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Abstract

To simplify the engineering efforts of implementing the
PEP-II lattices, many modifications have been made to
these lattices since the conceptual design report[1]. During
the development and evolution of the lattices, changes in
a lattice would often result in a significant reduction in
the dynamic aperture. At such times, we often relied on a
non-linear analysis using the one-turn resonance basis Lie
generator to identify the cause of the degradation. In this
paper, we will present such examples to facilitate the usage
of map for diagnosing the problems in lattice design.

1 INTRODUCTION

In order to achieve the design luminosity of 3:0 �

1033cm�2s�1 and maintain flexibility in optimizing the
luminosity, we need to attain a low-beta value at the inter-
action point(IP) close to 1.5 cm for both the Low-Energy
Ring(LER) and the High-Energy Ring(HER). As a con-
sequence of this requirement, chromatic correction for
strong quadrupoles near the IP become critical to minimize
non-linear chromaticity and retain an adequate dynamic
aperture. Many of the major revisions of the lattices[2][3]
resulted from the improvement of the schemes for chromatic
corrections.

Among the lattice examples, we will select three in-
stances related with chromatic behaviour of the lattices.
Through the examples, we will show how to analyze the
one-turn map and how to identify the causes of inadequate
dynamic aperture. First, let’s establish some notations and
terminologies used in analysis of maps.

2 EFFECTIVE HAMILTONIAN

There are many ways to extract a one-turn map from a given
lattice. Among them, the most straight-forward method is
based on the thin lens or symplectic kicking code. One sim-
ply replace the double-precision variables with the differen-
tial algebraic(DA)[4] variables in the phase vector wherever
particles are tracked. In particular, in any object-oriented
codes this scheme could be implemented easily since one
could build a DA variable as an abstract type in the program.
Then, a Taylor map would be obtained by tracking a vector
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Table 1: Main PEP-II nominal parameters.

Parameter LER HER
Energy, E[Gev] 3.1 9.0
Circumference, C[km] 2.2 2.2
Emittance, �x=�y[nm-rad] 64.3/2.6 48.2/1.9
Beta function, ��x=�

�
y[cm] 37.5/1.5 50.0/2.0

B-beam tune shift, �0;x=�0;y 0.03/0.03 0.03/0.03
Synchrontron tune, �s 0.03344 0.05207
RF frequency, fRF [MHz] 476 476
RF voltage, VRF [MV] 5.1 18.5
Damping time, �E=�x[ms] 29.2/60.5 18.4/37.2
Bunch length, �l[cm] 1.0 1.0
RMS �E/E, �E 7:7� 10�4 6:1� 10�4

Total current, I[A] 2.14 0.99
Synch. loss, U0[Mev/turn] 0.77 3.58
Luminosity, L[cm�2s�1] 3:0� 1033 3:0� 1033

initialized to the identity with DA variables through the lat-
tice.

A Taylor map is symplectic up to the order of the trun-
cation if the effects of the radiation damping and quantum
excitation are ignored. Here we treat momentum derivation
� = dp=p as a parameter of the map and denote the Taylor
map as[5]

zf =M(zi; �) +O(N + 1); (1)

whereO(N+1) indicates that the Taylor map is truncated at
an order of N, zi is the initial phase-space coordinates, and
zf is the final phase-space coordinates.

Furthermore, because M is symplectic we could define
an effective HamiltonianHEFF as

M(z; �) = e
�:H0 (z):e

�:HEFF (z;�):; (2)

here we use : H : as a short notation of a Lie operator[6],
which acts on a function of phase-space variables
f(z) through the Poisson bracket as : H(z) :f(z) =

fH(z); f(z)g. The effective Hamiltonian contains almost
all information, near the origin, of single particle dynamics
in the extracted lattice. In general, given a map extracted
relative to a closed orbit, it can be expressed as

SLAC-PUB-10122Presented at 5th European Particle Accelerator Conference (EPAC 96),
Sitges, Spain, June 10-14, 1996.



HEFF (z; �) =
X

N�3

HN (z; �); (3)

with

H0 = �xJx + �yJy;

where �x and �y are tunes, Jx and Jy are the action in-
variances of the lattice, andHN are non-linear parts of the
Hamiltonian. HN could be calculated order-by-order per-
turbatively from the underlining Taylor map. In the next
section, we will show examples of how to use the effective
Hamiltonian.

3 NONLINEAR DISPERSION

One of the major revisions of the LER lattice was moving a
�I chromatic correction module in the vertical plane from
the congested interaction region into the nearby arcs. In the
horizontal plane, we kept the �I module immediately af-
ter the final focusing quadrupoles since the dipole for sep-
arating the beams near the IP provides dispersion naturally.
However, the additional dipole needed to make dispersion
symmetric inside the �I section was removed in order to
resolve the problems of interference between the magnets
in the LER and the HER. At first, the asymmetry of disper-
sion at the first pair of sextupoles did not cause any degra-
dation of the dynamic aperture. Therefore, the new lattice
was adopted as the official design[2].
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Figure 1: Dynamic apertures for ideal LER lattices with
10�E synchrotron oscillation

A month later, we made another change in the optics in
two wiggler sections to accommodate a new wiggler con-
figuration. We were surprised to see that the dynamic aper-
ture(Fig. 1) dropped below 10� in the horizontal plane even

for the case without any imperfections of alignment and
multipole.

