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AdS and dS Entropy from String Junctions

or

The Function of Junction Conjunctions1
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Abstract

Flux compactifications of string theory exhibiting the possibility of discretely tuning

the cosmological constant to small values have been constructed. The highly tuned vacua

in this discretuum have curvature radii which scale as large powers of the flux quantum

numbers, exponential in the number of cycles in the compactification. By the arguments

of Susskind/Witten (in the AdS case) and Gibbons/Hawking (in the dS case), we expect

correspondingly large entropies associated with these vacua. If they are to provide a dual

description of these vacua on their Coulomb branch, branes traded for the flux need to

account for this entropy at the appropriate energy scale. In this note, we argue that simple

string junctions and webs ending on the branes can account for this large entropy, obtaining

a rough estimate for junction entropy that agrees with the existing rough estimates for

the spacing of the discretuum. In particular, the brane entropy can account for the (A)dS

entropy far away from string scale correspondence limits.

1 Apologies to Schoolhouse Rock circa 1973, http://www.schoolhouserock.tv/Conjunction.html
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1. Introduction

One of the most interesting recent developments is the stabilization of moduli and

construction of large classes of de Sitter and anti de Sitter flux compactifications [1][2][3].

These models include cases in which the size of the compactification is hierarchically smaller

than that of the (A)dS, by realizing the mechanism suggested in [4] (see also similar works

[5,6,7,8]). The recent models of KKLT [3] are of particular interest, as they produce four

dimensional de Sitter as well as anti de Sitter vacua in a relatively well studied geometrical

framework [9] admitting a low energy effective supersymmetric field theory description.2

It is of interest to look for holographic duals of these new flux compactifications. In

the de Sitter case, such a description could teach us a lot about the nature of dark energy

(which in the real world is roughly seventy percent of the observed universe) as modeled

in existing constructions.3 Even in the AdS case the new examples provide an interesting

challenge. For four or fewer large dimensions, previous nonperturbative formulations such

as matrix theory [11] and AdS/CFT [12] examples obtained via near horizon limits (such

as AdS2 × S2 × X) have broken down due to infrared problems.

Unlike the flux compactifications on large Einstein spaces which have played a role in

the AdS/CFT correspondence [12], the new examples are not (known to be) realized via a

near horizon limit of any simple brane systems. Nonetheless, there are general arguments

suggesting a similar holographic dual description. In the AdS case at least one expects a

field theoretic dual via the relation [13][14] mapping gravitational Feynman diagrams in

AdSd+1 to conformally invariant Greens functions of a d-dimensional quantum field theory.

This dictionary does not depend on the existence of a larger theory from which the AdS

background is obtained as a near horizon limit.

2 The space of models described in [1] should be taken into account in any attempt to bound

the number of vacua, and in comparing numbers of low energy SUSY vacua to vacua without low

energy SUSY. Ultimately it is quite possible that nonsupersymmetric nongeometrical noncritical

string backgrounds may be more generic than the better studied geometrical low energy SUSY

backgrounds of critical string theory.
3 One may think about the problem of dark energy in string theory analogously to the problem

of understanding black hole physics in string theory. There is no sense in which we try to “explain”

the black hole mass independently of anything else, but we learn a lot about the physics of black

holes by understanding the microscopic origin of their entropy [10].



In the dS case one also has a strong hint of a dual description, in that the Gibbons-

Hawking entropy [15] associated with the horizon suggests a microphysical statistical me-

chanical origin that may well be associated to a holographic dual theory. Steps toward

such a duality proposal using analogies to AdS/CFT have been made in [16] based on sym-

metries and the structure of quantum field theory in the global de Sitter geometry, and in

[17] based on entropy counts and geometry of brane configurations realizing motion on the

Coulomb branch of (A)dS flux compactications of string theory. In [18] some important

issues were raised that need to be addressed in any duality proposal in the dS case. In

[19] some proposals based on novel quantum gravity constructions have been made and

investigated. In my view, our best hope for finding a dual formulation if one exists is to

study the workings of explicit models.

