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We give an overview of the current issues in early universe cosmology and consider the potential
resolution of these issues in an as yet nascent spin foam cosmology. The model is the Barrett-Crane
model for quantum gravity along with a generalization of manifold complexes to complexes including
conical singularities.

I. INTRODUCTION

The Barrett-Crane model [1] [2] is a constrained topo-
logical state sum model for quantum gravity. Recently
[3] it was proposed that this model might incorporate
matter and gauge interactions if the condition on trian-
gulations to be manifolds were relaxed. That is, conical
singularities would act as seeds of matter in the quantum
geometry of the state sum. The purpose of this paper is
to examine the consequences of this proposal, and of spin
foam models in general, for early universe phenomenol-
ogy. We feel that although the BC model, and the conical
matter proposal in particular, are not yet sufficiently well
understood, the connections are provocative. Conversely,
one would like to use cosmology as a guiding principle for
developing experimental techniques in spin foam models
that could be used to explain and predict real observa-
tions.

The point of this paper is that natural approximations
motivated by the conical matter proposal (CMP) seem
to shed light on the full range of puzzles of the early
universe. Although each argument is in need of further
substantiation, the overall picture seems striking in itself.

To clarify this point, and since the communities of re-
searchers in spin foam models and early universe phe-
nomenology are not generally aware of each other’s work,
this paper begins with a self contained introduction to
the range of early universe phenomenological issues. We
then give a nontechnical introduction to the categorical
state sum program and the BC model in particular, to-
gether with the conical matter proposal. We conclude
with a discussion of a range of phenomenological prob-
lems which have plausible solutions in the state sum pic-
ture.

Although we have tried to make the paper accessible
to cosmologists by giving physical explanations for the
state sum models as far as possible, they do make use of
branches of mathematics not generally familiar to physi-
cists, so interested readers are strongly recommended to
consult the references.

We believe that the current form of the model is likely

to be less important than the fact that it leads to calcu-
lations that probe poorly understood phenomena.

II. CURRENT ISSUES IN EARLY UNIVERSE

COSMOLOGY

A. The Flatness Problem

The Standard Big Bang predicts that in an expanding
space-time Ω = 1 is an unstable fixed point. However,
present observations confirm that our universe is flat, i.e.
Ω = 1 to within 10 percent. This means that Ω had
to be very close to one in the past. For example, at
the era of nucleosynthesis, we are constrained to have
|Ω − 1| < O(10−16). This is an extreme fine tuning of
initial conditions. Unless initial conditions are chosen
very accurately, the universe soon collapses, or expands
quickly before structure can be formed. The suggestion
discussed below of a topological phase may shed some
light on the flatness problem.

B. The Horizon Problem

If we look back at the surface of last scattering we see
homogeneity in the cosmic microwave radiation across
distances subtending 1028cm. However the size of corre-
lations described by causality at the surface of last scat-
tering is predicted by SBB to be dcor ∼ 1023cm, a large
discrepancy between observations and theory. Therefore,
the SBB provides no causal way to produce correlations
to establish homogeneity on such large scales that are
observed in the cosmic microwave background (CMB).
Inflation was designed partially to solve this problem.
We suggest a solution to the horizon problem where the
initial conditions of the universe may already have estab-
lished correlations that were homogeneous.
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C. Baryon Asymmetry

Current observations tell us that most of the universe is
made up of non-baryonic degrees of freedom such as dark
energy (2/3), dark matter (1/3) and only 5% baryonic
matter. An even more striking observation of the small-
ness of baryon density is given by the ratio of baryons to
photons in the CMB. Big Bang nucleosynthesis as well
as anisotropies in the CMB yield the ratio

nb

nγ
= 6.1 × 10−10 (1)

Why is this number so small, yet nonzero? If equal
numbers of particles and antiparticles had been created in
the early universe, they would have annihilated in pairs.
It is well known that the Standard Model at the level of
renormalizable terms possesses no interactions that can
violate either baron number or lepton number violation.
In 1967 Sakharov [4] studied how the baryon asymmetry
could arise. He summarized the three conditions required
of any process that would lead to baryon asymmetry:

• Baryon number violation must occur in the funda-
mental interactions

• CP violation

• Local violation of thermal equilibrium, including an
Arrow of Time.

We will observe that the conical matter proposal plausi-
bly satisfies the Sakharov conditions.

D. Dark Matter

Our current understanding of structure formation ne-
cessitates the existence of pressureless non-baryonic dark
matter. Observations on galactic and cosmological scales
reveal that 22 percent of the matter in our universe con-
sists of non-baryonic dark matter (NBDM). NBDM does
not interact with radiation so it can not be detected by
standard astronomical means. More importantly, there
are a few candidates for NBDM, such as SUSY neutrali-
nos, axions, shadow universes and Planck mass black hole
remnants. These are plausible candidates because they
are fields which are weakly interacting. However, they
are all based on extensions of the Standard Model and
will likewise suffer the same type of initial condition fine
tuning as scalar fields coupled to gravity in a cosmologi-
cal setting. Below, we suggest a plausible new candidate
for DM in our model, namely higher genus conical mat-
ter, and also a relationship between these and Primordial
Black Holes (PBH).

