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1 Introduction
Photoelectron production and multipacting effect in the LHC have recently become

an area of intensive study [1-5]. At the beam energy of 7 TeV, the critical photon energy
in a dipole magnet is 44 eV. The significant synchrotron radiation of the proton beams
in the LHC will be strong enough to release a large number of photoelectrons which, if
multiplied by the multipacting effect, will result in an increased energy deposition and
a possible instability of the proton beam. The analysis performed so far [1, 2, 4] was
mostly based on computer simulations that, with different degree of reality, take into
account photoelectron production, secondary electron emission, electron dynamics, and
space charge effects.

The bunch distance in the LHC is such that secondary electrons generated on the
wall during a passage of a bunch with a typical energy in the range of 10 eV almost
uniformly fill the vacuum chamber before the next bunch arrives. At the same time, the
losses of those low-energy electrons due to the collisions with the wall are relatively small.
When the next bunch arrives, it accelerates the electrons up to energies of several keV.
For a secondary emission coefficient greater than unity, the number of secondary electrons
produced will exceed the number of electrons accelerated by the bunch. This situation can
easily lead to exponential growth of the electron cloud density up to a limit which will be
determined by the space charge effects. Such beam induced multipacting was observed in
the ISR ring in mid-70s [6].

The goal of this paper is to develop a simplified quasi-analytical model, that takes
into account the most important effects and allows a quick analysis of the problem (though
not as accurate as a computer simulation). This model shows how the electron cloud
density scales with the beam characteristics, and illustrates the sensitivity of the results
to the variation of the input parameters. The LHC parameters that are used in this paper
are listed in Table 1.

beam energy E (GeV) 7000
number of particles in bunch Nb 1011

beam current I (A) 0.54
h. r.m.s. beam size σx (mm) 0.2
v. r.m.s. beam size σy (mm) 0.2
r.m.s. bunch length σz (cm) 7.7
bunch spacing Lsep (m) 7.5
bend length lb (m) 14.2
bend field B (T) 8.4
bending radius ρ (m) 2780
circumference C (km) 26.66
transverse emittance ε0 (nm) 0.5
average beta function in arcs β̄ (m) 88

Table 1: LHC parameters from Ref. [7].

2 Photoelectrons
The number of photons emitted by a bunch of charged particles in a bending mag-

netic field per unit time is Nγ = 5αγcNb/2
√

3ρ where α is the fine-structure constant, γ
is the Lorentz factor, ρ is the bending radius, Nb is the number of particles in the bunch,
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Figure 1: Cross section of the LHC screen (solid line) and a circular cross section of the
pipe used in this paper (dashed line). The horizontal and vertical coordinates are denoted
by x and y, respectively.

and c is the speed of light. In the LHC at 7 TeV, this amounts to about 8.5×1017 photons
per second and per proton bunch. These photons after being emitted travel in synchro-
nism with the bunch, and hit the wall at the time when the emitting electron is located
at about the same longitudinal position in the pipe. If the one-dimensional longitudinal
distribution function of the particles in the bunch is assumed Gaussian,

fpart(z, t) =
Nb

σz
λ
(
z − ct

σz

)
, (1)

where σz is the rms bunch length and the dimensionless function λ is

λ (ξ) =
1√
2π

e−ξ2/2, (2)

then the distribution of the photons from a single bunch hitting the wall per unit time,
per unit length and per unit azimuthal angle along the pipe cross section will be

nγ(z, t, φ) =
NγG(φ)

σz
λ
(
z − ct

σz

)
, (3)

where G(φ) is a factor that gives the azimuthal distribution of the photons,
∫ 2π
0 G(φ)dφ =

1. In what follows, we assume a circular cross section of the vacuum pipe with a radius
a = 2 cm. The actual cross section of the screen together with the circular model used in
this paper are shown in Fig. 1.

Typically, a smooth metal surface has a reflectivity close to unity for soft x-rays
at grazing angles of incidence (about 5 mrad in the LHC) [8]. In this case each photon
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will experience several reflections before it generates a photoelectron. Multiple reflections
will uniformly distribute radiation over the pipe surface resulting in the effective function
G(φ) ≈ 1/2π. We will assume a uniform irradiation in what follows.

Recent measurements at CERN, however, showed that increasing the roughness of
the copper surface to about 1.6 µm suppresses the reflection coefficient down to 5% [9].
In this case, the bulk of the secondary electrons will be generated in the stripes where the
synchrotron photons hit the wall, and in the most part of the accelerator the detrimental
effects of the electron cloud will be strongly suppressed by the dipole magnetic field. To
model the case of low reflectivity, we will introduce a reflectivity factor R in our uniform
irradiation model, and assumeR ≈ 1 for large reflectivity andR ≈ 0.05 for low reflectivity,
respectively.

Each photoelectron that is generated on the wall will be accelerated by the electric
field of the passing bunch. In the kick approximation which assumes that an electron
does not change its radial position during the passage of the bunch, the energy of the
photoelectron immediately after the passage of the bunch is given by the following formula:

ε(z, t, φ) = εmaxP
(
z − ct

σz

)2

g(φ)2, (4)

where for a circular pipe of radius a

εmax = 2mc2N2
b

r2
e

a2
≈ 200 eV, (5)

P (ξ) =
∫ ξ
−∞ λ(x)dx = 1

2

(
1 + erf(ξ/

√
2)
)
, m is the electron mass, and re is the classical

electron radius. The factor g(φ) = 1 in magnetic field free regions; in dipoles where the
strong vertical magnetic field constrains the electron motion to the vertical direction only,
one has to take a projection of the radial electric field of the beam on the vertical axis
which results in g(φ) = sinφ (the angle φ is measured from the horizontal plane).