In [17][20], a method for obtaining the dual theories for flux compactifications has been

proposed, as summarized in [21] (see also [2]). The idea is simply to deform the system to

the Coulomb branch, which introduces explicit brane domain walls [22] whose worldvolume

content corresponds to that of the dual field theory on its Coulomb branch. For the AdS

case, the solutions obtained by trading all the flux for branes in the infrared region of the

geometry have the property that the solution caps off in the infrared, eliminating the AdS

horizon. In the well understood AdS/CFT examples, the brane degrees of freedom at the

scale of the VEV in this solution [23] account for the full set of degrees of freedom of the

known dual field theory. In general flux compactifications, we would like to understand if

this is the case.

In [17], we noted that the Bousso Polchinski tuning available for flux compactifications

suggests dual field theories with entropy that is much greater than quadratic in the flux

(and therefore brane) quantum numbers. This makes more pressing the question of whether

the branes in a generic Coulomb branch configuration can account for such a large entropy

when the (A)dS space is much larger than string scale in size. (When the (A)dS space is

string scale in size, there is a “correspondence point” (cf [24]) at which the brane entropy

scales like that of the (A)dS space if the brane entropy is quadratic in the flux quantum

numbers [17].)

In this note, we show that the best current estimates for the number of flux vacua in

the KKLT system [4][25][17][26] agrees with a simple estimate of the number of degrees

of freedom available on the branes realizing the Coulomb branch of the system. That is,

from an estimate of the number of flux vacua, one obtains an estimate of the smallest



cosmological constant and therefore the largest (A)dS radius scale available in the mod-

els. Translating this to an entropy using the Bekenstein/Hawking, Susskind/Witten, and

Gibbons/Hawking arguments, one can compare the result to an estimate of the number of

degrees of freedom available on brane domain walls in the Coulomb branch configuration.

The latter count requires the inclusion of string junctions and webs. We find that the

two estimates agree within their theoretical error bars, though both estimates are most

reliably considered as lower bounds. In this way we relate the statistics of flux vacua with

the statistical mechanics of individual flux vacua.

We further present a heuristic explanation of why this comparison works (in our case

and in the original case of AdS/CFT on the Coulomb branch) based on the Susskind

Witten analysis of entropy in AdS vacua as a function of energy.

This result supports the idea that one can figure out the dual theory from the informa-

tion about its Coulomb branch available directly on the gravity side, part of a program to

determine the duals under current development [20] (see also [2,27]).4 It improves our un-

derstanding of the (A)DS entropy discussed in [17] for the cases in which the cosmological

constant is tuned to be very small.

This note is organized as follows. In §2 we review the Bousso Polchinski style estimate

for the number of KKLT flux vacua. In §3 we review the deformation of the system to

the Coulomb branch via brane domain walls and present our estimate for the number of

degrees of freedom of the dual theory visible on the branes. We also present a heuristic

explanation of the agreement between §2 and §3 based on the Susskind Witten analysis.

2. Statistics of Flux Vacua

The Bousso Polchinski mechanism predicts exponentially many vacua as a function

of multiple input flux quantum numbers, as follows [4][25][17][26]. A systematic approach

to the problem of counting flux vacua was recently developed in [26]. The basic idea is

the following. One expects a limit on the strength of flux quantum numbers from back

reaction on the geometry. There are b3 RR flux quantum numbers Qi, i = 1, . . . , b3 and

4 Other aspects of the analysis [20] include the relation between the vacua with fixed moduli

on the gravity side and the structure of renormalization group fixed points on the field theory side,

constraints on the quantum numbers on the two sides, and their structure under monodromies of

the compactification.



b3 NS flux quantum numbers Ni, i = 1, . . . , b3. If one expresses the expected limitation in

the form

R2 ≡
b3

∑

i=1

γiQ
2
i + αiN

2
i < R2

max (2.1)

for some order one coefficients αi and γi, then one obtains a total number of vacua which

is of order

Nvac ∼
R2b3

max

b3!
(2.2)

from the volume of the sphere in flux space containing the fluxes consistent with (2.1).

(This assumes that each choice of flux leads to of order one vacua.)

