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Abstract

Photonic crystals provide a method of confining a synchronous speed-of-light mode in an all-dielectric

structure, likely a necessary feature in any optical accelerator. We explore computationally a class of pho-

tonic crystal structures with translational symmetry in a direction transverse to the electron beam. We

demonstrate synchronous waveguide modes and discuss relevant parameters of such modes. We then ex-

plore how accelerator parameters vary as the geometry of the structure is changed, and consider trade-offs

inherent in the design of an accelerator of this type.
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I. INTRODUCTION

The extraordinary electric fields available from laser systems make laser-driven charged particle

acceleration an exciting possibility. However, simply scaling down traditional microwave acceler-

ator structures to optical frequencies would not be practical due to the low breakdown threshold of

metals at such frequencies [1]. To achieve linear laser-driven acceleration in vacuum, therefore, a

structure composed entirely of dielectric materials is required.

Designs of linear vacuum laser accelerator structures generally fall into one of two categories:

Macroscopic, far-field structures and near-field, guided-mode structures. Because of they are rela-

tively easy to fabricate and diagnose, macroscopic structures have generally been used in vacuum

laser acceleration experiments, such as LEAP [2, 3]. On the other hand, guided-mode structures

have the advantage of a smaller mode volume, and therefore more efficient coupling of laser ra-

diation to a particle beam. Since both types of structures have gradients limited by the damage

threshold of the optics, guided-mode structures may attain higher gradient. A scaling law applies

to the ratio of on-axis accelerating field to electric field magnitude, given by Ez/ |E| ∼ λ/w0,

where λ is the wavelength and w0 is the transverse laser mode size. With |E| limited by the dam-

age threshold of the optics, a structure with a smaller mode size can sustain a larger accelerating

gradient.

These considerations suggest using near-field, guided-mode structures. Photonic crystals [4]

provide a means of guiding a speed-of-light optical mode in an all dielectric structure, and a

synchronous mode has been shown to exist in a photonic crystal fiber [5]. Photonic crystals have

also been investigated as possible accelerator structures at microwave frequencies [6, 7]. In fact,

photonic crystals can support accelerating modes in a variety of structures, and we explore a

particular class of geometries below.

II. ACCELERATING MODES IN PHOTONIC CRYSTALS

The geometries we consider here are two-dimensional: we take them to be infinite in the vertical

(y) direction, transverse to the electron beam, which we take to propagate in the z-direction. As

such, these structures would not be suitable for actual acceleration unless a method of vertical

confinement were found, and then their properties would be altered from those computed here.

Rather, they provide a means to build intuition for photonic crystal structures. By considering
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FIG. 1: The geometry of an optimized 2D photonic crystal lattice consisting of vacuum holes in silicon.

Here r = 0.427a.

two-dimensional structures our computation time is greatly reduced, allowing us to quickly explore

multiple sets of geometric parameters. The computational technique is discussed at the end of this

section, after presenting the structure geometry.

A. Lattice geometry

Our underlying photonic crystal lattice is a triangular array of vacuum holes in a silicon sub-

strate, shown in Fig. 1. We consider laser acceleration using a wavelength of 1.5 µm, in the telecom

band where many promising sources exist. At this wavelength silicon has a normalized permittiv-

ity of εr = ε/ε0 = 12.1 [8]. As shown in the figure, the holes have radius r, and the lattice constant

is a.

Because of the vertical symmetry of the structure we can classify each mode as either TE or

TM, where the “transverse” designation is with respect to the y-direction, not the z-direction in

which the beam propagates. Thus the accelerating modes are TE since these have the E-field in

the plane of the structure.

Like electronic states in a solid, electromagnetic modes in the lattice fall in discrete bands. The

TE bandstructure of the lattice is shown in Fig. 2. We see from this figure that the lattice exhibits

a band gap—a range of frequencies in which no TE mode exists. In fact, this lattice was chosen

specifically to exhibit such a gap based on energy considerations; also, a high-index material was
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FIG. 2: The TE bandstructure of the photonic crystal lattice shown in Fig 1, with r = 0.427a.

chosen in order to obtain a wide band gap [4]. Then, r/a was optimized to give the widest band

gap, which occurs at r/a = 0.427. With light at frequencies in the band gap forbidden to propagate

in the lattice, modes at such frequencies can only exist in a defect, should one be provided. Thus

we are able to create waveguides in all-dielectric photonic crystal structures, and customize them

to support accelerating modes. In addition, such a waveguide only confines light at frequencies

in the bandgap, so higher-order guided wakefield modes are suppressed, potentially eliminating a

major source of beam break-up instability.

