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Abstract the �T� structures are too small from a wakefield 
perspective. To achieve low group velocity with accept-
able iris radii, structures with a 150 degrees phase 
advance per cell (H-Type) have been built. Their design is 
described in Section 4. Dipole wakefield suppression has 
been studied for these structures, as well as for SW 
structures, which may be a viable candidate for the 
NLC/JLC. These studies are discussed in Section 5. 
Finally, a series of SW structures have been built and high 
power tested. The results are presented in Section 6.   

The NLC and JLC groups face two major challenges in 
designing X-Band accelerator structures for an electron-
positron linear collider. The first is to demonstrate stable, 
long-term operation at a 70 MV/m gradient, which is 
required to keep the machine cost low, and the second is 
to strongly suppress the structure long-range wakefield, 
which is required to achieve high luminosity. During the 
past 2 years, the major emphasis has been on proving high 
gradient operation, although dipole wakefield suppression 
studies are continuing. 

This paper describes high gradient test results from a 
series of prototype TW and SW structures being 
developed for the NLC/JLC. Schemes for damping and 
detuning the dipole modes of these structures are also 
presented.  

2 T-SERIES STRUCTURES 

         

The six structures in the T-Series were built with 
different lengths and initial group velocities. The methods 
of cell manufacturing and cleaning for these structures 
also differed. For three of the structures, the cells were 
fabricated using poly-crystal diamond turning by a vendor 
near SLAC, and three were made at KEK using single-
crystal diamond turning. Before assembly, the KEK cells 
underwent little (0.3 µm) or no etching as part of their 
cleaning procedure, while the SLAC cells were more 
deeply etched (either 1.5 or 3.0 µm). After assembly, all 
structures went through a pre-processing procedure that 
included �wet� and �dry� hydrogen firing at 950 °C, a two-
week vacuum furnace bake-out at 650 °C, and a one-week 
in-situ bake-out at 220 °C. The program of high gradient 
tests took place at the NLCTA, which delivered a total 
3000 hours of high-power rf at 60 Hz during this period.  

1 INTRODUCTION 
Early high gradient tests of X-Band structures at SLAC 

demonstrated reasonably stable operation at accelerator 
gradients in excess of 100 MV/m, and surface electric 
fields more than twice this value [1]. Because high power 
sources were not available at the time, short, low group 
velocity (vg/c ~ 0.03) structures were used. In contrast, the 
structure initially chosen for the NLC/JLC was 1.8 m long 
in order to be efficient and to reduce the cost of couplers 
and high power waveguide. The group velocity at the 
upstream end of this structure was necessarily high     
(vg = 0.12 c) and decreased toward the downstream end  
(vg = 0.03 c) to achieve constant gradient. These struc-
tures showed significant damage when operated at 50 
MV/m, almost exclusively near their upstream end [2]. 
Motivated by these observations, a series of structures (T-
Series) were built with varying length and group velocity 
to study how these variables affect high gradient 
performance (the peak surface fields along the structures 
were kept constant). These structures are described in 
Section 2. 

Table 1. T-Series Structures 
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 One of the most striking results from the high gradient 

operation of  these  structures was that the input and out-
put couplers broke down 1 to 2 orders of magnitude more 
often than the other cells. A discussion of the probable 
cause and proposed solutions is presented in Section 3. 
Although the performance of the non-coupler cells was 
close to meeting NLC/JLC requirements, the iris radii of 
__________________ 
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The rf processing of the T-Series structures started at a 
higher gradient (55-65 MV/m) than that (35-45 MV/m) 
for the earlier, 1.8 m structures. In addition, much less 
damage was observed in these structures at gradients 
above 70 MV/m (the nominal NLC/JLC unloaded 
gradient) than in the 1.8 m structures at gradients of 50-70 
MV/m.  

After processing to 80-85 MV/m, the breakdown rate at 
70 MV/m was dominated by events in input and output 
couplers. The rf signature of these events was different 
from those in the body and was similar structure-to-
structure. 

The breakdown rates in the body of the structures (i.e., 
excluding the couplers) at 70 MV/m gradient are close to 
acceptable for the NLC/JLC. For the three 53 cm, 0.03 c 
initial group velocity structures that were run at the 
NLC/JLC design pulse width of 400 ns, the breakdown 
rates were < 0.1, 0.2 and 0.3 per hour, respectively, while 
the goal is < 0.1 per hour. 

