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Abstract

The GSO projection in the twisted sector of orbifold background is sometimes subtle

and incompatible descriptions are found in literatures. Here, from the equivalence of

partition functions in NSR and GS formalisms, we give a simple rule of GSO projection

for the chiral rings of string theory in C
r/Zn, r = 1, 2, 3. Necessary constructions of chiral

rings are given by explicit mode analysis.
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1 Introduction

Recent study of closed string tachyon analysis[1, 2, 3, 4, 5] raised the interests in the string

theory in non-compact orbifold backgrounds. The essential ingredient in either chiral ring

technique[3] or mirror symmetry approach[2, 7, 8] is the world sheet N = 2 supersymmetry of

NSR formalism, which in turn requires a precise understanding of the GSO projection. However,

the description of this basic ingredient is rather subtle and the subtlety comes from following

reason: in untwisted string theory, the criteria is the spacetime supersymetry which fixes a Z2

projection unambiguously. However, in orbifold theory, the spacetime SUSY is broken even

after we impose a GSO projection and the imposition of SUSY in untwisted sector does not

fix the action of Z2 projection in the twisted sector uniquely, in the sense that there are many

ways of defining Z2 operartion. Hence the choice of GSO is largely arbitrary and in fact it is

not hard to find that descriptions in literatures are partially incompatible with one another.

Furthermore it is not clear whether such GSO projection rules give string theories equivalent

to those in Green-Schwarz formalism.

In this paper, we explicitly work out the chiral rings and GSO projection rules on them

for non-compact orbifolds C
r/Zn, r = 3 such that it guarantee the equivalence of the NSR

and Green-Schwarz formalisms. We find that GS-NSR equivalence uniquely fixes a GSO for all

twisted sectors and gives us a simple rule for the GSO projection. For r = 1, 2, the same GSO

rule was given in the paper [5].

The rest paper is as follows: After constructing the chiral ring by mode analysis in section

2, we derive the GSO rule in section 3 by looking at the low temperature limits of partition

function. We derive partition functions of NSR formalism starting from that of Green-Schwarz

one using the Riemann’s theta identities. The spectrum analysis from this partition function

gives the surviving condition of individual energy values, which we identify as the rule of the

GSO projection.

2 Construction of Chiral Rings of C
r/Zn

The purpose of this section is to explicitly construct the chiral rings of orbifold theories[6],

which is essential both in language and in physical interpretation of section 3. We use mode

analysis and rewrite the result in terms of monomials of mirror Landau-Ginzburg picture [2],
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whose review is not included here.

2.1 C
1/Zn

The Energy momentum tensor of the NSR string on the cone C
1/Zn is

T = −∂X∂X∗ +
1

2
ψ∗∂ψ +

1

2
ψ∂ψ∗, (2.1)

where X = X1 + iX2, X∗ = X1 − iX2 and ψ and ψ∗ are Weyl fermions which are conjugate

to each other with respect to the target space complex structure. All the fields appearing here

describe worldsheet left movers. We denote the corresponding worldsheet complex conjugate

by barred fields: X̄, X̄∗, ψ̄, ψ̄∗. The N = 2 world sheet SCFT algebra is generated by T ,

G+ = ψ∗∂X, G− = ψ∂X∗ and J = ψ∗ψ. The orbifold symmetry group

Zn = {gl|l = 0, 1, 2, · · · , n− 1,with gn = 1} (2.2)

act on the fields in NS sector by

g ·X(σ + 2π, τ) = e2πik/ng ·X(σ, τ),
g ·X∗(σ + 2π, τ) = e−2πik/ng ·X∗(σ, τ),

g · ψ(σ + 2π, τ) = −e2πik/ng · ψ(σ, τ),
g · ψ∗(σ + 2π, τ) = − e−2πik/ng · ψ∗(σ, τ). (2.3)

The mode expansions of the the fields in the conformal plane are given by

∂X(z) =
∑

n∈Z
αn+a/z

n+1+a,

∂X∗(z) =
∑

n∈Z
α∗
n−a/z

n+1−a,

ψ(z) =
∑

r∈Z+ 1
2
ψr+a/z

r+ 1
2

+a,

ψ∗(z) =
∑

r∈Z+ 1
2
ψ∗

r−a/z
r+ 1

2
−a, (2.4)

where a = k/n. The quantization conditions are:

[αn+a, α
∗
−m−a] = (n+ a)δm,n, {ψr+a, ψ

∗
−s−a} = δr,s. (2.5)

Hence the conjugate variables are given by

α†
n+a = α∗

−n−a, (α∗
n−a)

† = α−n+a,

ψ†
r+a = ψ∗

−r−a, (ψ∗
r−a)

† = ψ−r+a. (2.6)
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The vacuum is defined as a state that is annihilated by all positive modes. Notice that as

a grows greater than 1
2
, ψ− 1

2
+a (ψ

∗
1
2
−a
)changes from a creation(annihilation) to an annihilation

(creation) operator. The (left mode) hamiltonian of the orbifolded complex plane is

HL =
1

2

∑ [
α∗
−n−aαn+a + α−n+aα

∗
n−a

]
+
1

2

∑
r∈Z+ 1

2

[
(r + a)ψ∗

−r−aψr+a + (r − a)ψ−r+aψ
∗
n−a

]
.

(2.7)

The contribution of the left modes to the zero energy is

EL
0 =

1

2

∞∑
n=0

(n+ a) +
1

2

∞∑
n=1

(n− a)− 1
2

∞∑
n=0

(n+
1

2
+ a)− 1

2

∞∑
n=0

(
1

2
+ n− a). (2.8)

If we define

f(a) =
∞∑
n=0

(n+ a) = 1/24− (a− 1/2)2/2, (2.9)

then f(a) = f(1−a) and f(a+1/2) = f(−a+1/2) so that the above sum gives EL
0 = a/2−1/8.

Embedding the cone to the string theory to make the target space C/Zn×R7,1, we need to add

the zero energy fluctuation of the 6 transverse flat space, 6× (−1/24)(1 + 1/2) = −3/8 to the
zero point energy, which finally become

EL
0 =

1

2
(a− 1), for 0 < a <

1

2
. (2.10)

If 1/2 < a < 1, then (a − 1
2
)ψ∗

1
2
−a
ψ− 1

2
+a should be added to the normal ordered Hamiltonian

while (1
2
− a)ψ− 1

2
+aψ

∗
1
2
−a
should be removed from it. Therefore the zero point energy should be

modified to be

EL
0 =

1

2
(a− 1)− 1

2

[
−

(
1

2
− a

)
+

(
a− 1

2

)]
= −1

2
a, for

1

2
< a < 1. (2.11)

From this we can identify the weight and charge of twisted ground states using

EL
0 = ∆− 1/2, and q = ±2∆, (2.12)

where we take + if the the ground state is a chiral state and − if it is anti-chiral state.
We now construct next level chiral and anti-chiral primary states by applying the creation

operator.

