Measurements of branching fractions in $B \rightarrow \phi K$ and $B \rightarrow \phi \pi$ and search for direct $C P$ violation in $B^{ \pm} \rightarrow \phi K^{ \pm}$

B. Aubert, ${ }^{1}$ R. Barate, ${ }^{1}$ D. Boutigny, ${ }^{1}$ J.-M. Gaillard, ${ }^{1}$ A. Hicheur, ${ }^{1}$ Y. Karyotakis,,${ }^{1}$ J. P. Lees, ${ }^{1}$ P. Robbe, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ A. Palano, ${ }^{2}$ A. Pompili, ${ }^{2}$ J. C. Chen, ${ }^{3}$ N. D. Qi, ${ }^{3}$ G. Rong, ${ }^{3}$ P. Wang, ${ }^{3}$ Y. S. Zhu, ${ }^{3}$ G. Eigen, ${ }^{4}$ I. Ofte, ${ }^{4}$ B. Stugu, ${ }^{4}$ G. S. Abrams, ${ }^{5}$ A. W. Borgland, ${ }^{5}$ A. B. Breon, ${ }^{5}$ D. N. Brown, ${ }^{5}$ J. Button-Shafer, ${ }^{5}$ R. N. Cahn, ${ }^{5}$ E. Charles, ${ }^{5}$ C. T. Day, ${ }^{5}$ M. S. Gill, ${ }^{5}$ A. V. Gritsan, ${ }^{5}$ Y. Groysman, ${ }^{5}$ R. G. Jacobsen, ${ }^{5}$ R. W. Kadel, ${ }^{5}$ J. Kadyk, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ J. F. Kral, ${ }^{5}$ G. Kukartsev, ${ }^{5}$ C. LeClerc, ${ }^{5}$ M. E. Levi, ${ }^{5}$ G. Lynch, ${ }^{5}$ L. M. Mir, ${ }^{5}$ P. J. Oddone, ${ }^{5}$ T. J. Orimoto, ${ }^{5}$ M. Pripstein, ${ }^{5}$ N. A. Roe, ${ }^{5}$ A. Romosan, ${ }^{5}$ M. T. Ronan, ${ }^{5}$ V. G. Shelkov, ${ }^{5}$
A. V. Telnov, ${ }^{5}$ W. A. Wenzel, ${ }^{5}$ K. Ford, ${ }^{6}$ T. J. Harrison, ${ }^{6}$ C. M. Hawkes, ${ }^{6}$ D. J. Knowles, ${ }^{6}$ S. E. Morgan, ${ }^{6}$
R. C. Penny, ${ }^{6}$ A. T. Watson, ${ }^{6}$ N. K. Watson, ${ }^{6}$ T. Deppermann, ${ }^{7}$ K. Goetzen, ${ }^{7}$ H. Koch, ${ }^{7}$ B. Lewandowski, ${ }^{7}$ M. Pelizaeus, ${ }^{7}$ K. Peters, ${ }^{7}$ H. Schmuecker, ${ }^{7}$ M. Steinke, ${ }^{7}$ N. R. Barlow, ${ }^{8}$ J. T. Boyd, ${ }^{8}$ N. Chevalier, ${ }^{8}$
W. N. Cottingham, ${ }^{8}$ M. P. Kelly, ${ }^{8}$ T. E. Latham, ${ }^{8}$ C. Mackay, ${ }^{8}$ F. F. Wilson,,${ }^{8}$ K. Abe, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{9}$ C. Hearty, ${ }^{9}$ T. S. Mattison, ${ }^{9}$ J. A. McKenna, ${ }^{9}$ D. Thiessen, ${ }^{9}$ P. Kyberd, ${ }^{10}$ A. K. McKemey, ${ }^{10}$ V. E. Blinov, ${ }^{11}$ A. D. Bukin, ${ }^{11}$ V. B. Golubev, ${ }^{11}$ V. N. Ivanchenko, ${ }^{11}$ E. A. Kravchenko, ${ }^{11}$ A. P. Onuchin, ${ }^{11}$ S. I. Serednyakov, ${ }^{11}$ Yu. I. Skovpen, ${ }^{11}$ E. P. Solodov, ${ }^{11}$ A. N. Yushkov, ${ }^{11}$ D. Best,,${ }^{12}$ M. Chao, ${ }^{12}$ D. Kirkby, ${ }^{12}$ A. J. Lankford, ${ }^{12}$ M. Mandelkern, ${ }^{12}$ S. McMahon, ${ }^{12}$ R. K. Mommsen, ${ }^{12}$ W. Roethel, ${ }^{12}$ D. P. Stoker, ${ }^{12}$ C. Buchanan, ${ }^{13}$ D. del Re, ${ }^{14}$ H. K. Hadavand, ${ }^{14}$ E. J. Hill, ${ }^{14}$ D. B. MacFarlane, ${ }^{14}$ H. P. Paar, ${ }^{14}$ Sh. Rahatlou, ${ }^{14}$ U. Schwanke, ${ }^{14}$ V. Sharma, ${ }^{14}$ J. W. Berryhill, ${ }^{15}$ C. Campagnari, ${ }^{15}$ B. Dahmes,,${ }^{15}$ N. Kuznetsova, ${ }^{15}$ S. L. Levy, ${ }^{15}$ O. Long, ${ }^{15}$ A. Lu, ${ }^{15}$ M. A. Mazur, ${ }^{15}$ J. D. Richman, ${ }^{15}$ W. Verkerke, ${ }^{15}$ T. W. Beck, ${ }^{16}$ J. Beringer, ${ }^{16}$ A. M. Eisner, ${ }^{16}$ C. A. Heusch, ${ }^{16}$ W. S. Lockman, ${ }^{16}$ T. Schalk, ${ }^{16}$ R. E. Schmitz, ${ }^{16}$ B. A. Schumm, ${ }^{16}$ A. Seiden, ${ }^{16}$ M. Turri, ${ }^{16}$ W. Walkowiak, ${ }^{16}$ D. C. Williams, ${ }^{16}$ M. G. Wilson, ${ }^{16}$ J. Albert, ${ }^{17}$ E. Chen, ${ }^{17}$ G. P. Dubois-Felsmann, ${ }^{17}$ A. Dvoretskii, ${ }^{17}$ D. G. Hitlin, ${ }^{17}$ I. Narsky, ${ }^{17}$ F. C. Porter, ${ }^{17}$ A. Ryd, ${ }^{17}$ A. Samuel, ${ }^{17}$ S. Yang, ${ }^{17}$ S. Jayatilleke, ${ }^{18}$ G. Mancinelli, ${ }^{18}$ B. T. Meadows, ${ }^{18}$ M. D. Sokoloff, ${ }^{18}$ T. Abe, ${ }^{19}$ T. Barillari, ${ }^{19}$ F. Blanc, ${ }^{19}$ P. Bloom, ${ }^{19}$ S. Chen, ${ }^{19}$ P. J. Clark, ${ }^{19}$ W. T. Ford, ${ }^{19}$ U. Nauenberg, ${ }^{19}$ A. Olivas, ${ }^{19}$ P. Rankin, ${ }^{19}$ J. Roy, ${ }^{19}$ J. G. Smith, ${ }^{19}$ W. C. van Hoek, ${ }^{19}$ L. Zhang, ${ }^{19}$ J. L. Harton, ${ }^{20}$ T. Hu, ${ }^{20}$ A. Soffer, ${ }^{20}$ W. H. Toki, ${ }^{20}$ R. J. Wilson, ${ }^{20}$ J. Zhang, ${ }^{20}$ D. Altenburg, ${ }^{21}$ T. Brandt, ${ }^{21}$ J. Brose,,21 T. Colberg, ${ }^{21}$ M. Dickopp, ${ }^{21}$ R. S. Dubitzky, ${ }^{21}$ A. Hauke, ${ }^{21}$ H. M. Lacker, ${ }^{21}$ E. Maly, ${ }^{21}$ R. Müller-Pfefferkorn, ${ }^{21}$ R. Nogowski, ${ }^{21}$ S. Otto, ${ }^{21}$ K. R. Schubert, ${ }^{21}$ R. Schwierz, ${ }^{21}$ B. Spaan, ${ }^{21}$ L. Wilden, ${ }^{21}$ D. Bernard, ${ }^{22}$ G. R. Bonneaud, ${ }^{22}$ F. Brochard, ${ }^{22}$ J. Cohen-Tanugi, ${ }^{22}$ Ch. Thiebaux, ${ }^{22}$ G. Vasileiadis, ${ }^{22}$ M. Verderi, ${ }^{22}$ A. Khan, ${ }^{23}$ D. Lavin, ${ }^{23}$ F. Muheim, ${ }^{23}$ S. Playfer, ${ }^{23}$ J. E. Swain, ${ }^{23}$ J. Tinslay, ${ }^{23}$ M. Andreotti, ${ }^{24}$ V. Azzolini, ${ }^{24}$ D. Bettoni, ${ }^{24}$ C. Bozzi, ${ }^{24}$ R. Calabrese, ${ }^{24}$ G. Cibinetto, ${ }^{24}$ E. Luppi, ${ }^{24}$ M. Negrini, ${ }^{24}$ L. Piemontese, ${ }^{24}$ A. Sarti, ${ }^{24}$ E. Treadwell, ${ }^{25}$ F. Anulli, ${ }^{26, *}$ R. Baldini-Ferroli, ${ }^{26}$ A. Calcaterra, ${ }^{26}$ R. de Sangro, ${ }^{26}$ D. Falciai, ${ }^{26}$ G. Finocchiaro, ${ }^{26}$ P. Patteri, ${ }^{26}$ I. M. Peruzzi, ${ }^{26, *}$ M. Piccolo, ${ }^{26}$ A. Zallo, ${ }^{26}$ A. Buzzo, ${ }^{27}$ R. Contri, ${ }^{27}$ G. Crosetti, ${ }^{27}$ M. Lo Vetere, ${ }^{27}$ M. Macri, ${ }^{27}$ M. R. Monge,,${ }^{27}$ S. Passaggio, ${ }^{27}$ F. C. Pastore, ${ }^{27}$ C. Patrignani, ${ }^{27}$ E. Robutti, ${ }^{27}$ A. Santroni, ${ }^{27}$ S. Tosi, ${ }^{27}$ S. Bailey,,28 M. Morii, ${ }^{28}$ W. Bhimji, ${ }^{29}$ D. A. Bowerman, ${ }^{29}$ P. D. Dauncey, ${ }^{29}$ U. Egede,,${ }^{29}$ I. Eschrich, ${ }^{29}$ J. R. Gaillard, ${ }^{29}$ G. W. Morton, ${ }^{29}$ J. A. Nash, ${ }^{29}$ P. Sanders, ${ }^{29}$ G. P. Taylor, ${ }^{29}$ G. J. Grenier, ${ }^{30}$ S.-J. Lee, ${ }^{30}$ U. Mallik, ${ }^{30}$ J. Cochran, ${ }^{31}$ H. B. Crawley, ${ }^{31}$ J. Lamsa, ${ }^{31}$ W. T. Meyer, ${ }^{31}$ S. Prell, ${ }^{31}$ E. I. Rosenberg, ${ }^{31}$ J. Yi, ${ }^{31}$ M. Davier, ${ }^{32}$ G. Grosdidier, ${ }^{32}$ A. Höcker, ${ }^{32}$ S. Laplace, ${ }^{32}$ F. Le Diberder, ${ }^{32}$ V. Lepeltier, ${ }^{32}$ A. M. Lutz, ${ }^{32}$ T. C. Petersen, ${ }^{32}$ S. Plaszczynski, ${ }^{32}$ M. H. Schune, ${ }^{32}$ L. Tantot, ${ }^{32}$ G. Wormser, ${ }^{32}$ V. Brigljević, ${ }^{33}$ C. H. Cheng, ${ }^{33}$ D. J. Lange, ${ }^{33}$ D. M. Wright, ${ }^{33}$ A. J. Bevan, ${ }^{34}$ J. P. Coleman, ${ }^{34}$ J. R. Fry, ${ }^{34}$ E. Gabathuler, ${ }^{34}$ R. Gamet, ${ }^{34}$ M. Kay, ${ }^{34}$ R. J. Parry, ${ }^{34}$ D. J. Payne, ${ }^{34}$ R. J. Sloane, ${ }^{34}$ C. Touramanis,,${ }^{34}$ J. J. Back, ${ }^{35}$ P. F. Harrison, ${ }^{35}$ H. W. Shorthouse, ${ }^{35}$ P. Strother, ${ }^{35}$ P. B. Vidal, ${ }^{35}$ C. L. Brown, ${ }^{36}$ G. Cowan, ${ }^{36}$ R. L. Flack, ${ }^{36}$ H. U. Flaecher, ${ }^{36}$ S. George, ${ }^{36}$ M. G. Green, ${ }^{36}$ A. Kurup, ${ }^{36}$ C. E. Marker, ${ }^{36}$ T. R. McMahon, ${ }^{36}$ S. Ricciardi, ${ }^{36}$ F. Salvatore, ${ }^{36}$ G. Vaitsas, ${ }^{36}$ M. A. Winter, ${ }^{36}$ D. Brown, ${ }^{37}$ C. L. Davis, ${ }^{37}$ J. Allison, ${ }^{38}$ R. J. Barlow, ${ }^{38}$ A. C. Forti, ${ }^{38}$ P. A. Hart, ${ }^{38}$ F. Jackson, ${ }^{38}$ G. D. Lafferty, ${ }^{38}$ A. J. Lyon, ${ }^{38}$ J. H. Weatherall, ${ }^{38}$ J. C. Williams, ${ }^{38}$ A. Farbin, ${ }^{39}$ A. Jawahery, ${ }^{39}$ D. Kovalskyi, ${ }^{39}$ C. K. Lae, ${ }^{39}$ V. Lillard, ${ }^{39}$ D. A. Roberts, ${ }^{39}$ G. Blaylock, ${ }^{40}$ C. Dallapiccola, ${ }^{40}$ K. T. Flood, ${ }^{40}$ S. S. Hertzbach, ${ }^{40}$ R. Kofler, ${ }^{40}$ V. B. Koptchev, ${ }^{40}$ T. B. Moore, ${ }^{40}$ S. Saremi, ${ }^{40}$ H. Staengle, ${ }^{40}$ S. Willocq, ${ }^{40}$ R. Cowan, ${ }^{41}$ G. Sciolla, ${ }^{41}$ F. Taylor, ${ }^{41}$ R. K. Yamamoto, ${ }^{41}$ D. J. J. Mangeol, ${ }^{42}$ M. Milek, ${ }^{42}$ P. M. Patel, ${ }^{42}$