In the KKLT models, this estimate may be given in terms of the quadratic form

L ∼
∫

CY

H ∧ F (2.3)

as follows. Dimensional reduction on a space with flux produces contributions to the four

dimensional effective potential from the flux kinetic terms for the NS flux HNS and the

Ramond flux FRR

Λflux ∼
∫

CY

1

l24

g4
s

V 2

√
g(|FRR|2 +

1

g2
s

|HNS |2). (2.4)

where we are in 4d Einstein frame and V is the compactification volume in string units.

This contribution takes the form

Λflux ∼
b3

∑

i=1

(ciQ
2
i + aiN

2
i ) (2.5)

where ai and ci are functions of the moduli, which in turn depend on the fluxes, and Qi and

Ni are the RR and NSNS flux quantum numbers on the 3-cycles in the compactification. (In

asymmetric orbifold models such as [1] the dependence of ai, ci on the moduli is eliminated

for the geometrical moduli by using asymmetic orbifolding to freeze them at the string

scale.)

If we pick the maximum flux scale Rmax such that the moduli-dependent coefficients

ai and ci do not take extreme values in the solutions to the equations of motion, then

one can relate L to a positive definite quadratic form for each point on the moduli space

solving the equations of motion.

That is, in the no scale models [9] appearing in KKLT, the Gauss’ law relation between

L ∼
∫

H ∧ F and orientifold 3-plane and D3-brane charge

1

2(2π)4(α′)2

∫

H ∧ F =
1

4
(NO3 − NO3) − ND3 + ND3 (2.6)



translates via supersymmetry into a relation between the orientifold +D3-brane tension

and L. In a zero energy vacuum of the no-scale approximation [9] to the effective potential,

this tension
∫

H ∧F cancels the positive terms (2.5) in the potential. So for every solution

to the equations of motion we wish to consider, a relation of the form

∑

aiN
2
i + ciQ

2
i ∼ L ≤ R2

max (2.7)

holds, with ai and ci order one coefficients that depend on the fluxes. So rewriting R2
max

as Lmax we can rewrite (2.2) as

Nvac ∼
Lb3

max

b3!
(2.8)

By integrating the number of vacua solving the equations of motion over the flux choices

and moduli space with a suppression factor introduced for large fluxes to take into account

(2.7), [26] found an estimate

Nvac ∼
(2πLmax)K

12πnn!K!
f(K) (2.9)

where K = b3 is the number of independent complex fluxes in the compactification, and

where n = b3/2−1 is the complex dimension of the complex structure moduli space of the

Calabi-Yau threefold associated to the F theory compactification. f(K) is an integral of

flux-independent quantities over a fundamental domain of the moduli space.

If we take these vacua to be distributed roughly uniformly between cosmological con-

stants of ± 1
l2
4

(where l4 is the four-dimensional Planck length), this predicts a minimum

cosmological constant of magnitude

Λmin ∼ 1

l24Nvac
(2.10)

corresponding to a maximum curvature radius L(A)dS of order

(Lmax
(A)dS)2 ∼ l24Nvac (2.11)

among the elements of the discretuum of vacua predicted by the estimate (2.8)(2.9). This

curvature scale in turn corresponds to an entropy of order

Smax ∼
(Lmax

(A)dS)2

l24
∼ Nvac (2.12)



as we will review in the next section. Taking the vacua to be uniformly distributed is a

nontrivial assumption, since the vacua could instead accumulate around some particular

values of the cosmological constant. We will see that this naive assumption fits with what

we find for the entropy, though a much more thorough analysis of the distribution of vacua

will ultimately be required.

This estimate, which may ultimately prove accurate as a count of the number of

vacua, appears at least to be a lower bound on this number. For example, we expect

more solutions to the equations fixing the complex structure and dilation moduli at the no

scale level than the DW = 0 solutions so far counted [28]. In addition, when we saturate

Gauss’ law with some number of threebranes as well as fluxes, the number of vacua of the

threebrane theory comes into play and has not yet been estimated accurately while at the

same time fixing the moduli.5 There are almost certainly other classes of vacua such as [1]

to be included in a full count as well, though the corresponding entropies for these may be

studied independently.