For a given distribution of the photons on the wall, Eq. (3), and the energy gain for
each electron given by Eq. (4), we can find the distribution function of the photoelectrons
fpe(W,φ) over the energy W and the azimuthal angle φ after the passage of the bunch:

fpe(W,φ) = Rδγe

∫ ∞

−∞
δ(W − ε(z, t, φ))nγ(z, t)dt, (6)

where δγe is the photo-yield, and δ in the integrand denotes the Dirac δ-function. The
function fpe(W,φ) is defined so that fpe(W,φ)dWdφ gives the number of photoelectrons
left after the passage of the bunch per unit length of the pipe in the energy range [W,W +
dW ] within the azimuthal angle [φ, φ+ dφ]. Performing the integration yields

fpe(W,φ) =
δγeNγ

4πc g(φ)
√
εmaxW

. (7)

The electron energy W in Eq. (7) varies from 0 to εmax in the straight sections, and from
0 to εmax sin2 φ in dipoles. The inverse square root dependence on energy in Eq. (7) has
been previously mentioned in Refs. [10, 11] and as a matter of fact holds for arbitrary
longitudinal bunch distribution. The average energy for the photoelectrons can be easily
found from Eq. (7): without magnetic field it is equal to (1/3) εmax ≈ 65 eV, and in
the dipoles it is (1/6) εmax ≈ 30 eV. Electrons with such energies will cross the vacuum
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Figure 2: Normalised secondary emission function h(ξ). The maximum value of h is equal
to 1, and is reached at ξ = 1. One unit of ξ corresponds to the energyW0 which we assume
to be 400 eV throughout this paper.

chamber of about 4 cm in diameter, hit the wall and produce secondary electrons before
arrival of the next bunch.

There exist different estimates of the photo-yield δγe in literature varying from 0.02
in Ref. [4] to about 1.0 in Ref. [1]. Below we will use the value δγe = 0.1 which agrees
with the last measurements performed at CERN 1) [12].

3 Secondary Electron Emission
Following Refs. [1, 13] we assume that the secondary emission yield δsey as a function

of the energy of the electron W and the incidence angle θ is represented by the following
formula

δsey(W, θ) ≈ δmax

cos θ
h
(
W

W0

)
, (8)

where δmax is the maximum yield, W0 is the energy corresponding to this maximum, θ is
counted from the normal to the surface, and the function h(ξ) is given by the following
formula

h(ξ) = 1.11ξ−0.35 (1− e−2.3 ξ1.35). (9)

The plot of the function h(ξ) is shown in Fig. 2. Using the photoelectron distribution
function given by Eq. (7) and the secondary electron yield, we can calculate the total
number of secondary electrons generated by those photoelectrons:

Nse =
∫ ∞

0
dW

∫ 2π

0
dφ δsey(W,

π

2
− φ) fpe(W,φ), (10)

1) The latest measurements at 11 mrad incidence angle give δγe = 0.15 for 1.6 µm surface roughness and
δγe = 0.21 for 0.2 µm roughness.
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where we took into account that the incidence angle θ = π/2 − φ. Eq. (10) gives the
number of secondary electrons per unit length of the pipe generated in the magnetic field
after passage of the bunch. In field-free regions one should set φ = π/2 in the integrand on
the right hand side of the equation. Assuming the value of the critical energyW0 = 400 eV
and performing numerical integration gives the following result:

Nse = 0.34 Rδγeδmax
Nγ

c
, in straight sections,

Nse = 0.23 Rδγeδmax
Nγ

c
, in dipoles. (11)

The smaller number of secondary electrons in the dipoles is explained by the fact that
the energy gain ε of the photoelectrons goes down when φ → 0 causing the secondary
emission yield to vanish (in spite of the 1/ cos θ dependence of δsey).

Choosing the values δγe = 0.1 for the photoemission yield, δmax = 1.3 for the
secondary emission yield and R = 1, gives Nse = 1.2 × 106 secondary electrons per
centimeter in the straight sections and Nse = 0.8 × 106 cm−1 in dipoles. After these
electrons are uniformly distributed over the pipe cross section (see below), they would
produce an electron cloud with a density of about 105 cm−3 and 0.7 × 105 cm−3, in
straight sections and dipoles, respectively.

4 Multipacting
4.1 Free Motion and Distribution Function of the Secondary Electrons

So far we have considered the electron cloud during the passage of a single bunch.
Now we need to look at what happens with those electrons when subsequent bunches pass
by.

Note first, that photoelectrons have relatively small average energy (30 or 65 eV, see
above), and cross the distance between the walls within a time comparable to the bunch
spacing of 25 ns 2). That means that generation of the secondary electrons will occur rather
uniformly in time between the first and the second bunches. After the second bunch
arrives, it accelerates the secondary electrons up to an energy of several kiloelectron-
volts and causes them to hit the wall and to be converted into the next generation of
secondaries almost immediately after the passage of the bunch. The same process repeats
with the passage of next bunches. We will consider below the dynamics of the electron
cloud between the subsequent passage of the bunches, find the balance between the losses
of the secondary electrons and their production and obtain a condition of multipacting,
corresponding to unlimited growth of the cloud population.