A. Lazzaro, ${ }^{43}$ F. Palombo, ${ }^{43}$ J. M. Bauer, ${ }^{44}$ L. Cremaldi, ${ }^{44}$ V. Eschenburg, ${ }^{44}$ R. Godang, ${ }^{44}$ R. Kroeger, ${ }^{44}$ J. Reidy, ${ }^{44}$ D. A. Sanders, ${ }^{44}$ D. J. Summers, ${ }^{44}$ H. W. Zhao, ${ }^{44}$ C. Hast, ${ }^{45}$ P. Taras, ${ }^{45}$ H. Nicholson, ${ }^{46}$ C. Cartaro, ${ }^{47}$ N. Cavallo, ${ }^{47,}{ }^{\dagger}$ G. De Nardo, ${ }^{47}$ F. Fabozzi, ${ }^{47,}{ }^{\dagger}$ C. Gatto, ${ }^{47}$ L. Lista, ${ }^{47}$ P. Paolucci, ${ }^{47}$ D. Piccolo, ${ }^{47}$ C. Sciacca, ${ }^{47}$ M. A. Baak, ${ }^{48}$ G. Raven, ${ }^{48}$ J. M. LoSecco, ${ }^{49}$ T. A. Gabriel, ${ }^{50}$ B. Brau, ${ }^{51}$ T. Pulliam, ${ }^{51}$ Q. K. Wong, ${ }^{51}$ J. Brau, ${ }^{52}$ R. Frey, ${ }^{52}$ C. T. Potter, ${ }^{52}$ N. B. Sinev, ${ }^{52}$ D. Strom, ${ }^{52}$ E. Torrence, ${ }^{52}$ F. Colecchia, ${ }^{53}$ A. Dorigo, ${ }^{53}$ F. Galeazzi, ${ }^{53}$ M. Margoni, ${ }^{53}$ M. Morandin, ${ }^{53}$ M. Posocco, ${ }^{53}$ M. Rotondo, ${ }^{53}$ F. Simonetto, ${ }^{53}$ R. Stroili, ${ }^{53}$ G. Tiozzo, ${ }^{53}$ C. Voci, ${ }^{53}$ M. Benayoun, ${ }^{54}$ H. Briand, ${ }^{54}$ J. Chauveau, ${ }^{54}$ P. David, ${ }^{54}$ Ch. de la Vaissière, ${ }^{54}$ L. Del Buono, ${ }^{54}$ O. Hamon, ${ }^{54}$ M. J. J. John, ${ }^{54}$ Ph. Leruste, ${ }^{54}$ J. Ocariz, ${ }^{54}$ M. Pivk, ${ }^{54}$ L. Roos, ${ }^{54}$ J. Stark, ${ }^{54}$ S. T'Jampens, ${ }^{54}$ G. Therin, ${ }^{54}$ P. F. Manfredi, ${ }^{55}$ V. Re, ${ }^{55}$ L. Gladney, ${ }^{56}$ Q. H. Guo, ${ }^{56}$ J. Panetta, ${ }^{56}$ C. Angelini, ${ }^{57}$ G. Batignani, ${ }^{57}$ S. Bettarini, ${ }^{57}$ M. Bondioli, ${ }^{57}$ F. Bucci, ${ }^{57}$ G. Calderini, ${ }^{57}$ M. Carpinelli, ${ }^{57}$ F. Forti, ${ }^{57}$ M. A. Giorgi, ${ }^{57}$ A. Lusiani, ${ }^{57}$ G. Marchiori, ${ }^{57}$ F. Martinez-Vidal,,${ }^{57} \ddagger$ M. Morganti, ${ }^{57}$ N. Neri, ${ }^{57}$ E. Paoloni, ${ }^{57}$ M. Rama, ${ }^{57}$ G. Rizzo, ${ }^{57}$ F. Sandrelli, ${ }^{57}$ J. Walsh,,${ }^{57}$ M. Haire, ${ }^{58}$ D. Judd, ${ }^{58}$ K. Paick, ${ }^{58}$ D. E. Wagoner, ${ }^{58}$ N. Danielson, ${ }^{59}$ P. Elmer, ${ }^{59}$ C. Lu, ${ }^{59}$ V. Miftakov, ${ }^{59}$ J. Olsen, ${ }^{59}$ A. J. S. Smith, ${ }^{59}$ H. A. Tanaka, ${ }^{59}$ E. W. Varnes, ${ }^{59}$ F. Bellini, ${ }^{60}$ G. Cavoto, ${ }^{59,} 60$ R. Faccini, ${ }^{14,60}$ F. Ferrarotto, ${ }^{60}$ F. Ferroni, ${ }^{60}$ M. Gaspero, ${ }^{60}$ M. A. Mazzoni, ${ }^{60}$ S. Morganti, ${ }^{60}$ M. Pierini, ${ }^{60}$ G. Piredda, ${ }^{60}$ F. Safai Tehrani, ${ }^{60}$ C. Voena, ${ }^{60}$ S. Christ, ${ }^{61}$ G. Wagner, ${ }^{61}$ R. Waldi, ${ }^{61}$ T. Adye, ${ }^{62}$ N. De Groot, ${ }^{62}$ B. Franek, ${ }^{62}$ N. I. Geddes, ${ }^{62}$ G. P. Gopal, ${ }^{62}$ E. O. Olaiya, ${ }^{62}$ S. M. Xella, ${ }^{62}$ R. Aleksan, ${ }^{63}$ S. Emery, ${ }^{63}$ A. Gaidot, ${ }^{63}$ S. F. Ganzhur, ${ }^{63}$ P.-F. Giraud, ${ }^{63}$ G. Hamel de Monchenault, ${ }^{63}$ W. Kozanecki, ${ }^{63}$ M. Langer, ${ }^{63}$ G. W. London, ${ }^{63}$ B. Mayer, ${ }^{63}$ G. Schott, ${ }^{63}$ G. Vasseur, ${ }^{63}$ Ch. Yeche, ${ }^{63}$ M. Zito, ${ }^{63}$ M. V. Purohit, ${ }^{64}$ A. W. Weidemann, ${ }^{64}$ F. X. Yumiceva, ${ }^{64}$ D. Aston, ${ }^{65}$ R. Bartoldus, ${ }^{65}$ N. Berger, ${ }^{65}$ A. M. Boyarski, ${ }^{65}$ O. L. Buchmueller, ${ }^{65}$ M. R. Convery, ${ }^{65}$ D. P. Coupal, ${ }^{65}$ D. Dong, ${ }^{65}$ J. Dorfan, ${ }^{65}$ D. Dujmic, ${ }^{65}$ W. Dunwoodie, ${ }^{65}$ R. C. Field, ${ }^{65}$ T. Glanzman, ${ }^{65}$ S. J. Gowdy, ${ }^{65}$ E. Grauges-Pous, ${ }^{65}$ T. Hadig, ${ }^{65}$ V. Halyo, ${ }^{65}$ T. Hryn'ova, ${ }^{65}$ W. R. Innes, ${ }^{65}$ C. P. Jessop, ${ }^{65}$ M. H. Kelsey, ${ }^{65}$ P. Kim, ${ }^{65}$ M. L. Kocian, ${ }^{65}$ U. Langenegger, ${ }^{65}$ D. W. G. S. Leith, ${ }^{65}$ S. Luitz, ${ }^{65}$ V. Luth, ${ }^{65}$ H. L. Lynch, ${ }^{65}$ H. Marsiske, ${ }^{65}$ S. Menke, ${ }^{65}$ R. Messner, ${ }^{65}$ D. R. Muller, ${ }^{65}$ C. P. O’Grady, ${ }^{65}$ V. E. Ozcan, ${ }^{65}$ A. Perazzo, ${ }^{65}$ M. Perl, ${ }^{65}$ S. Petrak, ${ }^{65}$ B. N. Ratcliff, ${ }^{65}$ S. H. Robertson, ${ }^{65}$ A. Roodman, ${ }^{65}$ A. A. Salnikov, ${ }^{65}$ R. H. Schindler, ${ }^{65}$ J. Schwiening, ${ }^{65}$ G. Simi, ${ }^{65}$ A. Snyder, ${ }^{65}$ A. Soha, ${ }^{65}$ J. Stelzer, ${ }^{65}$ D. Su, ${ }^{65}$ M. K. Sullivan, ${ }^{65}$ J. Va'vra, ${ }^{65}$ S. R. Wagner, ${ }^{65}$ M. Weaver, ${ }^{65}$ A. J. R. Weinstein, ${ }^{65}$ W. J. Wisniewski, ${ }^{65}$ D. H. Wright, ${ }^{65}$ C. C. Young, ${ }^{65}$ P. R. Burchat, ${ }^{66}$ A. J. Edwards, ${ }^{66}$ T. I. Meyer, ${ }^{66}$ C. Roat, ${ }^{66}$ S. Ahmed, ${ }^{67}$ M. S. Alam, ${ }^{67}$ J. A. Ernst, ${ }^{67}$ M. Saleem, ${ }^{67}$ F. R. Wappler, ${ }^{67}$ W. Bugg, ${ }^{68}$ M. Krishnamurthy, ${ }^{68}$ S. M. Spanier, ${ }^{68}$ R. Eckmann, ${ }^{69}$ H. Kim, ${ }^{69}$ J. L. Ritchie, ${ }^{69}$ R. F. Schwitters, ${ }^{69}$ J. M. Izen, ${ }^{70}$ I. Kitayama, ${ }^{70}$ X. C. Lou, ${ }^{70}$ S. Ye, ${ }^{70}$ F. Bianchi, ${ }^{71}$ M. Bona, ${ }^{71}$ F. Gallo, ${ }^{71}$ D. Gamba, ${ }^{71}$ C. Borean, ${ }^{72}$ L. Bosisio, ${ }^{72}$ G. Della Ricca, ${ }^{72}$ S. Dittongo, ${ }^{72}$ S. Grancagnolo, ${ }^{72}$ L. Lanceri, ${ }^{72}$ P. Poropat, ${ }^{72,}$ § L. Vitale, ${ }^{72}$ G. Vuagnin, ${ }^{72}$ R. S. Panvini, ${ }^{73}$ Sw. Banerjee, ${ }^{74}$ C. M. Brown, ${ }^{74}$ D. Fortin, ${ }^{74}$ P. D. Jackson, ${ }^{74}$ R. Kowalewski, ${ }^{74}$ J. M. Roney, ${ }^{74}$ H. R. Band, ${ }^{75}$ S. Dasu, ${ }^{75}$ M. Datta, ${ }^{75}$ A. M. Eichenbaum, ${ }^{75}$ H. Hu, ${ }^{75}$ J. R. Johnson, ${ }^{75}$ P. E. Kutter, ${ }^{75}$ H. Li, ${ }^{75}$ R. Liu, ${ }^{75}$ F. Di Lodovico, ${ }^{75}$ A. Mihalyi, ${ }^{75}$ A. K. Mohapatra, ${ }^{75}$ Y. Pan, ${ }^{75}$ R. Prepost, ${ }^{75}$ S. J. Sekula, ${ }^{75}$ J. H. von Wimmersperg-Toeller, ${ }^{75}$ J. Wu, ${ }^{75}$ S. L. Wu, ${ }^{75}$ Z. Yu, ${ }^{75}$ and H. Neal ${ }^{76}$
(BABAR Collaboration)