3. Statistical Mechanics of Flux vacua

Given an (A)dS vacuum of radius L(A)dS , we can associate a maximal entropy of order

Ld−2
AdS/ld−2

d to a region of the spacetime contained in a 2-sphere of radius L(A)dS . In the

dS case, this is simply the Gibbons Hawking entropy [15]. In the AdS case, this follows

from applying the Bekenstein/Hawking entropy bound to AdS space, as was studied for

AdS/CFT by Susskind and Witten [29].

We will apply the Susskind Witten analysis to the Coulomb branch configurations

of our flux vacua in the AdS case. Let us first briefly review their analysis, generaliz-

ing trivially from the AdS5 × S5 context in which they applied it. One begins with an

AdSd/CFTd−1 dual pair, for which the CFT has nCFT degrees of freedom and therefore

of order E(d−2)nCF T states in its spectrum as a function of energy scale E. Cut off this

theory at a scale of order 1/(LCFT δ) for some δ < 1, where LCFT is the size of the sphere

on which the CFT lives. The corresponding operation on the gravity side is to place an

infrared cutoff in global AdS at a sphere of area Ld−2
AdS/δd−2 surrounding the origin. Since

precise coefficients are not obtained by this analysis, for simplicity we may take δ some-

what smaller than but of order 1, so that the cutoff restricts us to of order one mode per

5 We thank S. Kachru for this caveat.



degree of freedom on the Sd−2 on which the CFT lives. The area of this Sd−2 in Planck

units, Ld−2
AdS/ld−2

d , bounds the entropy that can fit inside the sphere on the gravity side.

Susskind and Witten checked that this entropy is indeed N2 in the gravity dual to the

N = 4 U(N) super Yang-Mills theory, using the relations LAdS ∼ LS5 ∼ (gsN)1/4ls.

Said differently, the cutoff requires each degree of freedom to be excited with energy at

most of order 1/LAdS. The total energy allowed below the cutoff is then ET = nCFT /LAdS.

From the corresponding gravity side cutoff at a sphere of area Ld−2
AdS , we can independently

identify this total energy ET as the mass M
(LAdS)
BH of the largest black hole fitting within

the region bounded by this area. In the AdS5 ×S5 case, these two formulas for the energy

scale of the cutoff agree, once we identify nCFT with N2. This result is consistent with

a naive extrapolation of the weak coupling relation nCFT ∼ N2 into the strong ’tHooft

coupling regime.

This analysis keeps track of the moding of states on the sphere as well as the total

entropy, and it illustrates a basic aspect of how the entropy is distributed in the AdS/CFT

duality6: from the cutoff on the sphere, allowing only of order one mode on the Sd−2 for of

each of the nCFT = N2 degrees of freedom, one obtains the entropy which is numerically

equal to one degree of freedom per Planck area but organized as nCFT = N2 degrees of

freedom per L3
AdS .

The Susskind Witten analysis just reviewed was in the global AdS solution. We can

apply it in the Poincare patch, corresponding to the CFT on Minkowski space Md−1. We do

this by enforcing the Bekenstein bound corresponding to black brane solutions extending

in the Md−1 directions. This leads again to N2 degrees of freedom per Ld−2
AdS area along

the d − 2 spatial directions of Md−1.

We would like to see how many of the nCFT degrees of freedom of the system become

manifest on its Coulomb branch. Let us first review how the Coulomb branch arises from

the gravity side point of view. It is obtained by introducing brane domain walls separated

radially from the horizon. This reduces the flux in the bulk region on the side of the brane

toward the horizon (let us call this the “IR side” since it corresponds to the IR region

from the field theory point of view). The simplest such configuration, obtained in [23] for

the AdS5 × S5 case, is to trade all the flux in this region for branes at a radial scale of

order LAdS . There being no flux supporting the compactification on the IR side of the

branes, it shrinks down and caps off the solution at a finite radius in the IR direction,

6 emphasized for example by S. Shenker



removing the horizon. In the solution [23], this region turns out to be smooth (in fact

flat) ten dimensional space. In a general flux compactification, we do not know the precise

solution but the absence of flux in this region means that the AdS horizon will be removed

generically. This corresponds to the fact that a generic Coulomb branch configuration will

lift most of the degrees of freedom of the theory to a scale of order the scale set by the