Let us set t = 0 corresponding to the moment immediately after the passage of
the bunch under consideration. We assume that by this time all secondary electrons are
produced and sit close to the wall surface. We also assume that their velocity distribution
function is given by a half-Maxwellian with a characteristic energy Ws, and all electrons
are emitted perpendicular to the wall surface. The total distribution function over velocity
and coordinates at t = 0 is

f (0)
e (v, x, y) = n0(x)

√
2m

πWs

e−mv2/2Wsδ(y − y0(x)), v > 0, (12)

where the velocity v is directed from the wall toward the axis, y0(x) = ±
√
a2 − x2 gives

the y-coordinate of the wall for a given x, and n0(x) is the number of electrons per unit

2) A 60 eV electron passes the screen diameter of 4 cm in about 9 ns.
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area in x − z plane. The δ-function term reflects the fact that all electrons are initially
localised on the wall. The function f (0)

e is defined so that when integrated over v from 0 to
infinity it gives the electron density (particles per cubic centimeter) in the pipe (n0(x) has
a dimension of particles per unit area), and integrated over velocity and the geometrical
cross section of the pipe, it gives the total number of the secondary electrons left after
the passage of the bunch:

∫
dxdy

∫ ∞

0
dvf (0)

e (v, x, y) = 2
∫ a

−a
dxn0(x) = Ne. (13)

In the magnetic field, we can assume that particles move only in the vertical direc-
tion, their horizontal position being “frozen” within a small Larmor radius. In order to
compute the dynamics of the cloud, we actually need the distribution function over the
vertical component of the velocity vy = vy0/a which can be found from Eq. (12),

f (0)
e (vy, x, y) =

2an0(x)

vsy0(x)
λ

(
vya

vsy0(x)

)
δ(y − y0(x)), (14)

where vs =
√
Ws/m and λ is given by Eq. (2).

In the course of the free motion of the electrons until the next bunch arrives, vy
remains constant and y = y0(x) + vyt. Using the fact that the distribution function of
a Hamiltonian system is a function of integrals of motion, we can easily find it at time
t > 0:

fe(vy, x, y, t) = f (0)
e (vy, x, y − vyt). (15)

Integrating this formula over vy gives the density of the electrons at time t,

ne(x, y, t) =
2an0(x)

tvsy0(x)

[
λ

(
y − y0(x)

tvsy0(x)

)
+ λ

(
y + y0(x)

tvsy0(x)

)]
. (16)

The two terms in Eq. (16) account for the electrons that move along the field line from
the upper and lower parts of the walls, respectively. The scaled density distribution in the
symmetry plane x = 0 for Ws = 10 eV at different times is shown in Fig. 3.

Integration of the density Eq. (16) along the field line gives the number of particles
in the pipe as a function of time. This number decreases with time because particles
get lost when they hit the wall. In reality, the particles that reach the wall can produce
secondary electrons, however the secondary emission yield in the range of 10 eV is small
and this effect can be neglected. The relative number of particles lost by the time t is

δloss(x, t) = 1− 1

n0(x)

∫ y0(x)

0
ne(x, y, t)dy. (17)

Numerical integration gives δloss = 0.23 for t = 25 ns and Ws = 10 eV (it is easy to see
from Eqs. (16) and (17) that δloss actually does not depend on x 3)). The dependence of
δloss on Ws is shown in Fig. 4.

The filling pattern in the LHC assumes that the beam is divided into batches of 81
bunches separated by the gaps of 220 or 940 ns [7]. Using Eq. (17) we find δloss = 0.88 for
t = 220 ns and δloss = 0.97 for t = 940 ns.

3) This is a consequence of our assumption of circular pipe cross section.
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Figure 3: Scaled density ane(0, y, t)/n0(0) of the secondary electrons in the vertical sym-
metry plane at five different times t = 5, 10, 15, 20 and 25 ns. The initial double-Gaussian
profile smoothes out into almost uniform distribution along the field line after about 10
ns.
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Figure 4: Fraction of secondary electrons lost between the bunches as a function of their
characteristic energy Ws.
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4.2 Acceleration of Secondary Electrons by the Beam and Multipacting
Condition
At time tsep = Lsep/c = 25 ns the next bunch arrives, and the secondary electrons

distributed according to Eq. (16) get a kick from the electric field of this bunch. Accel-
erated up to energies of several kiloelectron-volts they will quickly get to the walls and
create a new generation of secondary electrons. If the number of new secondary electrons,
n1(x), is larger than the initial number n0(x), we will have an exponential growth of the
secondary electrons with the passages of subsequent bunches (in the absence of the space
charge effect). In the opposite case, the initial group of photoelectrons will exponentially
decay after several cycles.

In order to find the threshold for multipacting we need to calculate the energy of
the electrons which fill the pipe, after the passage of the next bunch, and find the number
of the new generation secondary electrons after they hit the wall. For this calculation,
again we will assume a kick approximation for the energy gain. For an electron located at
position x, y, the kick energy gain is

W (x, y) = εmax
y2a2

(x2 + y2)2
. (18)

In this expression we used the fact that the bunch electric field varies inversely proportional
to the distance and included the projection of the electric field on the magnetic field line.
This energy as a function of y is shown in Fig. 5 for several horizontal coordinates x.

As shown in Ref. [11], the kick approximation fails for an energy gain W exceeding
1–1.5 keV. We see from Fig. 5, however, that this range of energies corresponds to a
relatively small area in the physical space limited by y < 0.5a and x < 0.2a. Noting
that the secondary emission coefficient is a smooth function of the energy for 1–2 keV, we
expect that the error produced by the kick approximation is not essential for our problem.