[^0]${ }^{23}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{24}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
${ }^{25}$ Florida A $\mathcal{B} M$ University, Tallahassee, Florida 32307, USA
${ }^{26}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
${ }^{27}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
${ }^{28}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{29}$ Imperial College London, London, SW7 2BW, United Kingdom
${ }^{30}$ University of Iowa, Iowa City, Iowa 52242, USA
${ }^{31}$ Iowa State University, Ames, Iowa 50011-3160, USA
${ }^{32}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
${ }^{33}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{34}$ University of Liverpool, Liverpool L69 3BX, United Kingdom
${ }^{35}$ Queen Mary, University of London, E1 4NS, United Kingdom
${ }^{36}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom ${ }^{37}$ University of Louisville, Louisville, Kentucky 40292, USA
${ }^{38}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{39}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{40}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }^{41}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
${ }^{42}$ McGill University, Montréal, QC, Canada H3A $2 T 8$
${ }^{43}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
${ }^{44}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{45}$ Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, QC, Canada H3C 3J7
${ }^{46}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
${ }^{47}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
${ }^{48}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{49}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{50}$ Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
${ }^{51}$ Ohio State University, Columbus, Ohio 43210, USA
${ }^{52}$ University of Oregon, Eugene, Oregon 97403, USA
${ }^{53}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
${ }^{54}$ Universités Paris VI et VII, Lab de Physique Nucléaire H. E., F-75252 Paris, France
${ }^{55}$ Università di Pavia, Dipartimento di Elettronica and INFN, I-27100 Pavia, Italy
${ }^{56}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{57}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
${ }^{58}$ Prairie View A $\mathcal{B} M$ University, Prairie View, Texas 77446, USA
${ }^{59}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{60}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
${ }^{61}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{62}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
${ }^{63}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
${ }^{64}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{65}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
${ }^{66}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{67}$ State Univ. of New York, Albany, New York 12222, USA
${ }^{68}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{69}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{70}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{71}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
${ }^{72}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
${ }^{73}$ Vanderbilt University, Nashville, Tennessee 37235, USA
${ }^{74}$ University of Victoria, Victoria, BC, Canada V8W 3P6
${ }^{75}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{76}$ Yale University, New Haven, Connecticut 06511, USA

