
CLNS 03/1843
SLAC–PUB–10166
hep-ph/0309227

External Operators and Anomalous Dimensions in

Soft-Collinear Effective Theory

T. Becher(a), R.J. Hill(a), B.O. Lange(b), and M. Neubert(b)

(a)Stanford Linear Accelerator Center, Stanford University

Stanford, CA 94309, U.S.A.

(b)Newman Laboratory for Elementary-Particle Physics, Cornell University

Ithaca, NY 14853, U.S.A.

Abstract

It has recently been argued that soft-collinear effective theory for processes involving both
soft and collinear partons contains a new soft-collinear mode, which can communicate
between the soft and collinear sectors of the theory. The formalism incorporating the
corresponding fields into the effective Lagrangian is extended to include external current
and four-quark operators relevant to weak interactions. An explicit calculation of the
anomalous dimensions of these operators reveals that soft-collinear modes are needed for
correctly describing the ultraviolet behavior of the effective theory.

Work supported by the Department of Energy contract DE-AC03-76SF00515.

http://arXiv.org/abs/hep-ph/0309227


1 Introduction

Soft-collinear effective theory (SCET) [1, 2, 3, 4, 5] provides a systematic framework in which
to discuss the factorization properties of exclusive B-decay amplitudes for processes in which
the external hadronic states contain highly energetic, collinear partons inside light final-state
mesons, and soft partons inside the initial B meson. Power counting in SCET is based on
an expansion parameter λ ∼ Λ/E, where E ≫ ΛQCD is the large energy carried by collinear
particles (typically E ∼ mb in B decays) and Λ ∼ ΛQCD is of order the QCD scale.

In a recent paper [6], three of us have argued that the intricate interplay between soft and
collinear degrees of freedom makes it necessary to introduce modes with virtuality E2λ3, which
have unsuppressed interactions with soft and collinear fields. In the strong-interaction sector
of SCET, the leading-order couplings of these “soft-collinear” fields to soft or collinear particles
can be removed using field redefinitions, leaving residual interactions that are suppressed by
at least two powers of λ1/2. A puzzling aspect of this analysis was the finding that soft-
collinear modes have virtualities that are parametrically below the QCD scale. We argued
that this is to some extent a consequence of dimensional regularization and analyticity. What
matters is not the virtuality but the fact that the plus and minus components of soft-collinear
momenta are commensurate with certain components of collinear or soft momenta. Yet, one
might worry whether the scaling laws derived for interactions of the soft-collinear fields might
be invalidated by some non-perturbative effects, thereby upsetting the power counting of the
effective theory.

The goal of the present paper is to build up confidence in the new modes by showing
explicitly that they are necessary to correctly reproduce the ultraviolet (UV) behavior of
the effective theory, which has to match the scale dependence of short-distance coefficient
functions derived in the matching of full-theory amplitudes onto matrix elements of SCET
operators. Specifically, we compute the anomalous dimensions of the leading-order current
operators containing a heavy and a collinear quark, a soft and a collinear quark, and four-quark
operators obtained from combining these two currents. We find that without the inclusion of
soft-collinear fields the results for the anomalous dimensions would be incorrect and violate
fundamental principles of renormalization theory, such as the independence of renormalization-
group (RG) functions of infrared (IR) regulators.

The explicit examples we investigate exhibit two other important features: first, in the
presence of external operators such as flavor-changing currents, the soft-collinear fields can in
general no longer be decoupled at leading order in λ using field redefinitions. Their effects
must therefore be studied carefully in applications of SCET to exclusive B decays. This
complicates proofs of QCD factorization theorems. Secondly, only the sum of soft, collinear and
soft-collinear contributions to an amplitude is physically meaningful. Through the particular
scaling p2

sc ∼ Λ3/E of soft-collinear momenta the amplitude becomes sensitive to the large scale
E. Part of this sensitivity has a short-distance interpretation, as reflected in the anomalous
dimensions of SCET operators. However, in cases where the soft-collinear modes cannot be
decoupled, amplitudes may contain additional dependence on the large scale that is of IR
origin. In a strongly coupled theory such as QCD this dependence cannot be factorized using
RG techniques.
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2 SCET fields and interactions at leading order

The construction of an effective theory for collinear particles must account for the fact that
different components of particle momenta and fields scale differently with the large scale E. To
make this scaling explicit one introduces two light-like vectors nµ and n̄µ satisfying n2 = n̄2 = 0
and n · n̄ = 2. Typically, nµ = (1, 0, 0, 1) is chosen to be the direction of an outgoing fast
hadron (or a jet of hadrons), and n̄µ = (1, 0, 0,−1) points in the opposite direction. Any
4-vector can be decomposed as

pµ = (n · p)
n̄µ

2
+ (n̄ · p)

nµ

2
+ pµ

⊥ ≡ pµ
+ + pµ

− + pµ
⊥ , (1)

where p⊥ · n = p⊥ · n̄ = 0. This relation defines the light-like vectors pµ
±. The relevant SCET

degrees of freedom describing the partons in the external hadronic states of exclusive B decays
are soft and collinear, where pµ