B. Accelerator structure geometry

Our example accelerator structure consists of the lattice shown in Fig. 1 with a vacuum wave-

guide of width w introduced. The waveguide geometry is shown in Fig. 3. Specifically, w is

defined so that the distance between the centers of the holes adjacent to the waveguide are w+a—

the holes on each side are provided a space of a/2 to exist before the waveguide begins; this is

sufficient since r < a/2. In addition, we can line the edge of the waveguide with dielectric, a

concept similar to the dielectric waveguide accelerator (DWA) described in [9]. We define δ as the

total width of silicon in the guide, so there is δ/2 of dielectric “padding” on each edge.

If we normalize the length scales of our structures to the lattice constant a, we are left with three

parameters: the guide width w, the pad width δ, and the wavelength. Fixing the lattice constant

makes the wavelength, or equivalently the longitudinal wavenumber kz or frequency ω, a free
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FIG. 3: The waveguide design, illustrating the geometric parameters. Here r = 0.427a, w = 3.0a, and

δ = 0.25a.

parameter. For a general selection of w and δ, there will be a kz for which the waveguide mode is

synchronous, i.e. ω = ckz. (Certainly if there is too much dielectric material within the waveguide,

the phase velocity will be limited below c; consider for instance the case of a guide entirely filled

with silicon.) This is demonstrated in Fig. 4(a), which shows the dispersion diagrams for a set of

waveguide widths, with δ = 0. Since each curve crosses the speed-of-light line, each geometry

supports a synchronous mode. Adding dielectric material to the edges of the guide brings the

speed-of-light frequency down into the interior of the bandgap, as shown in Fig. 4(b). We show

such a mode with its longitudinal electric field in Fig. 5, for w = 3.0a and δ = 0.25a. Observe

that the mode is mostly confined to within a of the edge of the guide; the wide band gap makes

such good confinement possible.

C. Computation Techniques

For the photonic crystal computations we use the MIT Photonic-Bands (MPB) package, a

public-domain code using an iterative eigensolver technique [10]. For a given geometry and Bloch

wavevector, MPB computes frequencies and field configurations of supported modes. By applying
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FIG. 4: Dispersion curves for a set of waveguide geometries, plotted with the speed-of-light (SOL) line

shown. The range of wavenumbers consists of all kz with ckz a frequency in the bandgap. (a) We fix δ = 0

and vary w; (b) we fix w = 3.0a and vary δ.

the Feynman-Hellmann theorem [11, 12], MPB can also compute group velocities for each mode

with little additional computational effort.

Using the frequencies and group velocities, we can inductively converge on the longitudinal

wavenumber for which a speed-of-light mode exists. Suppose we have found frequency ω(n) at

wavenumber k
(n)
z . We also know the slope of the dispersion curve, since the group velocity of this

mode is vg = dω/dkz|k(n)
z

. Approximating the dispersion curve by the linear relationship given by

these parameters, we can estimate the frequency and wavenumber of the speed-of-light mode for

the next step using the relations

ck(n+1)
z = ω(n+1) = ω(n) + vg

(
k(n+1)

z − k(n)
z

)
.
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FIG. 5: An accelerator structure geometry with a speed-of-light waveguide mode. The circles delineate

the vacuum holes, and the blue/red coloring denotes the accelerating Ez component. Here w = 3.0a and

δ = 0.25a, and for this mode λ = 2.78a. The asterisks show the damage sites, where the field magnitude

in the dielectric is maximized.

This yields

k(n+1)
z = k(n)

z +
ω(n) − k

(n)
z

1 − βg
,

where βg = vg/c. Since the iterative eigensolver for each step can be seeded with the field config-

uration from the result of the previous step, successive steps are quite fast, and convergence to a

speed-of-light mode is a computationally light task once the initial mode has been found.

For the 2D structure computations, a grid resolution of 32 pixels per lattice constant was used.

We used a supercell width (transverse to the beam direction) of

Ws =
[(

5
√

3 + 1
)

+ w
]
a.