(Dated: January 29, 2004)
We present measurements of branching fractions in the $b \rightarrow s \bar{s} s$ penguin-dominated decays $B^{+} \rightarrow \phi K^{+}$and $B^{0} \rightarrow \phi K^{0}$ in a sample of approximately 89 million $B \bar{B}$ pairs collected by the BABAR detector at the PEP-II asymmetric-energy B-meson factory at SLAC. We determine $\mathcal{B}\left(B^{+} \rightarrow \phi K^{+}\right)=\left(10.0_{-0.8}^{+0.9} \pm 0.5\right) \times 10^{-6}$ and $\mathcal{B}\left(B^{0} \rightarrow \phi K^{0}\right)=\left(8.4_{-1.3}^{+1.5} \pm 0.5\right) \times 10^{-6}$. Additionally, we measure the $C P$-violating charge asymmetry $\mathcal{A}_{C P}\left(B^{ \pm} \rightarrow \phi K^{ \pm}\right)=0.04 \pm 0.09 \pm 0.01$, with a 90% confidence-level interval of $[-0.10,0.18]$, and set an upper limit on the CKM- and color-suppressed decay $B^{+} \rightarrow \phi \pi^{+}, \mathcal{B}\left(B^{+} \rightarrow \phi \pi^{+}\right)<0.41 \times 10^{-6}$ (at the 90% confidence level).