Similar to Eq. (10), we can now calculate the number of new generation secondary
electrons that are produced after the passage of the second bunch

n1(x) =
∫
dy δsey(W (x, y), θ)ne(x, y, tsep), (19)

where tsep is the time interval between the bunches and the angle θ is related to x through
cos θ = y0(x)/a. As mentioned above, if the ratio n1(x)/n0(x) is greater than 1, the
multipacting occurs. Using Eq. (19), the condition for the multipacting can be written as

δmax > δcrit(x) ≡
(∫

dy h(W (x, y))
a

y0(x)

ne(x, y, tsep)

n0(x)

)−1

. (20)

Note that in the magnetic field δcrit varies from one magnetic field line to another. Nu-
merically calculated values of δcrit are plotted in Fig. 6 for several values of Ws. As we
see, the lowest values of δcrit is reached at the values of x/a between 0.2 and 0.4.

4.3 Build-up of Electron Cloud
Let us assume that the actual secondary emission yield is larger than the critical

one, δmax > δcrit. In this case, a group of electrons initially produced by a single bunch is
amplified after each passage of subsequent bunches by a factor 1 + q, where

q = |δmax/δcrit − 1|, (21)
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Figure 5: Energy gained by an electron after passage of the proton bunch as a function of
the vertical coordinate y for different values of x, x/a = 0, 0.2, 0.4, 0.6, and 0.8 (smaller
x correspond to the curves with higher energies.)

which means an exponential growth Ne ≈ Nse exp (tq/tsep). In addition to amplifying
the existing electron cloud, each bunch adds its own secondary electrons generated by
photoelectrons. We can find the total density of the cloud after the passage ofM = t/tsep
bunches by summing contributions from every bunch. Note that the electron density Nse

generated by the kth bunch immediately after the passage by the time of observation will
by amplified by a factor of exp[q(M − k)]. The total density from all bunches is

Ne =
M∑
k=1

Nsee
q(M−k) = Nse

eMq − 1

eq − 1
≈ Nse

q
etq/tsep , (22)

where in the last formula we assumed that q 	 1 and Mq 
 1. Unlimited growth
predicted by Eq. (22) will eventually be stopped by the space charge effect (see below).

If the multipacting condition is not satisfied, δmax < δcrit, then an initial electron
cloud will decay as Nse ≈ exp (−tq/tsep). Adding contributions to the cloud from other
bunches results in a steady state density of the electron cloud at the level

Ne =
∞∑
k=1

Nsee
−qk = Nse

1

eq − 1
≈ Nse

q
, (23)

which means that for a small q there may be a substantial increase in the electron density
compared to the electron cloud for a single bunch. Of course, if the density given by Eq.
(23) is so large that the space charge effects play a role, than the space charge effects will
actually limit the density before it reaches equilibrium predicted by Eq. (23).
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Figure 6: Critical value of the maximum secondary electron yield δmax as a function of x
for different characteristic energies Ws = 5, 10, 15 and 20 eV of the secondary electrons.
Higher energy corresponds to larger δcrit.

It is important to emphasise here that in both cases the characteristic time that
determines the development of the electron cloud is the same

τe =
tsep
q
. (24)

For not very small q, this means that the cloud reaches equilibrium after the passage of
several bunches.

5 Space Charge Effects
A simple estimate of the electron cloud density at which the space charge effects

become important is given by the Debye radius of the electron cloud [14]

rD =

√
Ws

4πnee2
, (25)

where we approximate the thermal energy of the electrons by Ws. If the density is such
that the Debye radius becomes comparable to the pipe radius, the electric field of the
space charge will effectively decelerate the electrons when they are moving away from the
wall toward the center, and push them back into the wall surface preventing the further
buildup of the cloud. We have to emphasise here that this mechanism limits the electron
could density to a level that depends (for a given bunch spacing) only on the average
energy of the emitted secondary electrons Ws and on the pipe radius a. It is not related
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to the charge of the proton bunch, contrary to the statement of Ref. [1]. Equating rD to
the pipe diameter 2a gives a rough estimate for the maximum electron density

nmax ≈ Ws

πa2e2
≈ 6 × 106 cm−3. (26)

Note that this density corresponds to a number of electrons in each dipole magnet equal
to 1011.

A full self-consistent treatment of the space charge effects is a complicated problem
that should take into consideration the nonaxisymmetric time-dependent electric field
generated by the cloud in the pipe and the dynamics of the secondary electrons. A detailed
treatment of the problem is only available numerically, however, the main mechanism of
the space charge effect can be understood with the help of a simplified analytical model.

Let us consider the case without magnetic field, when the problem is axisymmetric.
First, we can calculate the electric field on the wall E at time t = 0, when the secondary
electrons are all located close to the wall, as E = 2eNe/a, where Ne is the number of
secondary electrons in the pipe per unit length. This electric field on the wall remains
constant at t > 0 if one neglects particle losses. In our model we compute the motion of
the electrons and their distribution function assuming that all electrons are affected by
the electric field E.

The electron motion in the radial direction with initial location r0 (equal to the pipe
radius) and with initial velocity v0, in the constant electric field is

v = v0 +
eE

m
t, r = r0 + v0t+

eE

2m
t2. (27)

The initial distribution function in the axisymmetric system is a straightforward general-
isation of Eq. (12),

f (0)
e (v, r) = Ne

√
2m

πWs

e−mv2/2Wsδ(r − a) =
2Ne

vs
λ
(
v

vs

)
δ(r − a), v > 0, (28)

where a positive value of v corresponds to the motion toward the axis. This function is
now defined so that

∫ a
0 dr

∫∞
0 dvfe = Ne. Using Eq. (27) and the fact that the distribution

function is constant along particle’s orbit, we can find the distribution function at time t

fe(v, r, t) = f (0)
se (v − eEt

m
, r − vt+

eEt2

2m
), (29)

and integrating fe over v gives

n̂e(r, t) =
2Ne

tvs

[
λ
(
r − a

tvs
− E

)
+ λ

(
r + a

tvs
+ E

)]
, (30)

where n̂e(r, t)dr gives the number of electrons per unit length of the pipe located within
[r, r + dr] 4). The dimensionless electric field E in Eq. (30) is

E =
eEt

2mvs
=
e2Net

mvsa
. (31)

For E = 0, Eq. (30) reduces to Eq. (16) in which x = 0 (the vertical symmetry plane).