G+
− 1

2

=
∑

ψ∗
−n− 1

2
−a
αn+a = ψ∗

1
2
−a
α−1+a + · · · ,

G−
− 1

2

=
∑

ψ−n− 1
2

+aα
∗
n−a = ψ− 1

2
+aα

∗
−a + · · · . (2.13)
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Notice that for 0 < a < 1
2
, ψ∗

1
2
−a
|0 >= 0, hence

G+
− 1

2

|0 >= 0 (2.14)

so that |0 > is a chiral state. It has a weight a/2 and a R-charge a, so that the local ring

element of LG theory corresponding to |0 >a can be identified as u
k:

|0 >a∼ uk. (2.15)

The first excited state is ψa− 1
2
|0 > which is annihilated by G−

− 1
2

:

G−
− 1

2

ψa− 1
2
|0 >= 0. (2.16)

Therefore it is an anti-chiral state. Its weight is 1
2
(1−a) and charge is a−1, hence it corresponds

to ūn−k:

ψa− 1
2
|0 >∼ ūn−k. (2.17)

For 1
2
< a < 1, ψa− 1

2
|0 >= 0, hence G−

− 1
2

|0 >= 0 so that |0 > is an anti-chiral state. It has
weight 1

2
(1− a) and charge a− 1, hence the corresponding local ring element is ūn−k. The first

excited state is ψ∗
1
2
−a
|0 > which is annihilated by G+

− 1
2

therefore it is a chiral state. Its weight

is a/2 and the charge is a hence the corresponding local ring element is again uk. Using the

weight and charge relation for chiral and anti-chiral states, we see that ψ∗ has +1 charge and

ψ has −1 charge.
So far we have worked out the first twisted sector for arbitrary generator k. For the j-

th twisted sector, we can easily extend the above identifications by observing that a is the

fractional part of jk/n;

a = {jk/n}. (2.18)

The result is that for all chiral operators, the local ring elements are given by un{jk/n} and for

the anti-chiral operators they are given by ūn−n{jk/n}. In both cases j runs from 1 to n− 1 for
twisted sectors. It is worthwhile to observe that

n(1− {jk/n}) = n{j(n− k)/n}, (2.19)

so that the generator of the anti-chiral ring is ūn−k, while that of chiral ring is uk. Since it is

the building block for the results in higher dimensional theories, we tabulate the above results

in Table 1.
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Region vacuum annihilator creators

0 < a < 1
2

|0 >∼ una ψ∗
1
2
−a

ψa− 1
2
|0 >∼ ūn−na

1
2
< a < 1 |0 >∼ ūn−na ψa− 1

2
ψ∗

1
2
−a
|0 >∼ una

Table 1: Twisted vacuum and first excited states. The chirality is equal to the holomorphic structure of the target space, i.e,

chiral(anti-chiral) states correspond to monomial of u (ū).

What about the case a = −k/n < 0 The answer can be read off from what we already have

by noticing that above structure is periodic in a with period 1, because we should shift the

mode if a is bigger than 1. The effect of a → −a amounts to exchanging the role of ψ and ψ∗.

Therefore in this case, the local ring elements of LG dual are given by un−n{jk/n} and for the

anti-chiral operators they are given by ūn{jk/n}.

|0> *|0>

|0>    |0>

   1

  1 

|q| *|0>   |0>

|0>    |0>

   1

  1

|q|

(iii)  |q| v.s j/n,  k= -1

11/k

1

|q|

(ii)  |q| v.s j/n,  k=3(i) |q| v.s a for any k<0

1/2

0
1

(iv) mass v.s a

(1/2,1/4)

-1/2

a
1/3 2/3

Figure 1: Spectrum versus twists in C1/Zn: (i) 2∆ = |q| v.s a = {jk/n} for any k > 0. The states on solid lines are chiral

while those on the dotted lines are anti-chiral. (ii) |q| v.s j/n for k=3, (iii) |q| v.s j/n for k = −1. For k < 0, the role of chiral and

anti-chiral states are interchanged. (iv) All possible Tachyom mass v.s a. Dotted lines are for the (twisted) vacuum, solid lines are

for worldsheet fermion excitations, the rests are for scalar excitations. Notice that the lowest tachyon mass is always generated by

worldsheet fermion.

The first three graphs in Fig.1 show the weight versus twist a for the various cases. The

charge can be read off by the q = ±2∆ rule. We are interested in 2∆ since left and right moving
parts contribute the same to the masses of the states represented by these polynomials. The

last figure in Fig.1 is mass spectrum 1
4
α′M2 = EL

0 as a function of the twist a for all possible

tachyons including the scalar excitations:

α∗
−a|0〉 : EL

0 = (3a− 1)/2, for 0 < a <
1

2

= a/2, for
1

2
< a < 1
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α−(1−a)|0〉 : EL
0 = (1− a)/, for 0 < a <

1

2

= (2− 3a)/2, for 1

2
< a < 1. (2.20)

These scalar excitations α∗
−a|0〉, α−(1−a)|0〉 are tachyons if 0 < a < 1/3, 2/3 < a < 1 respectively.

They can not be characterized as chiral or anti-chiral states. Furthermore it never gives the

lowest tachyon mass, hence we will not pay much attention afterward.

2.2 C
2/Zn

Now we extend the result of previous section to C
2/Zn case, which is our main interests. We in-

troduce two sets of (bosonic and fermionic) complex fields X(1), ψ(1), ψ∗(1); X(2), X∗(2), ψ(2), ψ∗(2)

and specify how the orbifold group Zn is acting on each set of fields. The group action is the

same as before except that Zn can act on first and second set of fields with different generators

k1 and k2. For example, in the first twisted sector,

g ·X(j)(σ + 2π, τ) = e2πikj/ng ·X(j)(σ, τ), for j = 1, 2. (2.21)

Since three parameter n, k1, k2 fix an C
2/Zn orbifold theory completely, we use notation n(k1, k2)

to denote it.