Decays of B mesons into charmless hadronic final states with a ϕ meson are dominated by $b \rightarrow s \bar{s} s$ gluonic penguin diagrams (Fig. 1), possibly with smaller contributions from electroweak penguin diagrams, while other Standard Model (SM) amplitudes are strongly suppressed [1]. In the Standard Model, CP violation arises from a single complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [2]. Since many scenarios of physics beyond the SM introduce additional diagrams with heavy particles in the penguin loops and new $C P$-violating phases [3], a comparison of $C P$-violating observables with SM expectations is a sensitive probe for new physics. In the SM, neglecting CKM-suppressed contributions, the direct $C P$ violation in $B^{+} \rightarrow \phi K^{+}$[4], detected as an asymme$\operatorname{try} \mathcal{A}_{C P}=\left(\Gamma_{\phi K^{-}}-\Gamma_{\phi K^{+}}\right) /\left(\Gamma_{\phi K^{-}}+\Gamma_{\phi K^{+}}\right)$in the decay rates $\Gamma_{\phi K^{ \pm}}=\Gamma\left(B^{ \pm} \rightarrow \phi K^{ \pm}\right)$, is expected to be zero; in the presence of large new-physics contributions to the $b \rightarrow s \bar{s} s$ transition, it could be of order 1 [5]. The $B \rightarrow \phi K$ and $B \rightarrow \phi \pi$ decay rates are also sensitive to new physics; the latter is strongly suppressed in the SM, and a measurement of $\mathcal{B}(B \rightarrow \phi \pi) \gtrsim 10^{-7}$ would serve as evidence for new physics [6]. The branching fractions of $B^{+} \rightarrow \phi K^{+}$and $B^{0} \rightarrow \phi K^{0}$ have been studied by CLEO [7], BABAR [8, 9], and Belle [10]; $\mathcal{A}_{C P}\left(B^{+} \rightarrow \phi K^{+}\right)$has been studied by BABAR [9].