4) The electron density ne is expressed in terms of n̂e as ne = n̂e/2πr.
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Figure 7: Scaled density an̂e(r, t)/Ne of the secondary electrons for E = 0.5 at five different
times t = 5, 10, 15, 20 and 25 ns. Compare with Fig. 3.

Eq. (30) describes propagation and redistribution of the secondary electrons in the
pipe with account of the space charge effect. For illustration of the electric field effect, we
plot in Fig. 7 the density n̂e for E = 0.5 and t = tsep. Comparing this figure with Fig. 3, we
see that electric field lowers the final density of the electrons, causing additional losses of
the particles. The fraction of particles lost on the walls at t = tsep is 0.47 which is more than
two times larger than without electric field (see Section 4.1). For t = tsep and Ws = 10 eV,
one unit of E corresponds to Ne = 4.2 × 107 cm−1, or a density n = 3.3 × 106 cm−3 of
uniform distribution.

Using the distribution function (30) we can now recalculate the critical secondary
emission coefficient δcrit, which becomes a function of E , paralleling the calculations of
section 4.2. The result of such calculation is shown in Fig. 8 for several energiesWs. As is
seen from this figure, increasing E results in larger values of δcrit, because, as mentioned
above, the electric field pushes the low energy particles onto the wall and increases the
loss of the secondary electrons.

Recalling now the electron cloud dynamics from section 4.3, we arrive at the follow-
ing scenario of development of the electron cloud. If the secondary electron coefficient δmax

is initially greater than δcrit, an exponential growth of the electron cloud occurs. With the
growth of Ne, the value δcrit increases in accordance with Fig. 8 until it exceeds δmax. At
some point, the exponential growth of the cloud stops and the losses become such that
they exactly compensate the supply of new electrons from passing bunches. The equilib-
rium level can be computed using Eq. (23) in which q has to be calculated with account
of the electric field:

Ne

(
1 − δmax

δcrit(E(Ne))

)
= Nse. (32)

We remind here that in this equation Ne is the equilibrium linear density of the cloud and
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Figure 8: Critical value δcrit of the maximum secondary electron yield as a function of
dimensionless electric field E for x = 0 and Ws = 5, 10, 15 and 20 eV. Larger Ws

correspond to higher values of δcrit.

Nse is the linear density generated by a single bunch.
For illustration, we assume that δmax = 2, and take Nse = 106 cm−1. Then solving

numerically Eq. (32) we find that in equilibrium E = 0.30, and Ne = 1.24 × 107 cm−1

which corresponds to a uniform electrons density ne = 1.0 × 106 cm−3, or 1.7 × 1010

electrons per dipole magnet.

6 Energy Deposition to the Wall
Every time after a passage of a bunch all electrons in the pipe hit the material

surface and deposit their kinetic energy into the wall. To estimate the heat load due to
this effect we cannot use Eq. (18) because it overestimates the energy gain for electrons
close to the beam 5). Instead, we will use a result of computer simulation, that shows that
the average energy deposited by each electron in dipoles for the nominal parameters of
the LHC is approximately equal to 300 eV [2, 4]. With this number, we can first estimate
the energy deposition corresponding to the first generation secondary electrons produced
by each bunch. The linear density of these electrons, for R = 1, is given by Eq. (11), and
for Nse = 106 cm−1 one finds the head load P = 0.44 W/m. For a reflection coefficient
R = 0.05, the density Nse and the power load P become 20 times smaller.

However, due to the secondary emission of electrons, the equilibrium electron density
Ne is always higher than Nse. In case when the multipacting condition is not satisfied,
Ne is given by Eq. (23). According to Fig. 6, the minimum value of δcrit for Ws = 10 eV
is equal to 1.4. Assuming δmax = 1.1, that is there is no multipacting in the system, we
find q = 0.2, which means that the equilibrium density Ne ≈ 5Nse, and the corresponding

5) Formal calculation of the deposited energy using the functionW (x, y) would result in an integral that
diverges at small x and y.
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energy deposition is P = 2.2 W/m for R = 1 and P = 0.11 W/m for R = 0.05.
For a secondary emission coefficient greater than δcrit, the equilibrium density is

determined by the space charge effect. In this regime, the stationary density of the electron
could does not depend on q, and is approximately equal to Ne ≈ 2×107 cm−1. The energy
deposition corresponding to this density is almost 20 times larger than estimated forNse,
P ≈ 9 W/m.

7 Beam Emittance Growth Due to the Field of the Electron Cloud
Due to the dynamic nature of the electron cloud regenerated after passage of each

bunch, we can assume that the electric field of its space charge will have a random compo-
nent which fluctuates both in space and time. Random variations in space can be caused
by uncontrolled changing of the secondary emission coefficient from point to point. Fluc-
tuations in time may be related to the beam noise excited, e.g., by a feedback system . As
a result, a fraction of the total electric field of the cloud will randomly change its value
and orientation along the beam path producing random kicks on the beam and driving
its betatron oscillations. These oscillations, after decohering, will be transformed into an
increased beam emittance. The whole process is analogous to the mechanism of emittance
growth due to the ground motion, where a random motion of quadrupole magnets pro-
duces uncorrelated kicks to the beam and causes constant emittance growth proportional
to the square of the amplitude of the ground motion (see, e.g., Ref. [15]).