Let ai = ki/n as before. For 0 < ai <
1
2
, the zero energy fluctuation can be calculated as

EL
0 =

(
1

2
a1 − 1

8

)
+

(
1

2
a2 − 1

8

)
− 1

24

(
1 +

1

2

)
× 4 = 1

2
(a1 + a2 − 1) . (2.22)

Therefore the weight of twisted vacuum is given by

∆0 =
1

2
(a1 + a2). (2.23)

We define

G+ = G+
1 +G+

2 , (2.24)

where G+
i = ψ∗(i)∂X(i). For abbreviation, we use following notations;

ψi := ψ
(i)

ai− 1
2

and ψ∗
i := ψ

∗(i)
1
2
−ai

. (2.25)

Then for a1 <
1
2
, a2 <

1
2
, we have ψ∗

1|0 >= 0 and ψ∗
2|0 >= 0, which gives G+

− 1
2

|0 >= 0 so that
the twisted vacuum is a chiral state, whose associated local ring element is identified:

|0 >∼ u
n{jk1/n}
1 u

n{jk2/n}
2 . (2.26)
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(a1 − 1
2
,a2 − 1

2
) b b† chiral state anti-chiral state neither

−− ψ∗
1, ψ

∗
2 ψ1, ψ2 |0 > ψ1ψ2|0 > ψ1|0 >∼ ūn−na1

1 una2
2

∼ una1
1 una2

2 ∼ ūn−na1
1 ūn−na2

2 ψ2|0 >∼ u1
na1ūn−na2

2

−+ ψ∗
1, ψ2 ψ1, ψ

∗
2 ψ∗

2|0 > ψ1|0 > |0 >∼ u1
na1 ūn−na2

2

∼ una1
1 una2

2 ∼ ūn−na1
1 ūn−na2

2 ψ1ψ
∗
2|0 >∼ ūn−na1

1 una2
2

+− ψ1, ψ
∗
2 ψ∗

1, ψ2 ψ∗
1|0 > ψ2|0 > |0 >∼ ūn−na1

1 una2
2

∼ una1
1 una2

2 ∼ ūn−na1
1 ūn−na2

2 ψ∗
1ψ2|0 >∼ u1

na1 ūn−na2
2

++ ψ1, ψ2 ψ∗
1, ψ

∗
2 ψ∗

1ψ
∗
2|0 > |0 > ψ∗

1|0 >∼ u1
na1ūn−na2

2

∼ una1
1 una2

2 ∼ ūn−na1
1 ūn−na2

2 ψ∗
2|0 >∼ ūn−na1

1 una2
2

Table 2: Oscillator and monomial representations of chiral and anti-chiral rings. +− means (a1 − 1
2

) > 0, (a2 − 1
2

) < 0.

Both ψ1, ψ2 are creation operators and G−
− 1

2

ψ1ψ2|0 >= 0, so that ψ1ψ2|0 > is an anti-chiral

state. By considering weight and charge, corresponding monomial is found to be

ψ1ψ2|0 >∼ ū
n−n{jk1/n}
1 ū

n−n{jk2/n}
2 . (2.27)

So far, ψ∗
i |0 >’s are neither chiral(c) nor anti-chiral(a). One can work out other three cases in

similar fashion. We summarize the result in the Table 2.

Notice that (anti-)chiral states in different parameter ranges have different oscillator repre-

sentations but have the same polynomial expressions as local ring elements.

When some of ai < 0, one can get the similar result by exchanging the role of ψ and ψ∗,

and ui and ūi. As a result, for the factor with the negative twist ai = −{jki/n}, we need to
use u

n−n{jki/n}
i for the chiral states and ū

n{jki/n}
i for the anti-chiral states, while for the factor

with the positive twist {jki/n}, we need to use un{jki/n}
i for the chiral states and ū

n{jki/n}
i for

the anti-chiral states. For example: if only a2 is negative, the chiral states are associated with

u
n{jk1/n}
1 u

n−n{jk2/n}
2 , while the anti-chiral states are associated with ū

n−n{jk1/n}
1 ū

n{jk2/n}
2 . We

summarize the result in the Table 3.

2.3 C
3/Zn

Now let ai = ki/n as before with i = 1, 2, 3 and consider first 0 < ai <
1
2
. The zero energy

fluctuation can be calculated as

EL
0 =

∑
i

(
1

2
ai − 1

8
)− 1

24
(1 +

1

2
)× 2 = 1

2
(a1 + a2 + a3 − 1). (2.28)
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(a1, a2) c-ring 2∆ a-ring 2∆

++ una1
1 una2

2 a1 + a2 ū
n(1−a1)
1 ū

n(1−a2)
2 2− a1 − a2

+− una1
1 u

n(1−|a2|)
2 a1 − |a2|+ 1 ū

n(1−a1)
1 ū

n|a2|
2 1− a1 + |a2|

−+ u
n(1−|a1|)
1 una2

2 1− |a1|+ a2 ū
n|a1|
1 ū

n(1−a2)
2 |a1| − a2 + 1

−− u
n(1−|a1|)
1 u

n(1−|a2|)
2 2− |a1| − |a2| ū

n|a1|
1 ū

n|a2|
2 |a1|+ |a2|

Table 3: Monomial basis of chiral and anti-chiral rings and their weights when some of ai is negative. +− means a1 > 0, a2 < 0.

The R-charges can be read off by the rule q = ±2∆.

Hence the weight of the twisted vacuum can be read off as before

∆0 =
1

2
(a1 + a2 + a3). (2.29)

We define

G+ = G+
1 +G+

2 +G+
3 , (2.30)

where G+
i = ψ∗(i)∂X(i). For abbreviation we use the following notations

ψi := ψ
(i)

ai− 1
2

ψ∗
i := ψ

∗(i)
1
2
−ai

. (2.31)

Suppose ai <
1
2
then

ψ∗
i |0 >= 0 i.e. G+

− 1
2

|0 >= 0. (2.32)

Thus the twisted vacuum is a chiral state, in other words

|0 >∼ u
n{jk1/n}
1 u

n{jk2/n}
2 u

n{jk3/n}
3 , (2.33)

while

G−
− 1

2

ψ1ψ2ψ3|0 >= 0, (2.34)

meaning

ψ1ψ2ψ3|0 >∼ ū
n−n{jk1/n}
1 ū

n−n{jk2/n}
2 ū

n−n{jk3/n}
3 . (2.35)

is an anti-chiral state. We summarize this in Table 4 and for ai < 0 in Table 5.

The discussion on the enhanced (2,2) SUSY can be described completely parallel way with

C
2/Zn case.
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(a1 − 1
2
, a2 − 1