FIG. 1: Examples of quark-level diagrams for $B \rightarrow \phi K$ and $B \rightarrow \phi \pi$. Left: internal penguin diagram, right: flavor-singlet penguin diagram.

This analysis is based on an integrated luminosity of about $82 \mathrm{fb}^{-1}$, corresponding to approximately 89 million $B \bar{B}$ pairs, collected at SLAC with the BABAR detector [11] at the PEP-II asymmetric-energy $e^{+} e^{-}$storage ring operating on the $\Upsilon(4 S)$ resonance.

The asymmetric beam configuration provides a boost to the $\Upsilon(4 S)$ in the laboratory frame ($\beta \gamma \approx 0.56$), increasing the maximum momentum of the B-meson decay

[^1]products to $4.4 \mathrm{GeV} /$ c. Charged particles are detected and their momenta measured by a combination of a silicon vertex tracker (SVT), consisting of five double-sided layers, and a 40-layer central drift chamber (DCH), both operating in a 1.5 T solenoidal magnetic field. The tracking system covers 92% of the solid angle in the center-of-mass (CM) frame. The track-finding efficiency is, on average, $(98 \pm 1) \%$ for momenta above $0.2 \mathrm{GeV} / c$ and polar angles greater than 0.5 rad . Photons are detected by a $\operatorname{CsI}(\mathrm{Tl})$ electromagnetic calorimeter (EMC), which provides excellent angular and energy resolution with high efficiency for energies above 20 MeV .

Charged-particle identification is provided by measuring the average energy loss $(\mathrm{d} E / \mathrm{d} x)$ in the two tracking devices and by the novel internally reflecting ringimaging Cherenkov detector (DIRC) covering the central region. A π / K separation of better than 4σ is achieved for tracks with momenta below $3 \mathrm{GeV} / c$, decreasing to 2.4σ for the highest momenta arising from $B^{+} \rightarrow \phi h^{+}$ decays. Electrons are identified with the use of the tracking system and the EMC.

We fully reconstruct B-meson candidates in the decay modes ϕh^{+}and ϕK_{S}^{0}, with $\phi \rightarrow K^{+} K^{-}$and $K_{S}^{0} \rightarrow$ $\pi^{+} \pi^{-}$. For the h^{+}track and the charged-track daughters of the ϕ we require at least 12 measured DCH hits and a minimal transverse momentum p_{T} of $0.1 \mathrm{GeV} / c$. The tracks must originate from the interaction point (within 10 cm along the beam direction and 1.5 cm in the transverse plane). Looser criteria are applied to tracks belonging to $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$. We combine pairs of oppositely charged tracks originating from a common vertex to form K_{S}^{0} and ϕ candidates. A $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$ candidate is accepted on the basis of requirements on the two-pion invariant mass (within $12 \mathrm{MeV} / c^{2}$ of the nominal K_{s}^{0} mass [12]), the flight-length (ℓ) significance $\left(\ell / \sigma_{\ell}>3\right)$, and the angle between the line connecting the B and K_{S}^{0} decay vertices and the K_{S}^{0} momentum ($<0.1 \mathrm{rad}$). Kaon tracks used to reconstruct the ϕ meson are distinguished from pion and proton tracks using $\mathrm{d} E / \mathrm{d} x$ information from the DCH in conjunction with $\mathrm{d} E / \mathrm{d} x$ information from the SVT for track momenta below $0.7 \mathrm{GeV} / c$, and, for momenta above $0.7 \mathrm{GeV} / c$, with the measured Cherenkov angle and number of photons recorded by the DIRC.

For an extended unbinned maximum-likelihood (ML) fit we parameterize the distributions of kinematic and topological variables for signal and background events in terms of probability density functions (PDFs). Each B candidate is characterized by the energy difference $\Delta E=$ $\left(q_{\Upsilon} \cdot q_{B} / \sqrt{s}\right)-\sqrt{s} / 2$ and the beam-energy-substituted mass $m_{\mathrm{ES}}=\left[\left(s / 2+\vec{p}_{\Upsilon} \cdot \vec{p}_{B}\right)^{2} / E_{\Upsilon}^{2}-\vec{p}_{B}^{2}\right]^{1 / 2}$ [11]. Here q_{Υ} and q_{B} are four-momenta of the $\Upsilon(4 S)$ and the B candidate, $s \equiv\left(q_{r}\right)^{2}$ is the square of the center-of-mass energy, \vec{p}_{Υ} and \vec{p}_{B} are the three-momenta of the $\Upsilon(4 S)$ and the B in the laboratory frame, and $E_{\Upsilon} \equiv q_{\Upsilon}^{0}$ is the
energy of the $\Upsilon(4 S)$ in the laboratory frame. For signal events, ΔE peaks at zero and $m_{\text {ES }}$ peaks at the nominal B mass. The signal PDFs of both variables are adequately described by sums of two Gaussian distributions (whose means are not required to be the same). The background shape in ΔE is parametrized by a linear function and in $m_{E S}$ by a threshold function [13]. Candidates for our analysis are required to satisfy $|\Delta E|<0.2 \mathrm{GeV}$ and $m_{\mathrm{ES}}>5.2 \mathrm{GeV} / c^{2}$. The variable ΔE provides additional momentum-dependent π / K separation in the ML fit for the $B^{+} \rightarrow \phi h^{+}$branching fractions. The likelihood also incorporates the invariant mass of the $\phi \rightarrow K^{+} K^{-}$ candidate $m_{K K}$ in the $[0.99,1.05] \mathrm{GeV} / c^{2}$ range, which is described by a relativistic Breit-Wigner function convolved with a Gaussian, $\sigma=1.0 \mathrm{MeV} / c^{2}$, determined in Monte Carlo (MC) simulation studies, to account for resolution effects, and the ϕ helicity angle θ_{H}, which is defined as the angle between the directions of the K^{+}and the parent B in the ϕ rest frame. The $\cos \theta_{H}$ distribution is a quadratic function for pseudoscalar-vector B decay modes and is nearly uniform for the combinatorial background.