s ∼ E(λ, λ, λ) for soft momenta and pµ
c ∼ E(λ2, 1, λ) for collinear

momenta. Here and below we indicate the scaling properties of the components (n ·p, n̄ ·p, p⊥).
The corresponding effective-theory fields and their scaling relations are hv ∼ λ3/2 (soft heavy
quark), qs ∼ λ3/2 (soft light quark), Aµ

s ∼ (λ, λ, λ) (soft gluon), and ξ ∼ λ (collinear quark),
Aµ

c ∼ (λ2, 1, λ) (collinear gluon). At leading order in power counting the effective strong-
interaction Lagrangian splits up into separate Lagrangians for the soft and collinear fields.
However, as mentioned above, the effective theory also contains soft-collinear quark and gluon
fields, θ ∼ λ2 and Aµ

sc ∼ (λ2, λ, λ3/2), which have leading-order couplings to both soft and
collinear fields. The formalism incorporating these fields has been developed in [6], borrowing
methods developed by Beneke and Feldmann [7]. It will be briefly reviewed here.

In interactions with other fields, the soft-collinear fields (but not the soft and collinear
fields) are multipole expanded as

φsc(x) = φsc(x−) + x⊥ · ∂⊥ φsc(x−) + . . . in collinear interactions ,

φsc(x) = φsc(x+) + x⊥ · ∂⊥ φsc(x+) + . . . in soft interactions .
(2)

The first correction terms are of O(λ1/2), and the omitted terms are of O(λ) and higher. Soft-
collinear fields can couple to soft or collinear fields without altering their scaling properties.
This motivates the treatment of the soft-collinear gluon field as a background field. However,
in order to preserve the scaling properties of the fields under gauge transformations one must
expand the transformation laws in λ. This leads to the following set of “homogeneous” gauge
transformations for the quark fields:

soft: qs(x) → Us(x) qs(x) , collinear and soft-collinear fields invariant

collinear: ξ(x) → Uc(x) ξ(x) , soft and soft-collinear fields invariant

soft-collinear: qs(x) → Usc(x+) qs(x) , ξ(x) → Usc(x−) ξ(x) , qsc(x) → Usc(x) qsc(x)

(3)

The transformation laws for gluons [6] are more complicated and are not needed for the present
work.
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The effective Lagrangian of SCET can be split up as

LSCET = Ls + Lc + Lsc + L
(0)
int + . . . , (4)

where the dots represent power-suppressed interaction terms. The integration measure d4x
in the action SSCET =

∫
d4xLSCET scales like λ−4 for all terms except the soft-collinear La-

grangian Lsc, for which it scales like λ−6. The first three terms above correspond to the
Lagrangians of soft particles (including heavy quarks), collinear particles, and soft-collinear
particles. They are given by

Ls = q̄s i /Ds qs + h̄ iv ·Ds h+ Lglue
s ,

Lc = ξ̄
/̄n

2
in ·Dc ξ − ξ̄ i /Dc⊥

/̄n

2

1

in̄ ·Dc
i /Dc⊥ ξ + Lglue

c ,

Lsc = θ̄
/̄n

2
in ·Dsc θ − θ̄ i /Dsc⊥

/̄n

2

1

in̄ ·Dsc
i /Dsc⊥ θ + Lglue

sc ,

(5)

where iDµ
s ≡ i∂µ + gAµ

s etc., and v is the velocity of the hadron containing the heavy quark.
Collinear, soft-collinear, and heavy-quark fields in the effective theory are described by 2-
component spinors subject to the constraints /n ξ = 0, /n θ = 0, and /v h = h. The gluon
Lagrangians in the three sectors retain the same form as in full QCD, but with the gluon
fields restricted to the corresponding subspaces of their soft, collinear, or soft-collinear Fourier
modes. The leading-order interactions between soft-collinear fields and soft or collinear fields
are given by

L
(0)
int(x) = q̄s(x)

/n

2
gn̄ · Asc(x+) qs(x) + h̄(x)

n · v

2
gn̄ · Asc(x+) h(x)

+ ξ̄(x)
/̄n

2
gn · Asc(x−) ξ(x) + pure glue terms . (6)

Momentum conservation implies that soft-collinear fields can only couple to either soft or
collinear modes, but not both. More than one soft or collinear particle must be involved in such
interactions. The gluon self-couplings can be derived by substituting Aµ

s → Aµ
s + 1

2
nµ n̄·Asc(x+)

for the gluon field in the soft Yang–Mills Lagrangian and Aµ
c → Aµ

c + 1
2
n̄µ n · Asc(x−) for the

gluon field in the collinear Yang–Mills Lagrangian, and isolating terms containing the soft-
collinear field. The precise form of these interactions will not be relevant to our discussion.
Finally, let us note that none of the terms in the SCET Lagrangian (4) is renormalized beyond
the usual renormalization of the strong coupling and the fields.