2
, a3 − 1

2
) b b† chiral anti-chiral

(−,−,−) ψ∗
1, ψ

∗
2, ψ

∗
3 ψ1, ψ2, ψ3 |0 > ψ1ψ2ψ3|0 >

∼ una1
1 una2

2 una3
3 ∼ ūn−na1

1 ūn−na2
2 ūn−na3

3

(−,+,−) ψ∗
1, ψ2, ψ

∗
3 ψ1, ψ

∗
2, ψ3 ψ∗

2|0 > ψ1|0 >
∼ una1

1 una3
2 una3

3 ∼ ūn−na1
1 ūn−na2

2 ūn−na3
3

(−,−,+) ψ∗
1, ψ

∗
2, ψ3 ψ1, ψ2, ψ

∗
3 ψ∗

3|0 > ψ1ψ2|0 >
∼ una1

1 una2
2 una3

3 ∼ ūn−na1
1 ūn−nq2

2 un−na3
3

(+,−,−) ψ1, ψ
∗
2, ψ

∗
3 ψ∗

1, ψ2, ψ3 ψ∗
1|0 > ψ2ψ3|0 >

∼ una1
1 una2

2 una3
3 ∼ ūn−na1

1 ūn−na2
2 ūn−na3

3

(+,+,−) ψ1, ψ2, ψ
∗
3 ψ∗

1, ψ
∗
2, ψ3 ψ∗

1ψ
∗
2|0 > ψ3|0 >

∼ una1
1 una2

2 una3
3 ∼ ūn−na1

1 ūn−na2
2 ūn−na3

3

(+,−,+) ψ1, ψ
∗
2, ψ3 ψ∗

1, ψ2, ψ
∗
3 ψ∗

1, ψ
∗
3|0 > ψ2|0 >

∼ una1
1 una2

2 una3
3 ∼ ūn−na1

1 ūn−na2
2 ūn−na3

3

(−,+,+) ψ∗
1, ψ2, ψ3 ψ1, ψ

∗
2, ψ

∗
3 ψ∗

2ψ
∗
3|0 > ψ1|0 >

∼ una1
1 una2

2 una3
3 ∼ ūn−na1

1 ūn−na2
2 ūn−na3

3

(+,+,+) ψ1, ψ2, ψ3 ψ∗
1, ψ

∗
2, ψ

∗
3 ψ∗

1ψ
∗
2ψ

∗
3|0 > |0 >

∼ una1
1 una2

2 una3
3 ∼ ūn−na1

1 ūn−na2
2 ūn−na3

3

Table 4: Oscillator and monomial representations of chita and anti-chiral rings: −(+) means
ai <

1
2
(ai >

1
2
).

a1, a2, a3 c-ring 2 ∆ a-ring 2∆

+,+,+ una1
1 una2

2 una3
3 a1 + a2 + a3 ū

n(1−a1)
1 ū

n(1−a2)
2 ū

n(1−a3)
3 3− a1 − a2 − a3

+,−,+ una1
1 u

n−n|a2|
2 una3

3 a1 + 1− |a2|+ a3 ū
n(1−a1)
1 ū

n|a2|
2 ū

n(1−a3)
3 2− a1 + |a2| − a3

+,+,− una1
1 una2

2 u
n−n|a3|
3 a1 + a2 + 1− |a3| ū

n(1−a1)
1 ū

n(1−a2)
2 ū

n|a3|
3 2− a1 − a2 + |a3|

−,+,+ u
n−n|a1|
1 una2

2 una3
3 1− |a1|+ a2 + a3 ū

n|a1|
1 ū

n(1−a2)
2 ū

n(1−a3)
3 2 + |a1| − a2 − a3

−,−,+ u
n−n|a1|
1 u

n−n|a2|
2 una3

3 2− |a1| − |a2|+ a3 ū
n|a1|
1 ū

n|a2|
2 ū

n(1−a3)
3 1 + |a1|+ |a2| − a3

−,+,− u
n−n|a1|
1 una2

2 u
n−n|a3|
3 2− |a1|+ a2 − |a3| ū

n|a1|
1 ū

n(1−a2)
2 ū

n|a3|
3 1 + |a1| − a2 + |a3|

+,−,− una1
1 u

n−n|a2|
2 u

n−n|a3|
3 2 + a1 − |a2| − |a3| ū

n(1−a1)
1 ū

n|a2|
2 ū

n|a3|
3 1− a1 + |a2 + |a3|

−,−,− u
n−n|a1|
1 u

n−n|a2|
2 u

n−n|a3|
3 3− |a1| − |a2| − |a3| ū

n|a1|
1 ū

n|a2|
2 ū

n|a3|
3 |a1|+ |a2|+ |a3|

Table 5: Monomial basis of chiral and anti-chiral rings and their weights when some of ai are

negative.
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G c-ring 2 ∆ a-ring 2∆

Gccc una1
1 una2

2 una3
3 a1 + a2 + a3 ū

n(1−a1)
1 ū

n(1−q2)
2 ū

n(1−a3)
3 3− a1 − a2 − a3

Gcac una1
1 ūn−na2

2 una3
3 a1 + 1− a2 + a3 ū

n(1−a1)
1 una2

2 ū
n(1−a3)
3 2− a1 + a2 − a3

Gcca una1
1 una2

2 ūn−na3
3 a1 + a2 + 1− a3 ū

n(1−a1)
1 ū

n(1−a2)
2 una3

3 2− a1 − a2 + a3

Gacc ūn−na1
1 una2

2 una3
3 1− a1 + a2 + a3 una1

1 ū
n(1−a2)
1 ū

n(1−a3)
3 2 + a1 − a2 − a3

Gaac ūn−na1
1 ūn−na2

2 una3
3 2− a1 − a2 + a3 una1

1 una2
2 ū

n(1−a3)
3 1 + a1 + a2 − a3

Gaca ūn−na1
1 una2

2 ūn−na3
3 2− a1 + a2 − a3 una1

1 ū
n(1−a2)
2 una3

3 1 + a1 − a2 + a3

Gcaa una1
1 ūn−na2

2 ūn−na3
3 2 + a1 − a2 − a3 ū

n(1−a1)
1 una2

2 una3
3 1− a1 + a2 + a3

Gaaa ūn−na1
1 ūn−na2

2 ūn−na3
3 3− a1 − a2 − a3 una1

1 una2
2 una3

3 a1 + a2 + a3

Table 6: Monomial basis of chiral and anti-chiral rings and their weights for varius choices of

target space complex structures.

3 GSO projection

3.1 Type 0 and type II Orbifold

Here we discuss when there is bulk tachyons whose presence/absence defines type 0/type II.

Considering twist operation in Green-Schwarz formalism. We follow the argument in [1] and

generalize it.

First we consider C
1/Zn. Let g be the orbifold action acting on complex plane;

g = e2πikJ/n, k = −n+ 1, · · · , n− 2, n− 1, (3.1)

where J is the rotation generator in the complex plane that is orbifolded.

gn = (−1)kFs , (3.2)

where Fs means spacetime fermion number and we used J = 1/2 for the spacetime fermion.

Hence if k is even, then gn = 1 and g is a good generator of Zn action. On the other hand, if

k is odd, gn = (−1)Fs �= 1, and g is not a generator of Zn action. In fact g is the generator of

Z2n action. The Z2n projection operator P projects out all spacetime fermion, since

P =
1

2n

2n−1∑
l=0

gl =
1

2
(1 + (−1)Fs) ·

n−1∑
l=0

gl/n. (3.3)

The consequence is type 0 string where there is no spacetime fermion. More precisely, the bulk

fermion in untwisted sector is cancelled by those of n-th twisted sector.
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In order to get type II string for k odd case, one try to change the projection operator by

g′ = e2πikJ/n(−1)−2πiJ , (3.4)

so that g′n = (−1)(k−n)Fs . Notice that under the change g → g′, it follows that k → k − n in

eq.(3.1) and k′ = k− n is even only if n is odd and the theory can be a type II [1]. Notice that

after we change g → g′ the theory is changed from n(k) → n(k − n) and when n is odd, two

are different after GSO projection, though they were the same as a conformal field theories in

NSR formalism. We emphasize that it is not necessary for n odd for type II if k is even. This

is consistent with [9].