We calculated the effective Hamiltonian introduced in the
last section and saw that the termx�2 increased significantly
from the previous lattice. Knowing this large second or-
der dispersion in the one-turn map, it was not hard to figure
out where it was generated in the lattice. Indeed, one could
show that the asymmetry of dispersion at the pair of sex-
tupoles separated by�I would be the source of the second
order dispersion. Using the method of paper[7], we could
derive a combined map for the pair of sextupoles from

e�
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)�3):; (4)

whereKS was the strength of the sextupoles, xwas the hor-
izontal coordinate, and �1 and �2 were the dispersions at the
positions of the first and second sextupoles respectively. In
the derivation, we first transported the map of the second
sextupole to the place near the first sextupole by a similar-
ity transformation, then used the first order approximation
of the Cambell-Baker-Hausdorf theorem to concatenate the
maps. Additionally, the derivation itself showed us another
method to obtain the effective Hamiltonian without going
through a Taylor map. It was obvious from the result that
the second order dispersion x�2 was due to the difference
in the dispersions.

We were then ready to explain why the dynamic aperture
degraded for the last modified lattice. Since the non-linear
dispersion was propagated in the lattice according to the be-
tatron phase, a localized source, as we discussed earlier, may
not be a problem if it reached its minimum value at the loca-
tion of a RF cavity where the synchrotron and betatron oscil-
lations were coupled. Fortunately, that was the case before
wiggler sections were modified. It became the opposite with
a maximum value of non-linear dispertion at the RF cavity
after the modification.

It was clear from Eq. 4 that the second order dispersion
was proportional to the strength of the sextupoles. Based
upon this observation, we started to search for a chromatic
solution in which the strength of the first horizontal pair of
sextupoles was minimized. Once we found a such solution,
the dynamic aperture recovered back above 10� as shown
in Figure 1.

4 SYNCHROTRON SIDEBANDS

In the conceptual design report[1], the tunes for the HER
lattice were selected as �x = 0:57 and �y = 0:64 based
solely on the simulation of the beam-beam effects. The se-
lected tunes worked just as well for the lattice with the nom-
inal ��y = 2:0 cm.

But when we tried to reduce the ��y from 2.0 to 1.5 and
then to 1.0 cm the lattice became very sensitive to any im-
perfections. Again we checked with the effective Hamil-
tonian for the clues. Its coefficients normalized at 10� of
beam size were ploted in Fig. 2. From the figure, we could



see that the terms x2� was the largest among all the coef-
ficients in the Hamiltonian. This term along with the term
x2�3 drove the synchro-betatron resonance of 2�x�3�s =

2 � 0:57� 3� 0:05207 = 0:984. The reason for the sen-
sitivity of the lattices was the fact of that this half integer
synchrotron sideband was too close to the horizontal tune.

Actually we had demonstrated that it was the source of
the problem by simply taking out this term in the map and
tracking with the modified map to see if the dynamic aper-
ture was better. Of course, it was positively identified.

In this case, we only made a change in working tunes
�x = 0:618 and �y = 0:638 to avoid the sideband. After
the change, we were able to achieve the ��y = 1:0 cm, which
equals to the bunch length of the beams. The improvement
of the lattice provided us more flexibility in optimization of
the luminosity.
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Figure 2: Normalized coefficients of the effective Hamil-
tonian plotted in log scale horizontally. The vertical axis
shows corresponding indices (mx;my; nx; ny) for reso-
nances and orders. The corresponding chromatic indices,
p’s, are not explicitly shown but are indicated with line pat-
terns (p = 0: solid, 1: dashes, 2: dots, 3: dotdashes, etc.)

5 CHROMATIC COUPLING

A scheme of solenoid compensation[8] was worked out for
the LER a year ago. Among skew quadrupoles used, there
were two pairs of skew quadrupoles located near the sex-
tupoles separated in �I in the arcs adjacent to the interac-
tion region mainly to correct and adjust the vertical disper-
sion. Those skew quadrupoles were purposely placed out-
side of the pair of sextupoles so that the symmetry in the
�I section would be preserved. Recently, two of the skew
quadrupoles were moved to the other side of sextupoles be-
cause it was a simple engineering solution to avoid the big-
ger vacuum pipe. Once again, the symmetry in the�I mod-
ule was broken. We saw a big chromatic coupling term
xy� in the Hamiltonian. The dynamic aperture was dete-
riorated as well. One could commute the map of the skew
quadrupole with the map of sextupole in a different phase
using the CBH theorem. The xy� term would be generated

as a result. The resolution of this problem was to avoid any
engineering solution with skewquadrupoles between paired
sextupoles.

6 SUMMARY

From the examples discussed in previous sections, we can
see that Lie algebra techniques were routinely and success-
fully used in the design process for the PEP-II lattices, es-
pecially for diagnosing non-linear aberrations. We found
that the concept of the effective Hamiltonian was particu-
larly useful since it contained a minimum set of coefficients
and all the important information related to single particle
dynamics, such as chromaticity, and strength of resonances.
It also provides us an alternate way of thinkingof an acceler-
ator as an effective Hamiltonian combined from a sequence
of hamiltonians rather than a sequence of electromagnetic
elements.
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