To quantitatively estimate this effect, note first that the transverse field E of the
electron cloud in the pipe is of the order

E ∼ 4πeane. (33)

We will assume that a small fraction f of the total field E fluctuates stochastically and
use the theory from Ref. [15] to compute the emittance growth. An important parameter
of the theory is a correlation length lc, such that within each interval lc values of the field
in different points are correlated, and in regions separated by a distance larger than lc the
fields are statistically independent.

According to Ref. [15], the emittance growth due to the passage of the beam through
M uncorrelated regions of length lc of the perturbed field fE is given by the following
formula 6)

∆ε =
1

2
Mβ̄

(
elcfE

γmpc2

)2

, (34)

where β̄ is the average beta-function, andmp is the classical proton radius. Assuming that
the secondary electrons and the random field fE are present on the whole circumference
of the machine, we can estimates M as the number of correlated regions passed by the
beam during time t, M = ct/lc, which gives the following formula for the rate of emittance
growth:

dε

dt
=

c

2lc
β̄

(
elcfE

γmpc2

)2

=
c

2lc
β̄

(
4πe2anelcf

γmpc2

)2

. (35)

Finally, we define the emittance doubling time as

τemit = ε0

(
dε

dt

)−1

=
cε0

2lcβ̄

(
γ

4πrpanef

)2

, (36)

6) In equations of Ref. [15] we substitute the perturbation of the magnetic field δB by the transverse
electric field fE, which is valid for a relativistic beam.
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where ε0 is the nominal beam emittance.
Without detailed knowledge of all noise sources in the ring it is impossible to make

a realistic estimate of the parameters f and lc. Let us assume, rather arbitrarily, that the
electric field fluctuates at a level of 1%, f = 0.01, and take for lc the diameter of the beam
pipe 4 cm. For ne = 106 cm−3, this gives an emittance doubling time

τemit = 3.7 × 105 sec ≈ 100 hours, (37)

which is large enough not to effect the collider luminosity. Note however, that choosing a
larger lc

7) and ne could easily decrease τemit down to a few hours.
With all its uncertainty, the estimate (37) indicates an additional potential problem

associated with a high density electron cloud – a possible emittance growth of the beam.

8 Instability
8.1 A Crude Estimate

The electron cloud plays the role of a medium that keeps memory about transverse
positions of bunches and carries interaction from one bunch to another. This can cause a
multibunch instability of the beam similar to the Ohmi instability of a positron beam [16,
1]. Before going to details and assumptions of the model, let us make a crude estimate of
the growth rate of the instability. In this paper, we limit our consideration by a horizontal
instability only, which according to Ref. [1] is faster than the vertical one.

Assume that one of the bunches is offset in the horizontal direction by ∆x. Due
to asymmetry of its electric field, regeneration of the electron cloud will produce an
asymmetric density component which will cause a horizontal dipole electric field ∆E. For
a rough estimate we may assume that the perturbation of the electric field is proportional
to the relative bunch offset

∆E ∼ κE
∆x

a
∼ 4πκene∆x, (38)

where κ is a numerical factor, and we used Eq. (33) for the electric field.
Now, if we divide the acceleration of a proton under the influence of this electric

field, e∆E/mpγ, by its transverse velocity ωβ∆x associated with the betatron oscillations
with the amplitude ∆x, we get a crude estimate of a possible instability growth rate γinst

γinst ∼
4πκe2ne

mpγωβ

. (39)

Putting in this equation ne = 106 cm−3 gives τinst = γ−1
inst = 18κ−1 msec. We will see below

that a more accurate evaluation of the electric field gives a growth rate corresponding to
κ ≈ 0.1.

8.2 Wakefield of the Bunch
We will now calculate more accurately the electric field produced by a displaced

bunch in a dipole magnetic field assuming that the bunch is displaced horizontally. A
mechanism responsible for the generation of an asymmetric component of the density
is following. A perturbed electrostatic potential of the displaced bunch results in the

7) In the worst case, one can expect fluctuations of the electric field with the correlation length of the
order of the bend magnet length 14 m.
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perturbation of the energy gain for secondary electrons. Since the secondary emission
yield is a function of the energy of incident electrons, this will result in a perturbation
of the cloud density. An asymmetric cloud density perturbation will produce a horizontal
electric field on the orbit.

Using Eq. (18) we find a perturbation of the energy gain due to the beam offset:

∆W =
∂W

∂x
∆x = −∆xεmax

4xy2a2

(x2 + y2)3
, (40)

and a corresponding perturbation of the electron density ∆n1(x) after accelerated elec-
trons hit the wall (see Eq. (19)):

∆n1(x) =
∫
ne∆W

∂δsey(W (x, y), θ)

∂W
dy , (41)

where ne is the electron density (particles per cm3) at the arrival time of the next bunch.
Note that ∆n1 is a surface density; it gives a number of electrons per unit area in x-z
plane. It was shown in Section 4, that the density ne is uniform along field lines, but it
varies in horizontal directions from one field line to another. We, however, neglect this
variation here and assume that ne is constant throughout the cross section of the pipe, so
that

ne =
Ne

πa2
, (42)

whereNe is the number of electrons in the cloud per unit length. With this assumption, the
integral (41) was calculated numerically and the normalised surface density perturbation
∆n1(x)a

2/Ne∆x is shown in Fig. 9. It is interesting to note that ∆n1(x) changes sign
when x varies from 0 to a; this means that the contributions of the positive and negative
perturbations of the density to the perturbation of the electric fields will partially cancel
each other.