Now we consider C
2/Zn. The twist operator is

g = exp(2πi(k1J1 + k2J2)/n), (3.5)

gn = (−1)Fs(k1+k2) = (−1)Fs . Therefore g define a type II theory for k1 + k2 even, and a type

0 theory for k1 + k2 odd. In order to get a type II theory for k1 + k2 = odd, the twist operator

should be modified to

g′ = exp(2πi(k1J1 + k2J2)/n)(−1)Fs . (3.6)

Since g′n = (−1)(k1+k2−n)Fs , we need odd n to get type II theory in the case of k1 + k2 is odd.

Again, important notice is that when we twist by (−1)Fs , we need to shift one of ki to ki − n.

So we get the following lemma:

If k1 + k2 is even, the theory is type II, otherwise it is type 0.

Since we can choose k1 = 1 without loss of generality, we need to consider only n(1, k) and

in this convention, we have type II theory if k is odd and type 0 if k is even.

C
3/Zn is similar: we have g = e2πi(k1J1+k2J2+k3J3)/n which gives gn = (−1)(k1+k2+k3)Fs . When

k1 + k2 + k3 is even the result is type II while odd type 0. To be a type II for odd case modify

g′ = e2πi(k1J1+k2J2+k3J3)/n(−1)Fs which is g′n = (−1)(k1+k2+k3−n)Fs . Hence we can get type II

when n is odd for odd k1 + k2 + k3.

The key notice in all cases is that when we twist by extra (−1)Fs by g → g′, we are changing∑
i ki →

∑
i ki − n. If n is odd we can change type 0 to type II (and vice versa), but this is

possible only if n is odd. Now we can state following rule: An orbifold string theory is type 0

or type II according to
∑

i ki is even or odd. For Cr/Zn, r = 1, 2, the result is consistent with

[4] obtained from the partition function.
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3.2 From partition function to GSO projection

First consider C/Zn and C
2/Zn. By considering the low temperature limit of orbifold partition

functions[9, 4, 11], one can prove that the GSO projection is acting on chiral rings in the

following manner [5].

1. C/Zn: Let ql := n{k/n} in the c ring of n(k) theory, and Gq = [lk/n]. If Gq is odd the

chiral GSO projection keeps q in c ring, project out q̄ := n− q in a ring. If Gq is even, it

keeps q̄ in a ring, project out q in cc ring.

2. C
2/Zn: Let ql := (n{k1l/n}, n{k2l/n}) in the cc ring of n(k1, k2) theory, and Gq =

[lk1/n] + [lk2/n]. If Gq is odd the chiral GSO projection keeps q in cc ring, project out q̄

in ca ring. If Gq is even, it keeps q̄ in ca ring, project out q in cc ring.

For C
2/Zn, this result is consistent with [3].

Examples:

1. n(1, 1): G = [j/n] + [j/n] = 0, hence all cc-ring and aa-ring elements are projected out.

All ca and ac ring elements survive under GSO.

2. n(1,−1): G = [j/n] + [−j/n] = 0 + [−1 + (n− j)/n] = −1, hence all cc-ring and aa-ring
elements survive under GSO. All ca and ac ring elements are projected out.

3. n(1, n− 1): G = [j(n− 1)/n] = [j− j/n] = j− 1. Hence, alternating. Surviving elements
are j = 1: (1,1); j = 2: (2,n-2); j = 3: (3,3); etc.

4. n(1, 1 − n): G = [j(1 − n)/n] = [−j + j/n] = −j: Alternating projection. Surviving
elements are j = 1: (1,1); j = 2: (2,n-2); j = 3: (3,3); etc.

From the examples above, it is quite obvious that the set of surviving spectrum of n(1, k)

and that of n(1,−k) are identical. The reason is because the ca ring of n(1, k) is the same as
the cc ring of n(1,−k) and this relation is true even at the GSO projection. One can see this
by simply calculating the G parity of cc ring of each theory. For n(1, k), G = [jk/n] and for

n(1, k), G = [−jk/n] = −[jk/n] − 1. They differ by one as desired. Therefore, two theories
are isomorphic as string theories. On the other hand, n(1, k) and n(1, k − n) have the same

spectrum before GSO projection, but they are very different after GSO projection.
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Next we consider C
3/Zn. To derive the GSO rule, we need partition function and its limiting

behaviour. Now let us calculate partition function C
3/Zn. Our calcualtion is based on [12].

The relevant parts are summarized in the appendix A. The partition function that we need is

then

Z = cV3R

∫
d2τ

τ 2
2

∞∑
ω,ω′=−∞

e
− π

α′τ2
R2(|ω′−τω|2) × |θ1(χ

′|τ)θ1(χ
′
2|τ)θ1(χ

′
3|τ)θ1(χ

′
4|τ)|2

|θ1(χ1|τ)θ1(χ2|τ)θ1(χ3|τ)η(τ)3|2 . (3.7)

Using Riemann’s quartic identity listed in appendix C, we can write GS partition function

as RNS one. Taking the orbifold limit(R → 0) as in [4] C
3/Zn partition function becomes

Z(τ) =
1

4N

n−1∑
l,m=0

[|θ3(ν
1
lm|τ)θ3(ν

2
lm|τ)θ3(ν

3
lm|τ)θ3(0|τ)

−(−1)(k1+k2+k3)αθ2(ν
1
lm|τ)θ2(ν

2
lm|τ)θ2(ν

3
lm|τ)θ2(0|τ)

−(−1)(k1+k2+k3)βθ4(ν
1|τ)θ4(ν

2
lm|τ)θ4(ν

3
lm|τ)θ4(0|τ)|2

]
×|θ1(ν

1
lm|τ)θ1(ν

2
lm|τ)θ1(ν

3
lm|τ)η(τ)3|−2, (3.8)

where

νi
lm =

lki
N

− mki
N

τ. (3.9)

By taking the low temperature(τ2 → ∞ or q → 0) the partition function reduce the form

Z ∼ qE, (3.10)

where E here represents minimal tachyon mass. E depends on whether G = [ jk1

n
]± [ jk2

n
]± [ jk3

n
]

is even or odd as well as on the ordering of {µi}’s, the fractional parts of µi :=
jki

n
’s. Here

we wrote result only and we gave more detail in appendix B. The ordering of {µi}’s gives 6
possibilities. We first consider {µ1} > {µ2} > {µ3} case. For G = even, according to the range

of α := {µ1}+ {µ2}+ {µ3} and δ := −{µ1}+ {µ2}+ {µ3}, there are four possible cases:

Z ∼




q0, (0 < α < 2, δ > 0);

q−{µ1}+{µ2}+{µ3}, (0 < α < 2, δ < 0);

q2−{µ1}−{µ2}−{µ3}, (2 < α < 3, δ > 0);

q2−2{µ1}, (2 < α < 3, δ < 0).