From (6) one can readily read off the Feynman rules for the couplings of soft-collinear
gluons to soft or collinear quarks. The multipole expansion of the soft-collinear fields implies
that momentum is not conserved at these vertices. When a soft (light or heavy) quark with
momentum ps absorbs a soft-collinear gluon with momentum k, the outgoing soft quark carries
momentum ps + k−. Likewise, when a collinear quark with momentum pc absorbs a soft-
collinear gluon with momentum k, the outgoing collinear quark carries momentum pc + k+.
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In order to match the quark and gluon fields of the full theory onto SCET fields obeying the
homogeneous gauge transformations one first adopts specific gauges in the soft and collinear
sectors, namely soft light-cone gauge n·As = 0 (SLCG) and collinear light-cone gauge n̄·Ac = 0
(CLCG). At leading order in λ, one then introduces the corresponding SCET fields via the
substitutions [7]

ψs

∣∣
SLCG

→ Rs S
†
s qs , b

∣∣
SLCG

→ Rs S
†
s h , ψc

∣∣
CLCG

→ RcW
†
c ξ . (7)

The corresponding replacements for gluon fields can be found in [6]. The quantities

Ss(x) = P exp

(
ig

∫ 0

−∞

dt n ·As(x+ tn)

)
,

Wc(x) = P exp

(
ig

∫ 0

−∞

dt n̄ ·Ac(x+ tn̄)

) (8)

are the familiar SCET Wilson lines in the soft and collinear sectors [2, 4], which effec-
tively put the SCET fields into light-cone gauge. The objects Rs and Rc are short gauge
strings of soft-collinear fields from x+ to x (for Rs) and x− to x (for Rc). They differ
from 1 by terms of order λ1/2 and so must be Taylor expanded. Note that Ss transforms
as Ss(x) → Us(x)Ss(x) and Ss(x) → Usc(x+)Ss(x)U

†
sc(x+) under soft and soft-collinear

gauge transformations and is invariant under collinear gauge transformations. Likewise, Wc

transforms as Wc(x) → Uc(x)Wc(x) and Wc(x) → Usc(x−)Wc(x)U
†
sc(x−) under collinear and

soft-collinear gauge transformations and is invariant under soft gauge transformations. The
short strings only transform under soft-collinear gauge transformations, in such a way that
Rs(x) → Usc(x)Rs(x)U

†
sc(x+) and Rc(x) → Usc(x)Rc(x)U

†
sc(x−). It follows that the expres-

sions on the right-hand side of (7) are invariant under soft and collinear gauge transformations
and transform as ordinary QCD quark fields under soft-collinear gauge transformations.

3 Soft-collinear current operators

Flavor-changing currents and four-quark operators containing soft and collinear fields play an
important role in many applications of SCET to exclusive B decays. The simplest example is
that of a current ψ̄c Γ b transforming a heavy quark into a collinear one, where Γ denotes an
arbitrary Dirac structure. This current has been studied in detail in [1, 4] in another version
of SCET, which contains only hard-collinear and soft fields.1 Based on the discussion of the
previous section, it follows that at tree level (and at leading power in λ) the QCD current is
matched onto the following gauge-invariant object in SCET:

ψ̄c(x) Γ b(x) → e−imbv·x
[
ξ̄ WcR

†
c

]
(x) Γ

[
Rs S

†
s h
]
(x)

= e−imbv·x
[
ξ̄ Wc

]
(x+ + x⊥) Γ

[
S†

s h
]
(x− + x⊥) +O(λ) , (9)

1This theory is sometimes called SCETI, and its degrees of freedom are often called collinear and ultra-soft.
The effective theory considered in the present paper is also called SCETII.
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where the phase factor arises from the definition of the field h in HQET [8]. Note that the
expression in the first line is not homogeneous in λ. In interactions of soft and collinear fields,
the soft fields must be multipole expanded about x+ = 0, while the collinear fields must be
multipole expanded about x− = 0. Also, as mentioned above, the quantities Rs and Rc must
be expanded and equal 1 to first order. This leads to the result shown in the second line. The
terms of O(λ1/2) in the expansions of Rs and Rc cancel each other. The leading-order SCET
current in the final expression is gauge invariant even without the Rs and Rc factors, since
according to (3) soft fields at x+ = 0 and collinear fields at x− = 0 both transform with Usc(0)
under soft-collinear gauge transformations. An analogous matching relation can be written
for a soft-collinear current containing a light soft quark,

ψ̄c(x) Γψs(x) →
[
ξ̄ Wc

]
(x+ + x⊥) Γ

[
S†

s qs
]
(x− + x⊥) +O(λ) . (10)

Depending on the Dirac structure Γ, another operator containing an additional perpendicular
collinear gluon field can appear in this case (even at tree level) [5]. We will not discuss such
operators in the present paper.

When radiative corrections are taken into account, the currents in (9) and (10) mix with
analogous operators at different positions on the light cone, and for the case of the heavy-
collinear current different Dirac structures can be induced by hard gluon exchange. The correct
matching relations are (setting x = 0 for simplicity) [4, 5]

ψ̄c(0) Γ b(0) →
∑

i

∫
ds C̃i(s, µ)

[
ξ̄ Wc

]
(sn̄) Γi

[
S†

s h
]
(0) +O(λ) ,

ψ̄c(0) Γψs(0) →

∫
dsdt D̃(s, t, µ)

[
ξ̄ Wc

]
(sn̄) Γ

[
S†

s qs
]
(tn) +O(λ) .