VEVs. Also in a generic system there will be a potential on the Coulomb branch, so that

the physical solutions are time dependent. I expect this will not preclude the counting and

identification of degrees of freedom from the brane content on the gravity side.7

In the AdS5 × S5 case, we see N2 degrees of freedom from stretched strings (“W

bosons”) at the mass scale

〈φ〉 ∼ LAdS

l2s
(3.1)

of the VEVs of the diagonal scalar matrix elements. (There are also string oscillation

modes on top of these including some at of order this energy scale, which have the same N

scaling.) These are electric degrees of freedom from the point of view of the spontaneously

broken U(N) gauge group on the manifest D3-branes of the [23] solution, and become

massless as we return to the origin of the moduli space. In this sense, the N2 degrees of

freedom have become manifest on the Coulomb branch directly on the gravity side of the

correspondence.

Let us clarify the energy scales involved in this analysis. We put the Susskind Witten

cutoff originally at the radius LAdS corresponding to the total energy scale N2/LAdS.

Exciting the stretched string “W bosons” individually fits within this cutoff, so we can

exhibit the count of degrees of freedom by exciting them individually. But exciting all

N2 of them at the scale (3.1) would of course not fit inside the above cutoff, which as

we discussed allows states up to to a total energy scale corresponding to N2 degrees of

freedom each excited only up to energy 1/LAdS. So if one wants to apply the Susskind

Witten analysis to the system on the Coulomb branch, including energies up to the scale

EC branch ∼ N2〈φ〉 (3.2)

we need a larger cutoff (smaller δ).

We can now ask in the more general flux compactifications of interest here [3][1]

whether the brane degrees of freedom continue to account for the black hole entropy.

7 Another work that used off shell bubbles to illustrate a physics point is [30].



That is, when we count the elementary degrees of freedom nB on the brane domain walls

replacing all the flux to the IR end of the branes, at the mass scale of the VEV suggested

by the geometry, is nB of order Ld−2
AdS/ld−2

d ? We will see that for the KKLT models, at

the level of the estimate in §2 this saturation holds as well in our case, when we take into

account string junction degrees of freedom living on the branes in the Coulomb branch of

that system.

The branes in the KKLT construction consist of D5 and NS5 branes wrapped on

b3 3-cycles of the compactification manifold of type IIB string theory, as well as of order
∫

H ∧ F D3-branes ending on them according to the Gauss’ law constraint (2.6). Qi D5

and Ni NS5 branes wrapped on the same cycle Ci reduce to Ji (pi, qi) fivebranes where

(pi, qi) = (Qi/Ji, Ni/Ji) are relatively prime integers. We will be interested in the highly

tuned situation described in §2 in which the size of the Calabi-Yau is much smaller than

the curvature radius of the AdS4. In particular, let us consider all the length scales within

the Calabi Yau to be somewhat bigger than string scale for control but not parametrically

bigger as a function of the flux quantum numbers. Similarly, let us consider a situation

with gs somewhat smaller than one but of order one.

The degrees of freedom on the branes consist of strings and string webs (combinations

of string junctions) which are at a mass scale of order

m〈φ〉 ∼
1

ls
(3.3)

which is the analogue of (3.1) in our system. The string and string web degrees of freedom

can be electric from the point of view of the gauge group on each bunch of branes. When

the classical mass and binding energy formulas are a good approximation, some string

webs are stable at an energy scale of order (3.3) by virtue of being the lightest degrees

of freedom with their quantum numbers. We will estimate the number of such degrees

of freedom nB coming from string junctions that we can reliably obtain ending on these

various branes, and see that they account for the entropy predicted on the gravity side

(2.9)- (2.12).

nB ∼ Nvac (3.4)

with Nvac given by (2.9).

We are interested in the number of degrees of freedom available on the N5 >> b3

5-branes and N3 >> b3 3-branes obtained from the AdS4 solution by trading all the flux



in the IR region of the geometry for branes. There will be multifundamental states aris-

ing from string webs (connected combinations of string junctions) with multiple external

strings ending on the branes. String webs, discussed in many interesting papers such as [31]

(including one relating them to black hole entropy [32]) are combinations of (p, q) strings

connected through three-string junction vertices. They satisfy a basic charge conservation

condition
∑

I

(pI , qI) = 0 (3.5)

where I runs over the strings entering any vertex (and therefore applies to the sum over

external strings entering a string web).