(3.11)

The second and third cases give the spectrum of acc-ring, aaa-ring respectively. In the first

case, the spectrum is all marginal and this is interesting, since we did not require any inequality

14



ordering G=even G=odd

{µ1} > {µ2} > {µ3} acc, aaa ccc, aac

{µ1} > {µ3} > {µ2} acc, aaa ccc, aca

{µ2} > {µ3} > {µ1} cac, aaa ccc, caa

{µ2} > {µ1} > {µ3} cac, aaa ccc, aac

{µ3} > {µ2} > {µ1} cca, aaa ccc, caa

{µ3} > {µ1} > {µ2} cca, aaa ccc, aca

Table 7: Chiral rings from various orderings

like {µ1} = {µ2} + {µ3}. It means that marginal operator can be realized as a bulk in weight
space apart from the boundary of relevant and irrelevant regions. However, since these states

do not satisfy the charge-mass relation h = q/2, they are not chiral states. The last case can

not be realized since the 2 < α < 3, δ < 0 can not be. For G odd, there are four cases according

to the range of α and β := {µ1} − {µ2}+ {µ3}.

Z ∼




q{µ1}+{µ2}+{µ3}−1, (0 < α ≤ 1, 0 < β ≤ 1);
q2{µ3}, (0 < α ≤ 1, 1 < β < 2);

q0, (1 < α < 3, 0 < β ≤ 1);
q1−{µ1}−{µ2}+{µ3}, (1 < α < 3, 1 < β < 2).

(3.12)

Here first and fourth cases give us the ccc and aac rings respectively. The second case can not

be realized and the third case gives us a bulky range of marginal operators mentioned above.

In summary, for {µ1} > {µ2} > {µ3} ordering, we get ccc, aac from odd-G and acc, aaa rings
from even G and there are marginal regions.

Similarly, using the fact that the least µi give the c in odd cases and largest µi gives the a

in even cases, we can tabulate the rings from each ordering. The GSO projection rule read off

from the Table 7 is as follows:


ccc, caa, aca, aac rings : only G =
∑

i[lki/n] = odd cases survive.

aaa, acc, cac, cca rings : only G =
∑

i[lki/n] = even cases survive.
(3.13)

While it is largely by hand in other approaches, here the method is uniform and the result is

simple.
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4 Discussion and Conclusion

In this paper we explicitly worked out the chiral rings and GSO projection rules for non-compact

orbifolds C
r/Zn, r = 1, 2, 3, which lead to the equivalence of NSR-GS formalisms. We used

mode analysis to construct the chiral ring and derived and used partition functions of NSR

formalism obtained from Green-Schwarz one transformed by the Riemann’s theta identities.

The spectrum analysis from this partition function gives the surviving condition of individual

energy values, which we identify as the rule of the GSO projection. As a side remark, we

found that there are unexpected rich spectrum of non-BPS marginal operators in C
3/Zn whose

existence is not yet well understood from geometric point of view. We also mention that one of

the main motive to discuss the GSO projection is to discuss the m-theorem [8] in type II. We

wish to come back this issue in later publications.
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Appendix

A Calculation of partition function

Here we sketch the calculation of partition function of (NS,NS) Melvin with three magnetic

parameters, bs(s = 1, 2, 3). For more details for this section refer to [12]. The three parameter

solution satisfy the relation
∑

s ±bs = 0, explicitly
b1 = b2 + b3 or b1 = −(b2 + b3) or b1 = b2 − b3 or b1 = −(b2 − b3). (A.1)

In this background the Lorentz group is broken to

SO(8)→ SO(2)× SO(2)× SO(2)× SO(2). (A.2)

The three of SO(2) represent rotations in the 1-2, 3-4, and 5-6 plane respectively. Fermion

representation decompose as follows

SR = ψ+++
R ⊕ ψ++−

R ⊕ ψ+−+
R ⊕ ψ+−−

R ⊕ ψ−++
R ⊕ ψ−+−

R ⊕ ψ−−+
R ⊕ ψ−−−

R ,

8R → (1R,
1

2
,
1

2
,
1

2
)⊕ (1R, 1

2
,
1

2
,−1
2
)⊕ (1R, 1

2
,−1
2
,
1

2
)⊕ (1R, 1

2
,−1
2
,−1
2
)⊕

(1̄R,−1
2
,
1

2
,
1

2
)⊕ (1̄R,−1

2
,
1

2
,−1
2
)⊕ (1̄R,−1

2
,−1
2
,
1

2
)⊕ (1̄R,−1

2
,−1
2
,−1
2
). (A.3)

Bosonic Lagrangian has the form

LB =
3∑

s=1

(∂+ + ibs∂+y)zs(∂− − ibs∂−y)z∗s , (A.4)

where zs = xs + ixs. The fermionic Lagrangian is given by

LF = iψ̄−−−
R (∂+ +

i

2
(b1 + b2 + b3)∂+y)ψ

+++
R + iψ̄−++

R (∂+ +
i

2
(b1 − b2 − b3)∂+y)ψ

+−−
R

+ iψ̄−−+
R (∂+ +

i

2
(b1 − b2 + b3)∂+y)ψ

++−
R + iψ̄+−−

R (∂+ +
i

2
(b1 + b2 − b3)∂+y)ψ

−++
R

+ (R → L). (A.5)

The partition function becomes

Z(R, b1, b2, b3) = cV3R

∫
d2τ

τ 2
2

∞∑
ω,ω′=−∞

e
− π

α′τ2
(R2|ω′−τω|2)

Z0(τ, τ̄ ;χs, χ̄s)

×
[
Y (τ, τ̄ ;

1

2
(χ1 + χ2 + χ3),

1

2
(χ̄1 + χ̄2 + χ̄3))Y (τ, τ̄ ;

1

2
(χ1 − χ2 − χ3),

1

2
(χ̄1 − χ̄2 − χ̄3))

×Y (τ, τ̄ ; 1
2
(χ1 − χ2 + χ3),

1

2
(χ̄1 − χ̄2 + χ̄3))Y (τ, τ̄ ;

1

2
(χ1 + χ2 − χ3),

1

2
(χ̄1 + χ̄2 − χ̄3))

]

× [Y (τ, τ̄ ;χ1, χ̄1)Y (τ, τ̄ ;χ2, χ̄2)Y (τ, τ̄ ;χ3, χ̄3)]
−1 , (A.6)
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where Y is given by

Y (τ, τ̄ ;χ, χ̄) = eπ(χ−χ̄)2/2τ2
θ1(χ|τ)
χθ′1(0|τ)

θ1(χ̄|τ)
χ̄θ′1(0|τ̄)

(A.7)

We defined

χs = b2R(ω
′ − τω), χ̄s = bsR(ω

′ − τω), s = 1, 2, 3. (A.8)

Taking the limit R → 0 and setting bsR =
ks

N
lead us to orbifold partition function.