Backgrounds in the candidate sample arise primarily from random combinations of tracks produced in the quark-antiquark continuum. In such events, particles appear bundled into jets, which can be identified with several variables computed in the CM frame. We use the angle θ_{T} between the thrust axis of the B candidate and the thrust axis of the other charged and neutral particles [11]. We require the angle θ_{T} to satisfy $\left|\cos \theta_{T}\right|<0.9$. Other quantities that characterize the event topology are the CM angle θ_{B} between the B momentum and the beam axis and the sum of the momenta p_{i} of the other charged and neutral particles in the event weighted with Legendre polynomials $L_{n}\left(\theta_{i}\right), n=0,2$, where θ_{i} is the angle between the momentum of particle i and the thrust axis of the B candidate. We combine these variables into a Fisher discriminant \mathcal{F} [15]. Contamination from other B decays, as well as $\tau^{+} \tau^{-}$and $e^{+} e^{-} \gamma \gamma$ production, is negligible, as demonstrated in MC simulation studies. Possible $K^{+} K^{-} S$-wave contributions, such as the $f_{0}(980)$ and the $a_{0}(980)$, are not expected to contribute under the ϕ mass peak [14] and are distinguished by their uniform distribution in $\cos \theta_{H}$; this systematic effect is small compared with current statistical and systematic uncertainties.

We use an unbinned extended ML fit to extract signal yields and charge asymmetries simultaneously. The likelihood for candidate j in the flavor category c is obtained by summing the product of event yield $N_{i c}$ and probability $\mathcal{P}_{i c}$ over signal and background hypotheses i. The total extended likelihood \mathcal{L} for a sample of N events is given by

$$
\begin{equation*}
\mathcal{L}=\frac{1}{N!} \exp \left(-\sum_{i, c} N_{i c}\right) \prod_{j=1}^{N}\left[\sum_{i, c} N_{i c} \mathcal{P}_{i c}\left(\vec{x}_{j} ; \vec{\alpha}_{i}\right)\right] . \tag{1}
\end{equation*}
$$

The probabilities $\mathcal{P}_{i c}$ are products of PDFs for each of the

TABLE I: Summary of branching fraction (\mathcal{B}) and direct $C P$ asymmetry $\left(\mathcal{A}_{C P}\right)$ results. $N_{\text {sig }}$ and ε are the signal yield and the total efficiency in the branching fraction fit. The 90% confidence-level interval for $\mathcal{A}_{C P}$ is [$-0.10,0.18$].

Mode	$\varepsilon(\%)$	$N_{\text {sig }}$	$\mathcal{B}\left(10^{-6}\right)$	$\mathcal{A}_{C P}$
ϕK^{0}	6.7	50_{-8}^{+9}	$8.4_{-1.3}^{+1.5} \pm 0.5$	-
ϕK^{+}	19.6	173 ± 15	$10.0_{-0.8}^{+0.9} \pm 0.5$	$0.04 \pm 0.09 \pm 0.01$
$\phi \pi^{+}$	20.4	$0.9_{-0.9}^{+2.4}$	$<0.41(90 \% \mathrm{CL})$	-

independent variables $\vec{x}_{j}=\left\{m_{\mathrm{ES}}, \Delta E, \mathcal{F}, m_{K K}, \cos \theta_{H}\right\}$. The $\vec{\alpha}_{i}$ are the parameters of the distributions in \vec{x}_{j}, which are fixed to values derived from signal MC, onresonance sidebands in ($m_{\mathrm{ES}}, \Delta E$), and high-statistics data control channels $B^{+} \rightarrow \pi^{+} \bar{D}^{0}\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)$and $B^{0} \rightarrow \pi^{+} D^{-}\left(D^{-} \rightarrow K_{S}^{0} \pi^{-}\right)$. The control channels have event topologies similar to those in $B^{+} \rightarrow \phi K^{+}$ and $B^{0} \rightarrow \phi K_{S}^{0}$, and are used to compare central values and resolutions of the variables $m_{\mathrm{ES}}, \Delta E$, and \mathcal{F} in data and MC simulation. By minimizing the quantity $-\ln \mathcal{L}$ in two separate fits, we determine the branching fractions, \mathcal{B}, and the charge asymmetry, $\mathcal{A}_{C P}$, for $\phi h^{ \pm}$and ϕK_{S}^{0}. In the ϕK_{S}^{0} case, there are two hypotheses, signal and background $(i=1,2)$, and a single flavor category. In the fit for $B^{ \pm} \rightarrow \phi h^{ \pm}$decays, we determine the flavor of the high-momentum track by comparing the measured Cherenkov angle with that expected for a pion or a kaon. In this way, the $\phi h^{ \pm}(h=\pi, K)$ decays are fitted simultaneously with two signal ($i=1$ for $B^{ \pm} \rightarrow \phi K^{ \pm}$and $i=2$ for $B^{ \pm} \rightarrow \phi \pi^{ \pm}$) and two corresponding background $(i=3,4)$ hypotheses. We define the event yields $n_{i c}$ in each of the two flavor categories $\left(c=1\right.$ for $B^{+} \rightarrow \phi h^{+}$ and $c=2$ for $B^{-} \rightarrow \phi h^{-}$) in terms of the charge asymmetry \mathcal{A}_{i} and the total event yield $n_{i}: n_{i 1}=n_{i} \times\left(1+\mathcal{A}_{i}\right) / 2$ and $n_{i 2}=n_{i} \times\left(1-\mathcal{A}_{i}\right) / 2$.

For charged tracks originating from the interaction point, we determine the ratio of track-finding efficiencies in data and MC simulation by conducting a study of a large sample of unambiguous charged-track candidates that have at least 10 measured hits in the SVT; the method relies on the fact that for both the SVT and the DCH the differences between the track-finding efficiencies in data and MC simulation are small, and so the two detectors can be used to calibrate each other. The ratio of $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$reconstruction efficiencies in data and MC simulation as a function of the K_{S}^{0} momentum and decay point is determined from a study of a large inclusive sample of $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$decays; this method employs the results of the tracking-efficiency study that covers K_{S}^{0} decays occuring in the immediate vicinity of the interaction point. The charged-kaon-identification efficiencies in data and MC simulation are compared in a study of fully reconstructed $D^{*+} \rightarrow D^{0} \pi^{+}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$decays.