We will start by studying junctions with one endpoint on each set of branes (indexed by

their type and by the cycle they wrap or end on). This will produce an entropy accounting

for the gravity side prediction. We will not analyze the details of the flux compactifications

necessary to produce Coulomb branch configurations with sufficiently stable solutions to

(3.5). It is clear that some such configurations exist, and our main goal is to explain how

large entropies of order Nvac (2.12)(2.9) can arise in any Coulomb branch configuration of

branes.

Before proceeding to the count of junctions, let us note two issues we have not com-

pletely resolved. Firstly, junctions with more endpoints on each bunch of branes, which

could be viewed as bound states of lower junctions, would lead to an entropy greater than

the gravity side prediction (2.9)(2.12) if such states were considered separately. Secondly,

the junctions we do consider with one endpoint on each bunch of branes can themselves be

viewed as bound states of strings. The question is what degrees of freedom are elementary

in the effective field theory at the energy scale determined by the Coulomb branch VEVs.

These issues are similar to those in a somewhat similar situation in the black hole context

in [32], where just the lowest junction connecting three sets of branes accounted for all the

expected entropy. There is a heuristic argument, along the lines of the arguments in [32],

that higher bound state junctions are less likely to constitute valid independent effective

fields than the basic junctions with one endpoint on each bunch of branes, since the ratio

of the binding energy of one constituent to the mass of the bound state decreases as the

number of endpoints increases. Because of this, the lowest junctions are reliably counted

but the higher ones are less and less under control as we increase the number of endpoints,

keeping the size of the Calabi Yau fixed. Another argument due to [32] is that in some

cases the lowest junction states connecting different bunches of branes (U(N) factors in



the brane system gauge group) can be related to elementary string states in dual quiver

theories. These are not proofs that only the lowest junctions need be considered however,

and leaves open the possibility that more entropy is available in the system than the naive

Bousso Polchinski tuning predicts. In any case, we will account for at least the [4][26]

estimate with the simplest controlled junction states, addressing the puzzle raised in [17].

Let us study the junctions ending on the 3-branes and the fivebranes. First consider

the endpoints on the 3-branes. Consider a generic situation where the ends of these 3-

branes are distributed roughly uniformly over the b3/2 pairs ofdual intersecting A and B

cycles contributing to the anomalous
∫

H ∧ F 3-brane charge. Because of Gauss’ Law

(2.6), there are of order N3 ∼ L D3-branes, and so of order L/(b3/2) per pair of dual A

and B cycles. A junction with one end on each of the b3/2 groups of 2L/b3 D3-branes has

n3 ∼
(

2L

b3

)b3/2

(3.6)

ways to end on the threebranes. In our estimates we will account for the L-dependence

and not reliably keep track of the prefactor’s dependence on b3 (which is much smaller

than L in the regime of validity of the analysis), though the strongest factorial dependence

on b3 evident in (2.9) will arise naturally also in our estimate.

If the junction also ends on the (p, q) fivebranes in all possible ways (again with a

single endpoint per bunch of branes), then there is another factor in the entropy coming

from the fivebranes, which we now compute. Since we have of order N5/b3 (p, q) 5-branes

per 3-cycle, we have of order n5 ∼ (N5/b3)
b3 ways the endpoints can end on fivebranes.

Let us relate this to the quantity L with respect to which the gravity side estimate

(2.9) is expressed. Noting that

2N5 ∼
b3

∑

i=1

(|Qi| + |Ni|) (3.7)

and recalling from §2 that L ∼ ∑b3
i=1(ciQ

2
i + aiN

2
i ) and using the fact that on average

Qi ∼ Ni ∼ N5/b3, we obtain the relation

L
1

2 ∼ N5

b3

√

2b3 (3.8)

This translates the fivebrane factor in the entropy to

n5 ∼ (L1/2/
√

b3)
b3 . (3.9)



Putting the threebrane and fivebrane factors together, we obtain

Sjunctions ∼ n3n5 ∼
(

L

b3

)b3

(3.10)

The gravity side estimate (2.9) does not determine the function of K = b3 multiplying the

LK/K! factor, though [26] offered some arguments that it was subdominant in its K de-

pendence to the factorial in the denominator. At this level, (3.10) from the lowest junctions

with charge on all the sets of branes agrees with the gravity side estimate (2.8)(2.9)(2.12).