(11)

Translational invariance can be used to rewrite these relations in the local form

[
ψ̄c Γ b

]
(0) →

∑

i

Ci(v · P
c
−, µ)

[
ξ̄ Wc Γi S

†
s h
]
(0) +O(λ) ,

[
ψ̄c Γψs

]
(0) → D(P s

+ · P
c
−, µ)

[
ξ̄ Wc ΓS†

s qs
]
(0) +O(λ) ,

(12)

where

Ci(v · P
c
−, µ) =

∫
ds C̃i(s, µ) eisn̄·P c

,

D(P s
+ · P

c
−, µ) =

∫
dsdt D̃(s, t, µ) ei(sn̄·P c−tn·P s)

(13)

are the Fourier transforms of the position-space Wilson coefficients. These are operator-
valued coefficient functions, which depend on the momentum operators P c = P c

out − P c
in and

P s = P s
in−P

s
out acting on collinear and soft states. Invariance of the results under simultaneous

rescalings n → n/α and n̄→ αn̄ of the light-cone basis vectors dictates that the momentum-
space Wilson coefficients can only depend on the scalar products 2v · P c

− = (v · n) (P c · n̄) and
2P s

+ · P
c
− = (P s · n) (P c · n̄).
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The momentum-space coefficient functions are renormalized multiplicatively and obey RG
equations of the Sudakov type [1, 9],

d

d lnµ
Ci(v · pc−, µ) = γξh(v · pc−, µ)Ci(v · pc−, µ) ,

d

d lnµ
D(ps+ · pc−, µ) = γξq(ps+ · pc−, µ)D(ps+· pc−, µ) ,

(14)

where the anomalous dimensions take the form

γξh(v · pc−, µ) = −
1

2
Γcusp[αs(µ)] ln

µ2

(2v · pc−)2
+ Γξh[αs(µ)] ,

γξq(ps+ · pc−, µ) = −Γcusp[αs(µ)] ln
µ2

2ps+ · pc−

+ Γξq[αs(µ)] .

(15)

The coefficients of the logarithmic terms are determined in terms of the universal cusp anoma-
lous dimension Γcusp = CF αs/π + O(α2

s), which plays a central role in the renormalization of
Wilson lines with light-like segments [10]. In Section 5 we will show why the cusp anomalous
dimension enters the above equation with a negative sign, and why an additional factor of 1/2
appears in the anomalous dimension of the heavy-collinear current.

The one-loop expressions for the non-logarithmic terms in the anomalous dimensions can
be deduced from the explicit results for the Wilson coefficients derived in [1, 5].2 They are

Γξh(αs) = −
5

4

CFαs

π
+O(α2

s) , Γξq(αs) = −
3

2

CFαs

π
+O(α2

s) . (16)

It may seem surprising that after hard and hard-collinear scales have been integrated out
the operators of the low-energy theory still know about the large scales v · pc− ∼ E and
ps+ · pc− ∼ EΛ, as is evident from the appearance of the logarithms in (15). The reason is
that in interactions involving both soft and collinear particles there is a large Lorentz boost
γ ∼ ps · pc/

√
p2

s p
2
c ∼ E/Λ connecting the rest frames of soft and collinear hadrons, which is

fixed by external kinematics and enters the effective theory as a parameter. This is similar to
applications of heavy-quark effective theory to b → c transitions, where the fields depend on
the external velocities of the hadrons containing the heavy quarks, and γ = vb · vc = O(1) is
an external parameter that appears in matrix elements and anomalous dimensions of velocity-
changing current operators [8, 11].

We will now explain how the results for the anomalous dimensions can be obtained from
a calculation of UV poles of SCET loop diagrams. The relevant diagrams needed at one-loop
order are shown in Figure 1. They must be supplemented by wave-function renormalization
of the quark fields. The gluons connected to the current are part of the Wilson lines Wc and

2The Wilson coefficients Ci(v · pc−, µ) were computed in [1] using the effective theory SCETI, in which the
the scaling of the collinear quark field relative to the heavy-quark field is different from that in the theory
SCETII considered here. The Wilson coefficients are the same in the two theories because they are independent
of p2

c
, and so the scaling of the collinear fields does not matter.
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Figure 1: SCET graphs contributing to the anomalous dimension of a soft-
collinear current. Full lines denote soft fields, dashed lines collinear fields, and
dotted lines soft-collinear fields.

Ss. We regularize IR singularities by keeping the external lines off-shell. The results for the
sum of all UV poles must be independent of the IR regulators. For the heavy-collinear current
the pole terms obtained from the three diagrams are (here and below we omit the −i0 in the
arguments of logarithms)
(

1

ǫ2
−

2

ǫ
ln

−2v · ps

µ
+

1

ǫ

)
+

(
2

ǫ2
−

2

ǫ
ln

−p2
c

µ2
+

3

2ǫ

)
+

(
−

2

ǫ2
+

2

ǫ
ln

(−2v · ps)(−p
2
c)

2v · pc− µ2

)

=
1

ǫ2
+

2

ǫ
ln

µ

2v · pc−

+
5

2ǫ
, (17)

while for the current containing a light soft quark we obtain
(

2

ǫ2
−

2

ǫ
ln

−p2
s

µ2
+

3

2ǫ

)
+

(
2

ǫ2
−

2

ǫ
ln

−p2
c

µ2
+

3

2ǫ

)
+

(
−

2

ǫ2
+

2

ǫ
ln

(−p2
s)(−p

2
c)

2ps+ · pc− µ2

)

=
2

ǫ2
+

2

ǫ
ln

µ2

2ps+ · pc−

+
3

ǫ
. (18)