Results of the branching-fraction and $C P$-asymmetry fits are given in Table I. Equal production rates of $B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$are assumed. Figure 2 shows the m_{ES} and ΔE distributions of $\phi K_{S}^{0}\left(\pi^{+} \pi^{-}\right)$and ϕK^{+}events together

FIG. 2: Projection plots of the variables $m_{\mathrm{ES}}[(\mathrm{a})$ and (c)] and $\Delta E\left[(\mathrm{~b})\right.$ and (d)] in the fit for the ϕK^{+}(top) and $\phi K_{S}^{0}\left(\pi^{+} \pi^{-}\right)$ (bottom) branching fractions. The data are shown by the histogram, while the curve is the result of the fit. The signal-to-background ratio is enhanced with a requirement on the signal probability $\mathcal{P}_{\text {sig }} /\left(\mathcal{P}_{\text {sig }}+\mathcal{P}_{\text {bkg }}\right)$ with the PDF for the variable being plotted excluded.
with the likelihood projections from the \mathcal{B} fits. Goodness-of-fit tests have been performed to confirm that the values of likelihood \mathcal{L} obtained in the fits are consistent with MC-based expectations.

Systematic uncertainties in the ML fit originate from assumptions about the signal and background distributions and are dominated by the limited sideband and control-channel statistics. We simultaneously vary all PDF parameters within their uncertainties, and derive the associated systematic errors: 0.005 for $\mathcal{A}_{C P}, 2.0 \%$ for $\mathcal{B}\left(\phi K^{+}\right)$, and 2.8% for $\mathcal{B}\left(\phi K^{0}\right)$. To account for the
systematic uncertainty on the upper limit on $\mathcal{B}\left(\phi \pi^{+}\right)$, we increase the upper limit by one standard deviation due to PDF variations (10.9%) and due to uncertainty in the reconstruction efficiency (4.2%). The dominant systematic errors in the efficiency come from track finding (2.4% for $\mathcal{B}\left(\phi h^{+}\right)$and 4.2% for $\left.\mathcal{B}\left(\phi K_{S}^{0}\right)\right)$, charged-kaon identification (2% per ϕ), and K_{S}^{0} reconstruction efficiency (2%). Other systematic errors from event-selection criteria, daughter branching fractions, MC statistics, $B \bar{B}$ backgrounds and B-meson counting sum in quadrature to 3.0%. The systematic uncertainty on $\mathcal{A}_{C P}$ due to charge asymmetries in tracking and the DIRC is less than 0.01.

In summary, we have studied branching fractions and charge asymmetries in the B-meson final states ϕh^{+}and ϕK_{S}^{0}; the results are listed in Table I. We do not observe a significant charge asymmetry in the mode $B^{+} \rightarrow \phi K^{+}$ and do not see evidence for $B^{+} \rightarrow \phi \pi^{+}$. Our branching fraction and charge asymmetry measurements are consistent with, and supersede, our previous results reported in $[8,9]$. They are also consistent with existing SM predictions.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.
[1] N. G. Deshpande and J. Trampetic, Phys. Rev. D 41, 895 (1990); N. G. Deshpande and G. He, Phys. Lett. B 336, 471 (1994); R. Fleischer, Z. Phys. C 62, 81 (1994); Y. Grossman, Z. Ligeti, Y. Nir and H. Quinn, Phys. Rev. D 68, 015004 (2003).
[2] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[3] Y. Grossman and M. P. Worah, Phys. Lett. B 395, 241 (1997); R. Fleischer, Int. J. Mod. Phys. A 12, 2459 (1997).
[4] Charge-conjugate states included unless explicitly stated otherwise.
[5] M. Ciuchini and L. Silvestrini, Phys. Rev. Lett. 89, 231802 (2002).
[6] S. Bar-Shalom, G. Eilam and Y. D. Yang, Phys. Rev. D 67, 014007 (2003).
[7] CLEO Collaboration, R. A. Briere et al., Phys. Rev. Lett. 86, 3718 (2001).
[8] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 87, 151801 (2001).
[9] BaBar Collaboration, B. Aubert et al., Phys. Rev. D 65, 051101(R) (2002).
[10] Belle Collaboration, K.-F. Chen et al., Phys. Rev. Lett. 91, 201801 (2003).
[11] BaBar Collaboration, B. Aubert et al., Nucl. Instrum. Methods Phys. Res. A 479, 1 (2002).
[12] Particle Data Group, K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002).
[13] ARGUS Collaboration, H. Albrecht et al., Z. Phys. C 48, 543 (1990).
[14] See, for example, Note on Scalar Mesons in [12].
[15] R. A. Fisher, Annals Eugen. 7, 179 (1936).

[^0]: ${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
 ${ }^{2}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
 ${ }^{3}$ Institute of High Energy Physics, Beijing 100039, China
 ${ }^{4}$ University of Bergen, Inst. of Physics, N-5007 Bergen, Norway
 ${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
 ${ }^{6}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
 ${ }^{7}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
 ${ }^{8}$ University of Bristol, Bristol BS8 1TL, United Kingdom
 ${ }^{9}$ University of British Columbia, Vancouver, BC, Canada V6T $1 Z 1$
 ${ }^{10}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
 ${ }^{11}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
 ${ }^{12}$ University of California at Irvine, Irvine, California 92697, USA
 ${ }^{13}$ University of California at Los Angeles, Los Angeles, California 90024, USA
 ${ }^{14}$ University of California at San Diego, La Jolla, California 92093, USA
 ${ }^{15}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
 ${ }^{16}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
 ${ }^{17}$ California Institute of Technology, Pasadena, California 91125, USA
 ${ }^{18}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
 ${ }^{19}$ University of Colorado, Boulder, Colorado 80309, USA
 ${ }^{20}$ Colorado State University, Fort Collins, Colorado 80523, USA
 ${ }^{21}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
 ${ }^{22}$ Ecole Polytechnique, LLR, F-91128 Palaiseau, France

[^1]: *Also with Università di Perugia, Perugia, Italy.
 ${ }^{\dagger}$ Also with Università della Basilicata, Potenza, Italy.
 \ddagger Also with IFIC, Instituto de Física Corpuscular, CSIC-Universidad de Valencia, Valencia, Spain.
 ${ }^{\S}$ Deceased.