Incidentally, one obtains the same estimate if one considers junctions ending only on

5-branes if one decomposes the (p, q) 5-branes back into separate D and NS 5-branes.

Having recovered the entropy directly on the branes of our system, a result similar to

that obtained above for the N = 4 SYM theory on its Coulomb branch, it is interesting

to ask if this is a coincidence or should have been expected. The following is a heuristic

argument for the agreement based on the above Susskind Witten analysis on the Coulomb

branch.

Let us first consider the N = 4 super Yang-Mills theory. If we consider the gravity

side geometry out on the Coulomb branch in a configuration in which all of the IR flux

has been traded for branes [23], this corresponds to a field theory configuration in which

the off diagonal matrix degrees of freedom have been lifted to the scale mφ of the VEVs.

The density of states of the system for energies E < N2mφ scales like

Ω(E)Cbranch ∼ EcN (3.11)

which is much slower growth with energy than the undeformed CFT scaling like

ΩCFT (E) ∼ Ec′N2

(3.12)

for some constants c, c′. This means that in the dual [23] solution for the Coulomb branch,

the black hole solutions saturating the entropy at a given energy E0 < N2mφ contain

parametrically fewer states (i.e. have entropy of order N rather than N2) than those in

the full AdS5 × S5 geometry at the same energy scale E0.

If we now move the VEV scale mφ down in energy to somewhat below E0/N
2, so

that the branes go behind the black hole horizon, then the two solutions (pure AdS and

Coulomb branch) agree for energies above E0. In particular, the branes contribute enough

entropy to enhance the Coulomb branch black hole density of states to (3.12) at energy



E0 rather than just (3.11). This makes it clear why the brane states saturated the order

N2 entropy (up to order one factors we do not control by these considerations).

Now in the more general flux compactifications of interest here, we are again applying

the procedure of trading all the IR flux for branes. This again removes the flux stabilizing

the compactification, and probably caps off the solution in the IR. This again suggests

that the black holes in the capped off Coulomb branch solution will have parametrically

fewer states than in the full AdS geometry at a given energy scale. As in the above

discussion of the AdS5 case, pushing the branes back behind the horizon will produce

again a black hole saturating the entropy bound up to the energy scale E0. I therefore find

it very plausible that the branes in a KLT-like Coulomb branch configuration in a general

flux compactification will saturate the entropy and will provide a reliable indicator of the

content of the holographic dual theory. This bolsters considerably the case for obtaining

the content of the dual quantum field theory from the branes on the Coulomb branch of

the background [20].

There is a simple lesson from this analysis regarding the distribution of the entropy.

As emphasized above, in the Susskind Witten analysis in ordinary AdS/CFT, the entropy

is organized as nCFT degrees of freedom per L(A)dS area. Both in AdS and in dS flux

compactifications, one can obtain numerological agreement with the expected entropy in a

situation where the entropy is organized into one mode per string area per intrinsic degree

of freedom, rather than being organized into nCFT degrees of freedom each excited by one

mode per Ld−2
(A)dS area (as discussed in §7 of [17]). This estimate is based on there being of

order Q2 degrees of freedom in a system with Q branes coming from open string degrees

of freedom. In this paper, we have seen that because their number scales like larger than

quadratic powers of the flux (brane) quantum numbers, junction states can account for

the expected entropy njunction ∼ Nvac, arranged in the expected way as njunction states

per (A)dS area rather than as one per string area.

It will be very interesting to see if and how refinements of the statistical analysis

(keeping track of the specific configurations required to tune the cosmological constant to

be very small) continue to lead to agreement between the two sides of the putative duality.

In this note we have not addressed any aspect of the distribution of flux vacua admitting

large numbers of degrees of freedom, but have only seen that it is possible and very natural

for string junction states to account for the large entropy predicted for some vacua by the

Bousso Polchinski mechanism.
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