Each computation of an accelerating mode required between 6 and 66 minutes of CPU time on a

440 MHz Sun Netra t1-105 computer with 256 MB RAM.
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III. ACCELERATING MODE PARAMETERS

Several parameters characterize the performance of an accelerating mode. The relationship

between the input laser power and the accelerating gradient is described by the characteristic

impedance [13]. Since our 2D structures only confine modes in one transverse dimension, we

normalize the impedance to that of a structure one wavelength high, so

Zc =
E2

accλ

Ph
,

where Eacc is the accelerating gradient on axis and Ph is the laser power per unit height. We can

measure Ph from the computation by summing the z-component of the Poynting vector over one

transverse slice of the mode.

Next, there is the damage factor

fD =
Eacc

|E|material
max

,

where |E|material
max is the maximum electric field magnitude anywhere in the dielectric material. Since

laser power is ultimately limited by the breakdown threshold Emax of the material, the damage

factor is an important measure of the maximum possible accelerating gradient a structure can

sustain.

However, Emax is not a constant for a given material; rather, it depends on the laser pulse

width. In fact, vacuum laser-driven acceleration schemes seek to take advantage of the favorable

scaling of material damage thresholds for ultrafast pulses. Thus these accelerator structures are

transmission-mode, and a high group velocity vg is desired so that short pulses may be used. The

minimum pulse width is the time lag of a laser pulse with respect to a speed-of-light particle bunch

as they traverse a structure, so it depends on the structure length. Thus the maximum possible

gradient is given by

Emax
acc = fDEmax(τ) = fDEmax

(
L

c

[
1

βg
− 1

])
, (1)

where τ is the pulse width and L is the length of the structure. We take the damage fluence of the

material to vary with pulse width as τ 1/2, as is the generally accepted picture for pulses longer than

about 10 ps (though deviations from this have been observed for shorter pulses) [1]. The damage

threshold Emax thus depends on pulse width as τ−1/4.

We computed accelerating modes in photonic crystal waveguides for a variety of geometries.

First, we find the characteristic impedance for each geometry and plot Zc versus w/λ, as shown in

Fig. 6. From a fit to a power law function, we find the dependence Zc ∝ (w/λ)−3.55.

8



1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

50

100

150

200

250

300

w/λ

Z
c (

Ω
)

Charactersitic Impedance for SOL Modes

Numerical result
Power function fit

FIG. 6: Characteristic impedances of 2D photonic crystal waveguide structures. By normalizing the

impedance to that of a structure one wavelength high, we obtain a value of Zc in Ω. The data shown

here include multiple values of δ ranging from 0 to 0.25a.
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FIG. 7: Damage factors of various structure geometries.

We also find the damage factor and group velocity for each structure geometry. These are

plotted in Figs. 7 and 8 respectively. The qualitative behavior of these parameters presents a trade-

off. As the guide is widened, the damage factor decreases. On the other hand, the group velocity

increases, allowing shorter laser pulses to be used, for which the material damage threshold is at

a higher field. One of these considerations may dominate the other, or the optimum gradient may

be achieved at some intermediate guide width.
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FIG. 8: Group velocities of accelerating modes for a variety of w and δ values.
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FIG. 9: The maximum accelerating gradient sustainable by each structure geometry, normalized to the

material damage threshold Ep for 1 ps pulses. We assume a structure length of 25 mm.

To address this issue, we plot the maximum possible accelerating gradient for each mode using

Eq. 1 and the τ−1/4 dependence of the damage threshold field, as shown in Fig. 9. To perform this

computation a structure length must be chosen; we make the arbitrary choice of 25 mm. The max-

imum gradient increases as the structure length is reduced. It appears that the optimum parameters

are w/a = 5−6 and δ/a = 0.2.
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IV. CONCLUSION

We have found accelerating modes for a set of geometries in a class of 2D photonic crystal

structures. These structures can confine light in an all-dielectric structure and potentially suppress

all higher-order guided wakefield modes. We examined parameters of the accelerating modes and

analyzed the trade-off between damage factor and group velocity.

While we built a solid intuition for photonic crystal structures, much work remains to be done

to fully understand these structures as accelerators. Wakefield losses, the effect of poorer confine-

ment, and coupling structures must be examined. Finally, it is worth pointing out once again that

for practical accelerator purposes, the concepts discussed here must be explored in the 3D case.
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