The breakdown related damage was measured by the 
change in the rf phase advance profile along the 
structures. In a test where a 53 cm, 0.03 c initial group 
velocity structure was run in parallel with a 53 cm, 0.05 c 
initial group velocity structure, the phase shift per 
breakdown was five times higher in the higher group 
velocity structure. The increase in damage with group 
velocity was also seen in a 105 cm structure whose 
upstream and downstream halves share the same cell 
designs with the 53 cm, 0.05 c and 0.03 c structures, 
respectively. The phase shift profile along in 105 cm 
structure is similar to that expected from individual 
profiles measured for the 53 cm structures, suggesting 
that the damage is a local phenomena and so does not 
depend on structure length. Finally, the net phase change 
in the body of the 53 cm, 0.03 c structure after 1200 hours 
of operation, including processing, was only 0.5 degrees.      

Although better handling and pre-processing 
procedures were adopted for the T-Series structures, a 
large variation in the initial processing rates was still 
observed. Of the three pairs tested, one pair processed 
about 10 times faster than other two in terms of the 
number of breakdowns required to reach a gradient of 
about 75 MV/m. The processing rate was similar for each 
structure in a pair, regardless of group velocity, length, 
and method of cell manufacturing and cleaning. This 
suggests that whatever changes occurred to affect the 
processing rate happened when the structure pairs were 
together. Surface analyses of the irises are being done to 
look for clues as to the cause of these differences. 

3 PULSE HEATING  
An autopsy of the input coupler of one of the structures 

revealed severe damage and some melting on the edges of 
the waveguide openings to the cell, and extensive pitting 
near these edges and on the coupler iris. The waveguide 
edges see large rf currents that are a strong function of 
their sharpness, and the associated pulse heating can be 
significant. By design, the edges in the T-Series structures 

were sharper (76-µm radius) than those in the 1.8-m 
structures (500-µm radius). The predicted pulse heating 
for the T-Series structures is 130-170 °C, well below the 
copper melting point, but high enough to produce stress-
induced cracking, which can enhance heating [3]. 
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higher phase advance per cell (150º instead of 120º) 
design has been adopted [5]. Two of these structures (H-
Type) have been built, one 60 cm long with an initial 
group velocity of 0.03 c, and the other 90 cm long with an 
initial group velocity of 0.05 c. The structures have been 
installed in NLCTA and now are under high power test. 
During the next year, several more H-Type structures will 
be tested, culminating in one that is fully damped and 
detuned for wakefield suppression. The renewed 
awareness of pulse heating has also led to design changes 
in the manifold slots for damped structures. Figure 3 
shows the new accelerator cup design for the H-Type 
Damped Detuned Structure (HDDS). 

 
 
 
 
 
 

 
Figure 5. Wire system for wakefield measurements. 
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6 STANDING WAVE OPTION 
Another approach being explored for achieving higher 

gradients is to use short SW structures that require much 
lower peak power than the TW structures. The SW 
structures tested so far are 20 cm long, contain 15 cells 
and have a coupling beta of one or two. They are operated 
in pairs, which allows the power reflected from them 
during their approximately 100 ns fill/discharge periods to 
be routed to loads. 

Three such pairs have been tested during the past year. 
One pair performed well at the NLC/JLC loaded gradient 
of 55 MV/m and flattop pulse width of 270 ns (unlike the 
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Figure 3. HDDS cup with pie-
shaped dipole mode coupling 
slots. The temperature rise due 
to RF pulse heating is reduced 
from 700C to about 250C by 
rounding the slot edges with a 
0.5-mm radius on the disk and a 
2-mm radius at the cell radius.  
5 WAKEFIELD IN H-TYPE STRUCTURES 
The long range-wakefields in the H-Type structures 

will be suppressed in a manner similar to that developed 
for the 1.8 m structures. That is, the cell frequencies will 
be detuned and the wakefield damped by coupling out the 
dipole mode energy via four manifolds that run along the 
structure [6]. The cell dipole mode frequencies have been 
computed using a program that maximizes the destructive 
interference among the mode fields [7]. To obtain 
acceptable wakefields, the frequencies for three 60 cm 
structures were interleaved to effectively create a 1.8 m 
detuned structure. The resulting wakefield from the first 
dipole band is shown in Figure 4.  
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Figure 4. Envelope of optimized wakefield for HDDS 
with 3-fold interleaving. The frequency spread of the 
dipole modes has a sigma of 7.7%.    

The wakefield at the first trailing bunch (42cm from the 
first bunch) is a strong indicator of the size of resonant 
beam growth. For this reason, the wakefield was mini-
mized at this location. The third dipole band must also be 
detuned for these structures. The iris thicknesses will be 
carefully tailored for this purpose. To verify the wakefield 
suppression, a wakefield measurement scheme using a 
coaxial wire is being developed at SLAC (see Figure 5) 
[8]. 
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