We quote the contributions to the operator renormalization constants Z−1 in units of CFαs/4π
(in the MS subtraction scheme with D = 4−2ǫ). The three parentheses in the first line of the
above equations correspond to the soft, collinear, and soft-collinear contributions, where the
first two terms include the corresponding contributions from wave-function renormalization.
Note that the 1/ǫ poles of the soft and collinear graphs depend on the IR regulators, but that
this dependence is precisely canceled by the soft-collinear contribution. By construction, the
sum of the soft, collinear, and soft-collinear contributions is IR finite and only contains UV
poles, whose coefficients depend on the ratios v · pc−/µ and ps+· pc−/µ

2. This follows since IR
divergences in both the full and the effective theory (which are equivalent at low energy) are
regularized by the off-shellness of the external quark lines. The one-loop contributions to the
anomalous dimensions γξh and γξq are given by −CFαs/2π times the coefficients of the 1/ǫ
poles in the above expressions. They are in agreement with the results (15) and (16) obtained
from the scale dependence of Wilson coefficients.

The calculations presented above make it evident that there is an intricate interplay be-
tween the soft, collinear, and soft-collinear diagrams. In dimensional regularization the de-
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pendence of the anomalous dimensions on the hard or hard-collinear scale enters through the
loop integral involving the soft-collinear exchange and thus seems to be related to very small
momentum scales. However, care must be taken when assigning physical significance to the
scales associated with individual diagrams in SCET, because in the soft and collinear dia-
grams a cancellation of IR and UV divergences takes place. The logarithms appearing in their
divergent parts should be interpreted as [cf. (18)]

ln
−p2

s

µ2
+ ln

−p2
c

µ2
= ln

Q2

µ2
+ ln

m2
sc

µ2
, with m2

sc =
(−p2

s) (−p2
c)

2ps+ · pc−

, (19)

and thus arise from a cancellation of physics at the hard scale Q2 = 2ps+· pc− and at the soft-
collinear scale m2

sc. In the sum of all graphs, the soft-collinear contribution precisely cancels
the IR piece of the soft and collinear parts, see (18). This interpretation is consistent with the
fact that the anomalous dimensions measure the change of operator matrix elements under
infinitesimal variations of the UV cutoff µ. They are therefore insensitive to the physics at low
scales by construction, and the large logarithms in (15) are really of short-distance nature.

On the other hand, in the sum of the finite terms of the diagrams in Figure 1 (corresponding
to SCET matrix elements) logarithms of the soft-collinear scale remain, which do not have an
interpretation in terms of RG logarithms. In a weakly coupled theory such as QED, the large
logarithms ln(µ2/m2

sc) ∼ ln(µ2/(Λ3/E)) can be summed by matching SCET onto another
effective theory, in which soft and collinear fields are integrated out and only soft-collinear
fields remain as dynamical degrees of freedom, and by solving RG equations in this final theory.
This is analogous to the evolution equations for the off-shell Sudakov form factor discussed in
[12, 13], where large logarithms arise from two-stage evolution between the scales Q2 to M2

and M2 to M4/Q2. As argued in [6], the case of the current ψ̄c Γψs can be mapped onto the
Sudakov problem, such that Q2 corresponds to the hard-collinear scale, M2 corresponds to the
QCD scale, and M4/Q2 corresponds to the soft-collinear scale. Since QCD is strongly coupled
for scales of order Λ and below the second stage of running cannot be performed perturbatively,
i.e., the low-energy hadronic matrix elements in SCET may contain a dependence on the small
ratio Λ/E that cannot be factorized into a short-distance coefficient.

The observation that the soft-collinear contribution supplies a logarithm of a short-distance
scale solves the following puzzle about soft-collinear current operators in SCET (which has
confused some of the present authors for a considerable amount of time): We know from the
explicit expressions for the Wilson coefficients of the currents that their anomalous dimensions
must depend on a scalar product of the collinear momentum with a momentum characterizing
the soft quark (i.e., v ·pc− or ps+·pc−). However, the SCET Feynman rules imply that the first
graph in Figure 1 can only be a function of the soft momentum (i.e., v · ps or p2

s), while the
second one can only depend on the collinear momentum (i.e., p2

c), as is in fact confirmed by
our explicit calculation. The apparent “factorization” of soft and collinear degrees of freedom
in SCET (in the absence of soft-collinear fields) would thus lead to the conclusion that the
anomalous dimensions of the currents are independent of the products v · pc− or ps+ · pc−,
in contradiction with the results for the Wilson coefficients. It is possible to obtain the
correct result for the anomalous dimensions by using a regularization scheme that breaks this
factorization property; however, unavoidably this means that the regulator cannot preserve the
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symmetries of the Lagrangian of the effective theory. (For instance, it is possible to suppress
the soft-collinear contribution in one-loop graphs by putting the external lines on shell and
using a different IR regulator such as a gluon mass, in which case the last diagram in Figure 1
vanishes in dimensional regularization, whereas the first two diagrams give expressions that
cannot be regularized dimensionally. To give meaning to these expressions one may introduce
additional analytic regulators, which break factorization and gauge invariance.) The formalism
employing soft-collinear fields provides an elegant solution to this problem by making the non-
factorization of the soft and collinear sectors of SCET explicit at the level of the Lagrangian,
avoiding any subtleties related to regularization.

