4 Factorization vs. minimization

Here we give an account for the equivalence of the two methods by explicit computations.

4.1 Factorization

Consider an N = 2 SYM with Nc = 2 and Nf = 2 and deformed by a quadratic superpotential

for the adjoint field Φ;

W =
1

2
mφtrΦ

2 + λtrΦ. (4.1)

Hence

W ′(x) = mφx+ λ, f = −4Smφ, (4.2)

where S is yet to be determined. We consider the case where the two mi are equal to m. Using

the Seiberg-Witten curve for Nc = Nf given in [18], the factorization condition is

y2 = P 2 − 4Λ2(x−m)2 = (x− a)2F2, (4.3)

10



where P = P2 + δΛ2 and δ is usually 1/4 but 1/8 for Nc = 2. Therefore

P − 2εΛ(x−m) = (x− a)2. (4.4)

Then

F2 = (x− a)2 + 4εΛ(x−m)

= (W ′2 + f)/m2
φ = (x+

λ

mφ

)2 − 4S

mφ

, (4.5)

which leads us to the relations 4εΛ−2a = 2λ/mφ, and a2−4mεΛ = λ2

m2
φ
− 4S

mφ
. From this we get

a = 2εΛ − λ
mφ
, and more importantly for our purpose, we determine the gaugino condensate

S = ελΛ −mφΛ2 + εmmφΛ. (4.6)

Now let’s move to determine the superpotential.

P2 = (x+
λ

mφ
)2 − 4S

mφ
− 2εΛ(x−m) − δΛ2. (4.7)

Hence

u1 = 2(εΛ − λ

mφ

),

u2 =

(
λ

mφ

)2

− 2Λ2 + 2εmΛ − δΛ2. (4.8)

Now,

Weff = mφu2 + λu1

= − λ2

mφ

+ 2ε(λΛ +mmφΛ) − (2 + δ)mφΛ
2. (4.9)

For comparison with previous literature we also consider U(2) with λ = 0;

a = 2εΛ, S = −mφΛ2 + εmmφΛ, (4.10)

and

Weff = 2εmmφΛ − (2 + δ)mφΛ
2 = 2S − δmφΛ2. (4.11)

For SU(2), by imposing u1 = 0, λ is determined and a and S are simplified so that we have

λ = εmφΛ, a = εΛ, S = εmmφΛ. (4.12)

The sphere contribution to the effective potential is

Weff = 2εmmφΛ − (1 + δ)mφΛ
2. (4.13)
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4.2 Minimization

We apply the loop equation to the case where the exact result is known. W0 = 1
2
mφtrΦ

2. So

the tree-level superpotential is

W = W0 +

Nf∑
i=1

(Q̃iΦQi + Q̃imQi). (4.14)

Then the surface equation is given by

y2 = W
′2
0 + f = (mφz)

2 − 4Smφ. (4.15)

So,

W
(s)
eff = −Nc

∫ P

e

ydz = −Ncmφ

∫ P

e

√
z2 − e2,

= −1

2
Ncmφ

[
Λ0

√
Λ2

0 − e2 − log(Λ0 +
√

Λ2
0 − e2)

]

= −1

2
NcΛ

3 +NcS(1 − log
S

Λ3
), (4.16)

where e2 = 4S/mφ and Λ3 = mφΛ
2
0. Similarly,

W
(d)
eff =

1

2

Nf∑
i=1

∫ P

mi

ydz

= NfS

[
Λ2

0

e2
− 1

2
− log

2Λ0

e

]
−NfS

[
m

e

√
m2

e2
− 1 − log

(
m

e
+

√
m2

e2
− 1

)]

= Nf
mφ

4

(
Λ2

0 −m2
)

+NfS log

(
m

Λ0

)

−NfS

(
1

2
+

√
1 − 4αS − 1

4αS
− log

1 +
√

1 − 4αS

2

)
, (4.17)

with α = 1/(m2mφ).