By the time of arrival of the next bunch, the surface density ∆n1(x) will be uniformly
distributed along a field line. Dividing ∆n1(x) by the length of the field line 2

√
a2 − x2, we

find the perturbation of the density of the electron cloud and using the result of Appendix
A we calculate the x-component of the electric field at the center of the pipe ∆Ex. This
gives the following equation for ∆Ex

∆Ex = −2e
∫ a

−a
dx∆n1(x)

(
x

a2
− 1√

a2 − x2
arccos

x

a

)
. (43)

Numerical integration of Eq. (43) gives

∆Ex = −0.25
eNe∆x

a2
. (44)

Comparing this result with Eq. (38) we see that the factor κ is approximately equal to
1/16.

Equation (44) gives the electric field acting on the next bunch that follows the
displaced one. Subsequent bunches will feel a smaller perturbation because, as was shown
in Section 4, the number of electrons is decaying with the lifetime given by Eq. (24).
This means that the perturbation of the electron cloud will exponentially decay in time
together with the electric field, ∆Ex ∝ exp(−tq/tsep).
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Figure 9: Normalised density perturbation ∆n1(x)a
2/Ne∆x as a function of x.

Formally, we can introduce a transverse wakefield wx(z) per unit length of the pipe
associated with the interaction of the beam with the electrons,

wx(z) =
∆Ex

Nbe∆x
= −0.25

Ne

Nba2
e−zq/Lsep , (45)

which has a dimension of cm−3. However, in contrast to usual wakes describing an elec-
tromagnetic interaction of the beam with elements of the vacuum chamber, the wake (45)
depends on the number of particles in the bunch.

Using Eq. (45) we can find a growth rate of the multibunch instability. The deriva-
tion in Appendix B gives

γmax =
Nbrpc

2|w0|
4qγωβ

= 0.06
Nerec

2

qa2γωβ

, (46)

where w0 = wx(0). Assuming q = 0.2, this formula reduces to Eq. (39) with a factor
κ ≈ 0.1. For the parameters used in Section 8.1, we find the instability growth time
τinst ≈ 180 msec.

9 Discussion
In this paper, we developed a semi-analytical model of electron cloud build-up in

the LHC. The model is based on several assumptions which are made to simplify the
treatment. The most critical assumptions, in our opinion, are using the kick approximation
for the energy gain, Eq. (18), and an approximate treatment of the effect of the electric field
in Section 5. Using the first assumption, we somewhat overestimate the energy gain for
the electrons close to the beam. However, due to a slow variation of the secondary electron
coefficient at energies above W0 (see Fig. 2), the result is not sensitive to energy errors in
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this range. Our second assumption allows an analytic solution for the distribution function
in the regions without magnetic field. Assuming a constant electric field within the cloud
it correctly treats the dynamics of the electrons near the wall only. These are electrons
with the smallest kinetic energy for which the effect of the electric field is dominant. Faster
electrons that quickly reach the central region of the pipe are not treated correctly by this
model, however, due to their larger kinetic energy the effect of the electric field for them
is relatively weak. Overall, we believe that even with these (and other simplifications)
our model gives a reasonably good description of the beam dynamics and, what is most
important, establishes the main dependencies between different parameters.

We found two different regimes for the development of the electron cloud. If the
system is below the multipacting condition, the density of each group of electrons produced
by a single bunch exponentially decays with time. After a transient period during passage
of several bunches, the density of the electron cloud reaches an equilibrium level given by
Eq. (23); typically, this is several times larger than the electron density produced by a
single bunch.

If the system gets into the multipacting regime, the density of each individual group
of electrons grows exponentially until stopped by the space charge effect. In this regime,
the electron density (and the energy deposition to the wall) is several times higher than
without multipacting.

We also studied two dynamical effects caused by the electron cloud. One is the
emittance growth of the proton beam due to the interaction with a random component
of the electric field generated by electrons. Although our estimate gives an emittance
doubling time large enough not to be a concern, the effect cannot be completely discarded
because of uncertainty involved in the choice of the correlation length of the random field.
Another important effect associated with the cloud is the multibunch instability due to
the wakefield produced by the electrons. We calculated the wake function and found the
growth rate of the instability of the order of 0.2 s.

The ways to improve the situation with electrons are rather obvious. Reducing the
secondary emission coefficient (with the help of a special surface treatment or coating)
to a level below multipacting would be the most radical solution of the problem. In ad-
dition, lowering the reflectivity of the surface (by increasing the surface roughness 8) )
would lead to absorption of photons in a narrow horizontal strip where the motion of
electrons is limited by the magnetic field such that the secondary emission is effectively
suppressed. Another choice, that would unfortunately lead to a deterioration of the ma-
chine performance, could be increasing the bunch distance. Our calculations show that a
twofold increase of the bunch distance, from 7.5 m to 15 m, would lead to an increase of
the minimal value of δcrit from 1.3 to 2.3. Another possibility of increasing δcrit by lowering
the beam current turns out not to be effective: calculations show that a fivefold lowering
of the current down to 0.1 A would only increase δcrit from 1.3 to 1.6.

The mathematical code of this model is implemented as a Mathematica 3.0 notebook
and is available on the World Wide Web site http://wwwslap.cern.ch/collective/electron-
cloud/.

8) The most recent measurements showed that the reflectivity at 11 mrad incidence angle for an average
surface roughness of 1.6 µm is only 5%, [12].
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Brüning for sharing results of his computer simulations and stimulating discussions and
to J. S. Berg and R. Talman for critical remarks concerning the beam emittance growth.