4 Four-quark operators

In many cases relevant to B physics, amplitudes calculated in SCET receive contributions
from hadronic matrix elements of four-quark operators, which can be expressed in terms of
the leading-order light-cone distribution amplitudes (LCDAs) of a light final-state meson and
of the initial state B meson. An example is the hard spectator term in the QCD factorization
formula for the exclusive decay B → K∗γ [14, 15]. The relevant SCET operators can be taken
as [5]

Q(C)(s, t) =
[
ξ̄ Wc

]
(sn̄)

/̄n

2
Γ1 T1

[
W †

c ξ
]
(0)
[
q̄s Ss

]
(tn)

/n

2
Γ2 T2

[
S†

s h
]
(0)

≡

∫ ∞

0

dω e−iωt

∫ n̄·P

0

dσ eiσs Q(C)(ω, σ) , (20)

where the color label C = S or O refers to the color singlet-singlet and color octet-octet
structures T1 ⊗T2 = 1⊗1 or TA ⊗TA, respectively. The quantity n̄ ·P is the total momentum
carried by all collinear particles, which is fixed by kinematics. (Strictly speaking, this is a
momentum operator.) The matrices Γi represent any of the Dirac basis matrices. Between
two collinear fields only the three possibilities Γ1 = 1, γ5, γ

µ
⊥ are allowed, whereas Γ2 is not

constrained. The factor /n/2 between the fields q̄s and h ensures that the B-meson matrix
element of the soft-quark current can be expressed in terms of the leading-order B-meson
LCDA φB

+(ω, µ) [16]. In light-cone gauge, ω = n · ps corresponds to the plus component of the
momentum of the spectator anti-quark in the B meson, while σ = n̄ · pξ denotes the minus
component of the momentum of the quark inside a light final-state meson. It is conventional
to introduce a dimensionless variable u = σ/n̄ · P ∈ [0, 1] corresponding to the longitudinal
momentum fraction carried by the quark.

The momentum-space operators Q(C)(ω, σ) obey the integro-differential RG equation

d

d lnµ
Q(C)(ω, u n̄ · P ) = −

∫ ∞

0

dω′

∫ 1

0

du′ γ(C)(ω, ω
′, u, u′, n̄ · P, µ)Q(C)(ω

′, u′ n̄ · P ) . (21)

To obtain the anomalous dimensions at leading order we compute the 1/ǫ poles of the diagrams
shown in Figure 2 in dimensional regularization and add the contributions from wave-function

9



Figure 2: SCET graphs contributing to the anomalous dimension of the four-
quark operators Q(C)(ω, σ). Full lines denote soft fields, dashed lines collinear
fields, and dotted lines soft-collinear fields.

renormalization. Note that only soft-collinear gluons can be exchanged between the soft and
collinear currents. For the color-singlet case T1 ⊗ T2 = 1⊗ 1 we find that the sum of the four
diagrams with soft-collinear exchanges (but not each diagram separately) is UV finite. The
anomalous dimension is then a combination of the anomalous dimensions for the two non-local
currents in (20). At one-loop order we obtain

γ(S)(ω, ω
′, u, u′, n̄ · P, µ) =

CFαs

π

[
δ(ω − ω′)V (u, u′) + δ(u− u′)H(ω, ω′, µ)

]
, (22)

where (with ū ≡ 1 − u)

V (u, u′) = −

[
u

u′

(
1

u′ − u
+ c(Γ1)

)
θ(u′ − u) +

ū

ū′

(
1

u− u′
+ c(Γ1)

)
θ(u− u′)

]

+

+
1 − c(Γ1)

2
δ(u− u′) (23)

with c(1) = c(γ5) = 1, c(γµ
⊥) = 0 is the Brodsky–Lepage kernel [17] for the evolution of the

leading-twist LCDA of a light meson, which we have reproduced here using the Feynman rules
of SCET. The plus distribution is defined as

[f(u, u′)]+ = f(u, u′) − δ(u− u′)

∫ 1

0

dw f(w, u′) , (24)
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which coincides with the conventional definition if the distribution acts on functions g(u) but
not if it acts on functions g(u′). The function

H(ω, ω′, µ) =

(
ln
µ v · n

ω
−

5

4

)
δ(ω − ω′) − ω

[
θ(ω − ω′)

ω(ω − ω′)
+

θ(ω′ − ω)

ω′(ω′ − ω)

]

+

(25)

is the analogous kernel governing the evolution of the leading-order B-meson LCDA [18]. Here
the plus distribution is symmetric in the two arguments and defined as

∫ ∞

0

dω′ [f(ω, ω′)]+ g(ω
′) =

∫ ∞

0

dω′ f(ω, ω′)
[
g(ω′) − g(ω)

]
. (26)

For the color-octet case T1 ⊗ T2 = TA ⊗ TA things are more complicated. In this case the
diagrams in the first two lines of Figure 2 reproduce the singlet anomalous dimension except
for a different overall color factor, but in addition these graphs contain 1/ǫ poles that depend
on the IR regulators. In units of the tree-level matrix element 〈Q(O)(ω, σ) 〉, the extra terms
are