B Low temperature limit of the partition function

Using the identity

θ1(
ν1
lm ± ν2

lm ± ν3
lm

2
|τ)

= i
∑
(−1)nq 1

2
(n− 1

2
− 1

2
(µ1±µ2±µ3))2q−

1
8

(µ1±µ2±µ3)2eiπ(n− 1
2

) l
n

(k1±k2±k3), (B.1)

the relevent part of partition function of type II can be written as Z ∼ qN−D

N =




(
1
2
− α

2

)2
, if 0 < α < 2(

3
2
− α

2

)2
, if 2 < α < 3


+

(
1

2
− β

2

)2

+

(
1

2
− γ

2

)2

+




(
1
2
− δ

2

)2
, if 0 < δ(

1
2
− δ

2

)2
, if 0 > δ


 (B.2)

for even G,

N =




(
α
2

)2
, if 0 < α < 1(

1− α
2

)2
, if 1 < α < 3


+

(
β

2

)2

+

(
δ

2

)2

+




(
γ
2

)2
, if 0 < γ < 1(

1− δ
2

)2
, if 0 < γ < 2


 (B.3)

for odd G, and

D =
∑
i

{µi}2 −
∑
i

{µi}+ 1, (B.4)

where α := {µ1} + {µ2} + {µ3}, β := {µ1} − {µ2} + {µ3}, γ := {µ1} + {µ2} − {µ3} and
δ := −{µ1}+ {µ2}+ {µ3}. Considering all these cases one can obtain the 4 cases of G = even

four cases of G = odd for the ordering µ1 > µ2 > µ3. For other orderings calculations are

similar.

C Theta function identities

The partition function in the Green-Schwarz(GS) formalism can be easily transformed to

Ramond-Neveu-Schwarz(RNS) one by using Riemann theta identity

2θ4
1(ν|τ) = θ4

3(ν|τ)− θ4
2(ν|τ)− θ4

4(ν|τ) + θ4
1(ν|τ). (C.1)
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More generally, we have

2
4∏

a=1

θ1(ν
′
a|τ) =

4∏
a=1

θ3(νa|τ)−
4∏

a=1

θ2(νa|τ)−
4∏

a=1

θ4(νa|τ) +
4∏

a=1

θ1(νa|τ), (C.2)

where

2ν ′1 = ν1 + ν2 + ν3 + ν4, 2ν ′2 = ν1 + ν2 − ν3 − ν4,

2ν ′3 = ν1 − ν2 + ν3 − ν4, 2ν ′4 = ν1 − ν2 − ν3 + ν4. (C.3)

We need the definition and a property of θ1:

θ1(ν|τ) = 2q 1
8 sin(πν)

∞∏
n=1

(1− qn)(1− e2πiνqn)(1− e−2πiνqn) = i

∞∑
n=−∞

(−1)nq 1
2

(n− 1
2

)2zn−
1
2 . (C.4)

D Chiral Rings and Enhanced (2,2) SUSY

Here, we will show that for C
2/Zn, any worldsheet fermion generated tachyon can be constructed

as a BPS state, i.e., a member of a chiral ring. Essential ingredient is the existence of the 4

copies of (2,2) worldsheet SUSY for this special theory.

Characterizing a state as a chiral or anti-chiral state gives an extremely powerful result since

we can utilize the (2,2) worldsheet supersymmetry. If all the tachyon spectrum are chiral or

anti-chiral, the analysis of the tachyon condensation could be much easier. However, in reality it

is not the case. For example, when a2 <
1
2
< a1, ψ

∗
1|0 >∼ una1

1 una2
2 and ψ2|0 >∼ ū

n(1−a1)
1 ū

n(1−a1)
2

are chiral and anti-chiral state respectively, while |0 > and ψ∗
1ψ2|0 > are neither of them.1 This

issue is particularly relevant in case the lowest mass in the given twisted sector is neither chiral

nor anti-chiral. 2

1One may argue that we have not considered the left-right combination and it might be such that left-right

combination non BPS tachyon might be projected out. However, examining the low temperature behavior of the

partition function[5], we can easily see that the string theory does contain a tachyon with 1
4α′M2 = − 1

2 |a1 −a2|
as well as 1

4α′M2 = − 1
2 |a1 + a2 − 1|. In fact, since we are looking for lowest tachyonic spectrum which comes

from (NS,NS) sector the level matching condition requires that ∆L = ∆R and we do not get −|a1 − a2| from

the (chiral,chiral) or (anti-chiral,anti-chiral) states. That is, those spectrum with mass of the form 1
4α′M2 =

− 1
2 |a1 − a2| is in fact not a SUSY state according to our definition of (2,2) SUSY. For the level matching

between left NS and right R sectors, we need to consider the modular invariance that leads to GSO projection

n(ENS − ER) = 0 mod 1 [9]. Even in the case we combine left chiral and right anti-chiral, we do not get the

spectrum of type 1
4α′M2 = − 1

2 |a1 − a2|.
2One example is the 10(1,3) theory.
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However, we will see that one can improve the situation by recognizing that there are en-

hanced SUSY in orbifold thoeries. We will show that all twisted sector tachyons generated

by world sheet fermions can be considered as chiral states by redefining the generator of the

supersymmetry algebra. For this, let’s define L(i), G(i)±, J (i) as the generators of N = 2 super-

conformal algebra in i-th complex plane. Usually we define L = L(1)+L(2), J = J (1)+J (2) and

G+ = G(1)+ + G(2)+ and the last was used above to identify the chiralities. However, it is a

simple matter to check that we can also define the N = 2 superconformal algebra by defining

G+ = G(1)++G(2)− with corresponding change in J = J (1) − J (2) but the same L = L(1)+L(2).

We call this (+−) choice of G+ as G+
ca, while we call the previous (++) choice as G

+
cc. The fact

that we need to change the sign of J (2) means that we need to count the U(1) charge of u2, ū2

as −1,+1 respectively while u1, ū1 as 1,−1 as before. The choice of G+ corresponds to the

target space complex structure. This phenomena is due to the special geometry of target space

in which each complex plane have independent complex structure so that to define a complex

structure of the whole target space, we need to specify one in each complex plane.