I also want to thank the AP group of the CERN SL division, in particular Francesco
Ruggiero, Jacques Gareyte, for the invitation to CERN, hospitality and support.

References
[1] F. Zimmermann, “A Simulation Study of Electron-Cloud Instability and Beam-

Induced Multipacting in the LHC”, CERN LHC Project Report 95 (1997); SLAC-
PUB-7425 (1997).

[2] M. Furman, “The Electron-Cloud Effect for LHC”, Proceedings of the International
Workshop on Multibunch Instabilities in Future Electron and Positron Colliders,
Tsukuba, Japan, 1997.
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[6] O. Gröbner, 10th Int. Conference on High Energy Accelerators, Protvino (1977).
[7] The Large Hadron Collider, Conceptual Design, CERN/AC/95-05 (1995).
[8] World-wide web page ’http://www-crxo.lbl.gov/optical constants/’ published by the

LBNL X-ray laboratory.
[9] F. Ruggiero, private communication, September 1997.

[10] S.A. Heifets, ”Transverse Instability Driven by Trapped Electrons”, SLAC/AP-95-
101 (1995).

[11] J. S.. Berg, “Energy Gain in an Electron Cloud During the Passage of a Bunch”,
LHC Project Note 97 (1997).

[12] F. Ruggiero, private communication, September 1997.
[13] H. Seiler, ”Secondary electron emission in the scanning electron microscope”, J. Appl.

Phys. 54 (11) (1983).
[14] R. J. Goldston and P. H. Rutherford. Introduction to Plasma Physics, (Institute of

Physics Publishing, Bristol), 1995.
[15] V. Lebedev, V. Parkhomchuk, V. Shiltsev and G. Stupakov. Particle Accelerators,

vol. 44, p. 147 (1994).
[16] K. Ohmi, Phys. Rev. Lett., Vol. 75, No. 8 (1995).
[17] A. Chao, ”Physics of Collective Beam Instabilities in High Energy Accelerators”,

Wiley, p. 208 (1995).

Appendix A
In this Appendix we calculate the electric field on the pipe axis generated by an

electron cloud with density ∆ne(x) which does not depend on y and z.
Using a complex notation, z = x + iy and a complex electric field Ex + iEy it is

easy to check that the Green function corresponding to the electric field of an infinitely
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thin charged wire stretched parallel to a circular pipe axis at x0, y0 with charge per unit
length σ is given by the following formula:

Ex(x, y) + iEy(x, y) = 2σ
(

1

z̄ − z̄0

− 1

z̄ − z̄i

)
, (47)

where the bar denotes a complex conjugate variable, and z̄i = a2/z0 gives the image
charge location. We are interested in the electric field at the center of the pipe, z = 0.
This reduces Eq. (47) to

Ex + iEy = 2σ

(
x0 + y0

a2
− 1

x0 − iy0

)
. (48)

Using this Green function, we can find the electric field for and an arbitrary density
∆ne(x) (it is evident that the Ey component on the axis vanishes if ∆ne does not depend
on y)

Ex = −2e
∫ a

−a
dx0

∫ √
a2−x2

0

−
√

a2−x2
0

dy0∆ne(x0)

(
x0 + y0

a2
− 1

x0 − iy0

)

= −4e
∫ a

−a
dx0∆ne(x0)

(
x0

a2

√
a2 − x2

0 − arccos
x0

a

)
, (49)

where we took into account that electrons have negative charge −e.

Appendix B
Following Ref. [17], we derive here the growth rate of a multibunch instability with

a wake function given by Eq. (45).
The equation of motion for the nth bunch is

∆ẍn + ω2
β∆xn =

Nbrpc
2

γ

M−1∑
m=0

wx ((m− n)Lsep)∆xm (t− (m− n)tsep) , (50)

where ωβ is the betatron frequency, M is the number of bunches in the ring, and the dot
indicates the time derivative.

Assuming harmonic dependence in time,

∆xn = x̃ne
−iωt, (51)

we find

(ω2
β − ω2) x̃n =

Nbrpc
2

γ

M−1∑
m=0

x̃mwx ((m− n)Lsep) e
iω(m−n)tsep . (52)

Typically, correction to the frequency due to the instability is much smaller than ωβ. This
allows us to simplify the left hand side of Eq. (52) and use ωβ in the exponentiation factor
on the right hand side

(ω − ωβ)x̃n = −Nbrpc
2

2γωβ

M−1∑
m=0

x̃mwx ((m− n)Lsep) e
iωβ(m−n)tsep . (53)

We specify a multibunch mode by an index µ, 0 < µ < M − 1, such that

x̃m ∝ e2πiµm/M , (54)
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which immediately gives a growth rate for the µth multibunch mode

γµ = −Nbrpc
2

2γωβ

Im
∞∑
k=1

wx (kLsep) e
k(iωβtsep+2πiµ/M), (55)

where we took into account that due to a rapid exponential decay of the wake function
the summation can be extended up to infinity.

Rewriting Eq. (45) in the form

wx(kLsep) = w0e
−kq, (56)

and performing summation in Eq. (55) we find

∞∑
k=1

wx (kLsep) e
k(iωβtsep+2πiµ/M) = w0

e−q+iωβtsep+2πiµ/M

1 − e−q+iωβtsep+2πiµ/M
. (57)

Assuming that q 	 1 and µ/M 	 1 (and also using the fact that ωβtsep 	 1), we can
expand expression (57) and find the maximum of the growth rate

γmax =
Nbrpc

2|w0|
4qγωβ

. (58)
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