By minimizing the total superpotential d(W
(s)
eff + W

(d)
eff )/dS = 0, we get an equation to

determine S; (
S

mφΛ2

)Nc

=

(
m

Λ

1 +
√

1 − 4αS

2

)Nf

. (4.18)

For U(2) with trace coupling, W = 1
2
mφtrΦ

2 + λtrΦ, one can easily verify that the result can

be obtained by shifting

m→ m+ λ/mφ, and α→ α/(1 +
λ

mmφ
)2. (4.19)
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Then the equation (4.18) with Nf = Nc will produce

S = λΛ −mφΛ2 +mmφΛ, (4.20)

which is precisely the result in eq. (4.6) with ε = 1. The SU(2) case can be treated by regarding

λ as a Lagrange multiplier and we leave this as an exercise. The value of the superpotential is

NcS +Nf
mφ

4
(Λ2

0 −m2). One should notice that the S log S term in this case canceled between

W s and W d.

This confirms, in the simplest possible case, that the method of factorizing Seiberg-Witten

curve is equivalent to that of minimizing the full superpotential. This equivalence is highly

nontrivial to directly check in general.

4.3 Integral evaluation of the effective superpotential for cubics

We now calculate the effective superpotential given by the prescription [5]. For pure SYM, the

calculation is done in [8]. Here we give a treatment with fundamentals for the second simplest

case Nf = 2, Nc = 3. The values of the physical parameters were already determined by the

factorization method. The superpotential is shown to be

Weff = −
n∑

i=1

NiΠi +

Nf∑
j=1

Dj + 2πi(τ0S +

n−1∑
i=1

biSi) − i(Nc −Nf/2)S + C, (4.21)

where 3

Πi =
1

2

∫ Λ

ei

y(z)dz, Dj =
1

2

∫ Λ

mi

y(z)dz, C =
1

2


(2Nc −Nf )W (Λ) +

Nf∑
I=1

W (zI)


 . (4.22)

Let

W ′2 + f(x) = g2(x− e1)(x− e2)(x− e3)(x− e4), e1 > e2 > e3 > e4. (4.23)

The integrals are evaluated in terms of elliptic functions;

S1 =

∫ e1

e2

y(x)dx =
[
2(e2 − e3)

2βα4
1

] · ∫ K1

0

sn2u dn2u cn2u

(1 − α2
1 sn2u)4

:= J1 · I1, (4.24)

3Notice the sign difference in Πi integral from [5] since we perform the integral in first sheet. If we change

m → −m as in the usual literature then we need to change the sign of the integral to confirm the known result,

as can be shown by examining the quadratic potential.
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S2 =

∫ e3

e4

y(x)dx =
[
2(e2 − e3)

2βα4
2

] · ∫ K2

0

sn2u dn2u cn2u

(1 − α2
2 sn2u)4

:= J2 · I2, (4.25)

Π1 =

∫ Λ

e1

y(x)dx =
[
2(e1 − e2)

2βα4
3

] · ∫ uΛ

0

sn2u dn2u cn2u

(1 − α2
3 sn2u)4

:= J3 · I3, (4.26)

Π2 =

∫ e4

−Λ

y(x)dx =
[
2(e3 − e4)

2βα4
4

] · ∫ 0

u(−Λ)

sn2u dn2u cn2u

(1 − α2
4 sn2u)4

:= J4 · I4, (4.27)

Dj = Π1(Λ) − Π1(mj), for j = 1, ..., Nf , (4.28)

where β =
√

(e1 − e3)(e2 − e4) and

α2
1 =

e1 − e2
e1 − e3

< 1, α2
2 =

e3 − e4
e2 − e4

< 1, α2
3 =

e1 − e4
e2 − e4

> 1, α2
4 =

e1 − e4
e1 − e3

> 1, (4.29)

and sn, dn, cn are Jacobi’s elliptic functions [19] and ui (=u in Ii), is defined by

sn2u1 =
1

α2
1

x− e2
x− e3

, sn2u2 =
1

α2
2

e3 − x

e2 − x
, sn2u3 =

1

α2
3

x− e1
x− e2

, sn2u4 =
1

α2
4

e4 − x

e3 − x
. (4.30)

and in each case the k’s in the elliptic functions are given by

k2
1 = α2

1

e3 − e4
e2 − e4

, k2
2 = α2

2

e1 − e2
e1 − e3

, k2
3 = α2

3

e2 − e3
e1 − e3

, k2
4 = α2

4

e2 − e3
e2 − e4

. (4.31)