N

2

αs

2π

{(
3

2ǫ2
−

1

ǫ
ln

−2v · lh
µ

−
1

ǫ
ln

−l2q
µ

+
5

4ǫ

)
+

(
2

ǫ2
−

1

ǫ
ln

−p2
ξ

µ2
−

1

ǫ
ln

−p2
ξ̄

µ2
+

3

2ǫ

)}
,

(27)
where li are the incoming soft momenta, and pi denote the outgoing collinear momenta.
The first parenthesis shows the soft contribution, while the second one gives the collinear
contribution. In addition, in the color-octet case the sum of the soft-collinear exchange graphs
shown in the last line in Figure 2 does not vanish, but adds up to

−
N

2

αs

2π

(
2

ǫ2
−

1

ǫ
ln

(−2v · lh)(−l
2
q)(−p

2
ξ)(−p

2
ξ̄
)

(n · v)(n · lq)(n̄ · pξ)(n̄ · pξ̄)µ
4

)
. (28)

In the sum of the two terms (27) and (28) the dependence on the IR regulators drops out.
Our final result for the anomalous dimension in the octet case is

γ(O)(ω, ω
′, u, u′, n̄ · P, µ) = −

1

2N

αs

π

[
δ(ω − ω′)V (u, u′) + δ(u− u′)H(ω, ω′, µ)

]
(29)

−
N

2

αs

π
δ(ω − ω′) δ(u− u′)

(
ln

µ3

n · v ω (n̄ · P )2
− ln uū+

11

4

)
.

5 Decoupling transformation

The leading-order interactions between soft-collinear fields and soft or collinear fields in the
SCET Lagrangian (4) can be removed by a redefinition of the soft and collinear fields [6]. In
analogy with the decoupling of ultra-soft gluons in SCETI [2], we define new fields

qs(x) = Wsc(x+) q(0)
s (x) , h(x) = Wsc(x+) h(0)(x) , ξ(x) = Ssc(x−) ξ(0)(x) ,

Aµ
s (x) = Wsc(x+)A(0)µ

s (x)W †
sc(x+) , Aµ

c (x) = Ssc(x−)A(0)µ
c (x)S†

sc(x−) .
(30)
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The quantities Wsc and Ssc are yet another set of Wilson lines. They are defined in analogy
with Wc and Ss in (8), however with the gluon fields replaced by soft-collinear gluon fields in
both cases. These objects are invariant under soft and collinear gauge transformations, while
under a soft-collinear gauge transformation they transform as

Wsc(x+) → Usc(x+)Wsc(x+) , Ssc(x−) → Usc(x−)Ssc(x−) . (31)

Consequently, the new fields with “(0)” superscripts are invariant under soft-collinear gauge
transformations. When they are introduced in the SCET Lagrangian the terms Ls, Lc, and
Lsc retain their original form, while the leading-order interaction Lagrangian L

(0)
int vanishes.

Residual interactions between soft-collinear and soft or collinear fields start at O(λ) [6]. After
the field redefinition it is convenient to introduce the gauge-invariant building blocks [5]

Qs(x) = S(0)†
s (x) q(0)

s (x) = W †
sc(x+)S†

s(x) qs(x) ,

H(x) = S(0)†
s (x) h(0)(x) = W †

sc(x+)S†
s(x) h(x) ,

X(x) = W (0)†
c (x) ξ(0)(x) = S†

sc(x−)W †
c (x) ξ(x) ,

(32)

which are invariant under all three types of gauge transformations.
The fact that interactions of soft-collinear fields with other fields can be decoupled from

the strong-interaction Lagrangian does not necessarily imply that these fields can be ignored
at leading order in power counting. The question is whether the decoupling transformation
(30) leaves external operators such as weak-interaction currents invariant. The analysis of the
previous sections indicates that in some cases the soft-collinear exchange graphs contribute
to the calculation of the anomalous dimensions. Let us then study what happens when the
decoupling transformation is applied to the various types of operators.

Under the transformation (30), the soft-collinear currents in (9) and (10) transform into
(setting x⊥ = 0 for simplicity)

[
ξ̄ Wc

]
(x+) Γ

[
S†

s h
]
(x−) → X̄(x+)S†

sc(0) ΓWsc(0) H(x−) ,
[
ξ̄ Wc

]
(x+) Γ

[
S†

s qs
]
(x−) → X̄(x+)S†

sc(0) ΓWsc(0) Qs(x−) .
(33)

We observe that the soft-collinear fields do not decouple from these currents but rather form
a light-like Wilson loop with a cusp at x = 0. The anomalous dimension of the combination
S†

scWsc is the universal cusp anomalous dimension times a logarithm of the soft-collinear scale,
see the last terms in the first lines in (17) and (18). After adding the contributions from the soft
and collinear sectors, the dependence on the IR regulators drops out. However, the coefficient
of the logarithm of v · pc− in the heavy-collinear current and ps+ · pc− in the soft-collinear
current is unchanged, since both the soft and the collinear part are independent of these large
scales. This cancellation also explains why the anomalous dimensions of the soft-collinear and
heavy-collinear currents involve −Γcusp and −1

2
Γcusp, respectively:

Γcusp

[
ln

2ps+ · pc− µ
2

(−p2
s)(−p

2
c)

+ ln
−p2

s

µ2
+ ln

−p2
c

µ2

]
= −Γcusp ln

µ2

2ps+· pc−
,

Γcusp

[
ln

2v · pc− µ
2

(−2v · ps) (−p2
c)

+ ln
−2v · ps

µ
+ ln

−p2
c

µ2

]
= −

1

2
Γcusp ln

µ2

(2v · pc−)2
.