Since J ∼ ψ∗ψ and G+ ∼ ψ∗∂X and G− ∼ ψ∂X∗, the above change of generator construc-

tion corresponds to the change in the complex structure in the target space, i.e, interchanging

starred fields and un-starred fields with the notion of positivity of charge also changed: ψ∗ has

−1 charge and ψ has +1 charge, which is opposite to the previous case.
Since the chirality is defined by this new choice of G+, we now have different classification

of tachyon states: for example, in a2 < 1
2
< a1 < 1 case, ψ∗

1ψ2|0 >∼ una1
1 ū

n(1−a2)
2 and |0 >∼

ū
n(1−a1)
1 una2

2 are chiral and anti-chiral state respectively. Notice that they were neither chiral

nor anti−chiral under G+
cc. On the other hand, ψ

∗
1|0 >∼ una1

1 una2
2 and ψ2|0 >∼ ū

n(1−a1)
1 ū

n(1−a1)
2

are neither chiral nor anti-chiral in the new definition of G+. Similarly, we can classify other

parameter zones. The result can be conceptually summarized as follows: for Gcc, Gca, Gac, Gaa

the monomial basis of local chiral ring is generated by uk1
1 uk2

2 , u
k1
1 ūn−k2

2 , ūn−k1
1 uk2

2 and ū
n−k1
1 ūn−k2

2

respectively, while the anti-chiral ring is generated by ūn−k1
1 ūn−k2

2 , ūn−k1
1 uk2

2 , u
k1
1 ūn−k2

2 , uk1
1 uk2

2

respectively. Notice that anti-chiral ring of Gcc is chiral ring of Gaa, while anti-chiral ring of Gca

is chiral ring of Gac. Therefore we may consider only chiral ring of each complex structure. We

call the chiral ring of Gcc complex structure as cc-ring. We define ca-ring, ac-ring and aa-ring

similarly.

It is convenient to consider the weight of a state as sum of contribution from each complex

plane. For example, the weight of una1
1 una2

2 can be considered as sum of a1 from u1 and a2 from
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G c-ring 2∆ a-ring 2∆

Gcc una1
1 una2

2 a1 + a2 ū
n(1−a1)
1 ū

n(1−a2)
2 2− a1 − a2

Gca una1
1 ū

n(1−a2)
2 a1 − a2 + 1 ū

n(1−a1)
1 u2

na2 1− a1 + a2

Gac ū
n(1−a1)
1 una2

2 1− a1 + a2 u1
na1 ū

n(1−a2)
2 a1 − a2 + 1

Gaa ū
n(1−a1)
1 ū

n(1−a2)
2 2− a1 − a2 u1

na1u2
na2 a1 + a2

Table 8: Monomial basis of chiral and anti-chiral rings and their weights for various choices of

target space complex structures.

u2. (a1, a2) form a point in the weight space. As we vary j in ai = {jki/n}, the trajectory of
the point in weight space will give us a parametric plot in the plane. In the figure 2, we draw

for weight points of cc and aa rings in the first figure and those of ca and ac rings in the second

figure of Fig. 2. In order to compare these spectrum with a1 and/or a2 negative cases, we

 cc

      aa ac

   ca

0 1

1 1

10

Figure 2: Weight points of cc, aa and ac, ca rings in weight space. x- and y-axis represent 2∆1(j) and 2∆2(j). Arrows represent

the direction and starting point of corresponding ring as j increases from 1 to n-1. Plot is drawn for k1 = 1, k2 = 3.

work out the weight of the states in Table 8. By comparing the two Table 3 and Table 8, it is

clear that the spectrum of ca-ring of n(k1, k2) theory is equal to the cc-chiral ring of n(k1,−k2)

theory. So the change in complex structure ui → ūi is equivalent to the change in generator

ki → −ki keeping the complex structure fixed. For string theory, we have to consider all four
different complex structures. That is, we may consider 4 sets of spectra generated by (k1, k2),

(−k1, k2), (k1,−k2) and (−k1,−k2) all together.

Summarizing, we have shown that any of the lowest tachyon spectrum generated by the

worldsheet fermions, can be considered as chiral state by choosing a worldsheet SUSY generator

appropriately; any of them belongs to one of 4 classes: cc-, ca-, ac-, aa- ring depending on the

choice of complex structure of C
2. This is explicit in the Table 9. We emphasize that these
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(a1 − 1
2
, a2 − 1

2
) cc ca ac aa

−− |0 > ψ2|0 > ψ1|0 > ψ1ψ2|0 >
−+ ψ∗

2|0 > |0 > ψ1ψ
∗
2|0 > ψ1|0 >

+− ψ∗
1|0 > ψ∗

1ψ2|0 > |0 > ψ2|0 >
++ ψ∗

1ψ
∗
2|0 > ψ∗

1|0 > ψ∗
2|0 > |0 >

Table 9: For a given twisted sector, any tachyon generated by worldsheet fermions is an element

of one of the 4 possible chiral rings.

chiral rings do not co-exist at the same time. For example, when cc-ring is active ( chosen),

then aa-ring exists as its anti-chiral ring and other two are not chiral or anti-chiral ring. But

for our purpose, for any tachyon state, there is a choice of complex structure in which the given

state is a chiral primary. For example, if a tachyon in ca ring is condensed, the spectrum of

entire ca-ring is well controlled by the worldsheet supersymmetries generated by G+
1 , G

−
2 . As a

consequence, we will be able to calculate the fate of those controlled spectrum. This is powerful

since if we know that initial and final thoeries are described by an orbifold theories [1, 2, 3],

knowing those of a few spectrum completely fixes entire tower of the string spectrum in the final

theory. The same phenomena arise for all C
r/Zn. Any worldsheet fermion generated tachyon

state is a chiral primary by properly choosing the target space complex structure among 2r

possibilities defined by the
∑r

i=1 G
±
i . There are 2

r (2, 2) world sheet supersymmetries instead

of one. 3 In fact this happens for any tensor product of N = 2 SCFT’s.

We end this subsection with a few comments.

• The weight space is a lattice in torus of size n × n. The identification of weights by

modulo n corresponds to shifting string modes. However, periodicity of the generator

(k1, k2) is 2n and (k1, k2) and (k1, k2 + n) do not generate the same theory in general.

We choose the standard range of ki between −n + 1 to n − 1. This is because the GSO
projection depends not only on the R-charge vector ({jk1/n}, {jk2/n}) but also on the
G-parity number G = [jk1/n] + [jk2/n]. We will come back to this when we discuss the

GSO projection.

• When n and ki are not relatively prime, we have a chiral primary whose R-charge vector
3The notion of enhanced symmetry already appeared in literature implicitly. For example in [3, 10], the

notion of cc, ca ring is discussed and the chiral ring elements were described in terms of bosonization.
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is (p/n, 0). We call this as the reducible case and eliminate from our interests. This is

a spectrum that is not completely localized at the tip of the orbifold. Sometimes, even

in the case we started from non-reducible theory, a tachyon condensation leads us to the

reducible case.
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