They satisfy k2
i < α2

i , k
2
i < 1. Ki is defined to be K(ki) where

K(k) =
π

2
F (

1

2
,
1

2
; 1; k2) =

π

2
(1 +

1

4
k2 +

9

64
k4 + ...) (4.32)

satisfies snKi = 1. F is the hypergeometric function. snuΛ = Λ. The integrals Ii(αi) look very

similar to one another but according to whether α2 is bigger or smaller than 1, they have a very

different behavior as we will see. This corresponds to the difference of Si and Πi, the periods

along compact vs. non-compact cycles. We are interested in the leading orders in a small Λ

expansion. We need to find the ei’s, the zeroes of y, in terms of mφ, m, g, and the scale of the

theory Λ. Let c1, c2 be the classical value of the zeros of W ′, namely, c1,2 = −mφ

2g
±
√

m2
φ

4g2 − λ
g
.

1 mφ �= 0 case:

e1 = c1 +

√
m− c1
c1 − c2

εΛ +O(Λ2),

e2 = c1 −
√
m− c1
c1 − c2

εΛ +O(Λ2),

e3 = c2 +
1

c1 − c2

(
4 +

m− c1
c1 − c2

)
εΛ2 +O(Λ3),

e4 = a2 = c2 − 2εΛ2

c1 − c2
+O(Λ3). (4.33)
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If λ = 0 as is often calculated in the gauge theory literature to be compared, c1 = 0, c2 =

−mφ/g, and consequently

e1,2 = ±
√
mg/mφ, e3 = −mφ/g+ g(4 + gm/mφ)Λ

2/mφ, e4 = −mφ − 2gΛ2/mφ. (4.34)

Here we set ε = 1. Now, we can evaluate Ji and Ii in leading order in a small Λ expansion.

J1 ∼ J − 3 ∼ 8mΛ2, J2 ∼ J4 ∼ 2g
Λ4

mφ
(6 + gm/mφ)

2 , I1 ∼ I2 ∼ 5π

16
+O(Λ2), (4.35)

so that Si ∼ Ji. To obtain I3, I4, needs more care.

2 mφ = 0 case: In this case, c1,2 =
√

2Λ2 − λ/2, and especially if λ = 0, c1,2 = ±√
2Λ. For

the SU(3) case, we have degenerate c1,2 = 0 result. In both cases an examination of

W ′2 + f = 0 tells us that the leading term is of order m1/3Λ2/3 and the prefactors of Si

and Πi are all the same order Ji ∼ mΛ2 and the integrals Ii for Si are complete elliptic

integrals which are of order 1. Therefore W ∼ 8mΛ2. From this and by dimensional

analysis and analyticity of W near Λ = 0, the structure of the leading and subleading

orders are

W ∼ mΛ2
(
1 + b1(Λ/m) + b2(Λ/m)2 + ...

) ∼ mΛ2 + b1Λ
3 + b2Λ

4/m+ ... (4.36)

The first two terms confirm the analysis of the factorization result while the third term is

the leading order in gauge theory analysis [14]. The main point in this analysis is that the

loop equations say that the first two terms exist and there is no reason why they should

vanish.

5 Conclusion

In this paper, we calculated the superpotential for an SU(Nc) gauge theory with Nf massive

fundamental fields and a massless adjoint field having nontrivial tree-level superpotentials using

the method of factorizing the Seiberg-Witten curve. We worked out both two-cut as well as

one-cut solutions. It turns out that the gauge theory result coincides with the one-cut solution

rather than the generic two-cut solution. In that case, what we found is that the result obtained

by duality [11] is just the leading term of what is found here. This means that Kutasov duality

holds only in the IR limit where the scale of the theory Λ → 0, which is perfectly consistent

with known wisdom.
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A few questions remain. First of all, why does the gauge theoretic method correspond

to the one-cut solution rather than to a generic two-cut solution? Secondly, is it possible to

find a corresponding gauge theoretic result for the two-cut solutions? We will return to these

questions in later publications.
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