(34)
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Similar arguments were used by Korchemsky in his analysis of the off-shell Sudakov form
factor [12].

The effect of the field redefinition (30) on the four-quark operators is different. The color
singlet-singlet operator is invariant, namely (setting x = 0 for simplicity)

Q(S)(s, t) → X̄(sn̄) Γ1 X(0) Q̄s(tn) Γ2 H(0) , (35)

since the additional soft-collinear Wilson lines come in pairs W †
scWsc = 1 and S†

sc Ssc = 1. The
color octet-octet operator is however not invariant. It transforms into

Q(O)(s, t) → X̄(sn̄) Γ1

[
S†

sc TA Ssc

]
(0) X(0) Q̄s(tn) Γ2

[
W †

sc TAWsc

]
(0) H(0) . (36)

Because the objects W †
sc TAWsc and S†

sc TA Ssc are pure color octets, the result can be rewritten
as

Q(O)(s, t) → cAB[Asc] X̄(sn̄) Γ1 TA X(0) Q̄s(tn) Γ2 TB H(0) , (37)

where
cAB[Asc] = 2 Tr

[
Ssc TA S

†
scWsc TB W

†
sc

]
(0) (38)

is a functional of the soft-collinear gluon field. Since after the decoupling transformation the
SCET Lagrangian no longer contains leading-order interactions between soft-collinear and soft
or collinear fields, it follows that at leading power the soft, collinear, and soft-collinear parts
of the current operators in (35) and (37) only interact among themselves. The color structure
of the color-singlet and color-octet currents built up of soft or collinear fields are preserved
in these interactions. Hence, both types of four-quark operators are multiplicatively (in the
convolution sense) renormalized in the effective theory – unlike in full QCD, where they mix
under renormalization.

The presence of the functional cAB[Asc] in the octet case explains why soft-collinear modes
give a non-zero contribution to the anomalous dimension of the operator Q(O). However, since
this operator does not mix into the singlet-singlet operator Q(S), this effect does not propagate
into physical decay amplitudes (as hadronic matrix elements of color-octet currents vanish).
The decoupling of soft-collinear fields from the color singlet-singlet operator implies that, to
all orders in perturbation theory, the anomalous dimension of the four-quark operator Q(S) is
the sum of the anomalous dimensions of the two currents X̄(sn̄) Γ1 X(0) and Q̄s(tn) Γ2 H(0),
in accordance with the one-loop result obtained in the previous section. This observation has
important implications for applications of SCET to proofs of QCD factorization theorems.
For instance, the potential effects of soft-collinear modes have been ignored in studies of
factorization for the exclusive decay B → Dπ [19, 20]. Our results justify this treatment a

posteriori, thereby completing the proof of factorization for this decay.

6 Conclusions

We have argued that soft-collinear effective theory (SCET) for processes involving both soft
and collinear partons is a more complicated (yet more interesting) theory than previously
assumed. In addition to soft and collinear particles, which make up the external hadron
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states, there exist soft-collinear messenger modes, which can communicate between the soft
and collinear sectors of the theory. The presence of these modes, and the fact that they
have leading-order interactions with both soft and collinear particles, destroys the trivial
factorization of soft and collinear physics that was thought to be a property of the effective
theory. As a consequence, a careful analysis of soft-collinear exchange contributions must be
part of any proof of QCD factorization theorems.

We have extended the construction of the SCET Lagrangian to include external sources
such as current and four-quark operators containing both soft and collinear fields. To build
up confidence in the soft-collinear modes, we have explicitly shown that they are needed for
obtaining the correct ultraviolet behavior of effective theory amplitudes. The explicit examples
we have investigated show that only the sum of soft, collinear and soft-collinear contributions
to an amplitude is physically meaningful. In cases where the soft-collinear modes cannot
be decoupled by field redefinitions, SCET amplitudes become sensitive to the large scale E
through the particular scaling m2

sc ∼ Λ3/E of soft-collinear momenta. Only part of this
sensitivity is of a short-distance nature, as described by the anomalous dimensions of SCET
operators. In addition, amplitudes may contain a long-distance dependence on the large scale
that cannot be factorized using renormalization-group techniques.

In the strong-interaction sector of SCET the leading-order interactions of soft-collinear
fields with soft or collinear fields can be removed using field redefinitions, leaving residual
interactions that are power suppressed. In the presence of external operators this decoupling
property is no longer guaranteed, but depends on whether external operators remain invariant
under the decoupling transformation. We have shown, for instance, that currents contain-
ing a soft and a collinear quark are not invariant, implying that the effects of soft-collinear
contributions to current matrix elements must be studied carefully.

In summary, we have completed the discussion of the SCET Lagrangian at leading power
and including external operators relevant to weak interactions. The framework developed here
forms the basis for systematic, complete proofs of QCD factorization theorems for exclusive
B-meson decay amplitudes. In particular, our finding of the decoupling of soft-collinear con-
tributions for color singlet-singlet four-quark operators completes the proof of factorization
for the decay B → Dπ.
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