A very concrete challenge to theoretical physics is
posed by the recent detailed observations of dwarf galax-
ies [5]. The density of dark matter in dwarf galaxies as a
function of radius can be computed very accurately be-
cause they are dominated by dark matter even near their

cores. The observed distribution does not agree with the
theoretical prediction for non-interacting dark matter in
that it lacks a central cusp.

E. Inflation

The idea that the early universe underwent a phase of
exponential growth has many attractions, such as its abil-
ity to reproduce the acoustic peaks in deviations to the
CMB power spectrum. Unfortunately, current theoreti-
cal models require an unmotivated fine tuning of the po-
tential of an as yet hypothetical scalar field. We will pro-
pose that the unusual thermodynamics of conical matter
provides a plausible mechanism for inflation, and the de-
coupling of the higher genus particles could provide an
exit scenario.

III. THE STANDARD BIG BANG

The Standard Big Bang Scenario is based on three ob-
servational pillars: primordial nucleosynthesis, isotropy
and homogeneity seen in the cosmic microwave back-
ground and the Hubble redshift relation. SBB is the
simplest general relativistic scenario which predicts these
observations. Despite its success the SBB suffers from
other observational and theoretical problems. By now
these problems are well known [6]. A key issue for model
builders is to simultaneously resolve these problems while
keeping the SBB in the regime where it predicts obser-
vations consistently. The main theoretical underpinning
of SBB is the use of Einstein’s general theory of relativ-
ity minimally coupled to a gas of particles (a hot perfect
fluid in thermal equilibrium). However, at high curva-
tures and hence early times, this approximation is no
longer valid and the SBB needs to be modified. Some
of the main problems of the SBB were partially solved
by the inflationary paradigm. Without changing general
relativity but by relaxing the assumption of the equa-
tion of state of matter to include a contribution from
a quantum field, the inflaton, the inflationary paradigm
was able to simultaneously resolve the problems of the
SBB and even provide a causal mechanism of generat-
ing a scale invariant power spectrum. The conventional
wisdom stemming from QFT is to minimally couple grav-
ity to quantum fields, which realizes inflation, although
it has been shown that this assumption breaks down in
the early universe. Unfortunately, inflation does not shed
much light on the dark energy and dark matter problems.
In fact, inflation seems to be pointing to the roots of its
own demise, namely the transplanckian problem. Briefly,
the transplanckian problem of inflation is that structures
on scales of cosmological interest today were generically
generated deep within the Planckian regime where the
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assumption of a scalar field minimally coupled to gravity
breaks down.

With these issues in mind, we consider a different ap-
proach. There are features, to be discussed below, of the
categorical state sum (CSS) approach to quantum gen-
eral relativity which are useful for proposing new solu-
tions to some of the cosmological problems, which inter-
estingly are not soluble by inflation or other modifications
to the SBB.

The problems we will discuss are inflation, dark matter
and the flatness, horizon and chirality problems, as these
appear to have distinctive realizations in the BC model
of quantum gravity and yield a new perspective as to how
quantum gravity can resolve these problems in cosmology
without resorting to the logic of fine tuning an effective
field theory.

IV. STATE SUM MODELS, QUANTUM

GRAVITY AND CONICAL MATTER

The basic idea of the state sum approach to quantum
gravity [7] is that quantum geometry is a superposition of
discrete quantum processes of the same form as Feynman
diagrams. Geometries are quantized by using representa-
tion theory to obtain Hilbert spaces on which geometric
quantities act as operators. Thus, a categorical state sum
is a discretized version of a Feynman vacuum, where the
fields and vertices correspond to Lorentzian geometry.

The diagrams are not considered to be embedded in
a background classical spacetime. Rather, the combina-
torial structure of the diagrams themselves yields space-
time, and the quantum fields on it represent a sum over
metrics. The structure of spacetime in this picture is
given by a simplicial complex, in which the individual
Feynman diagrams are quantum geometries of four di-
mensional simplices in Minkowski space.

In other words, quantum geometry in this approach is
represented by families of Hilbert spaces on which the
sort of quantities typically measured in classical geome-
tries act as operators. The most basic geometric quanti-
ties are bivectors, i.e. skew symmetric rank two tensors,
which describe oriented area elements. Utilizing their ex-
pedient quantization, we define the other geometric quan-
tities in terms of these bivectors, which are attached to
the faces of a triangulation.

In the quantization procedure of the BC model [1],
bivectors are represented by unitary representations of
the Lorentz algebra. The bivectors on faces and tetrahe-
dra are constrained to be simple, i.e. to correspond to
oriented area elements. This has a natural quantization
in the restriction to the balanced unitary representations.
We construct the model by using harmonic analysis to
describe these representations.

Specifically, the balanced representations are given by
families of functions on the hyperboloid H3. The projec-
tion onto the balanced representation with real parame-
ter ρ is given by

1

2π2

∫
H3

Kρ(x, y)h(y)dy (2)

where

Kρ(x, y) =
sinρr(x, y)

ρ sinh r(x, y)
(3)

for r(x, y) the hyperbolic distance. The 10j symbol which
corresponds to the quantum geometry of a Lorentzian 4-
simplex s is represented by the integral

(10j)s =

∫
dx1dx2dx3dx4dx5Kρ1

(x1, x5) (4)

Kρ2
(x1, x4)Kρ3

(x1, x3)Kρ4
(x1, x2)

Kρ5
(x2, x5)Kρ6

(x2, x4)Kρ7
(x2, x3)

Kρ8
(x3, x5)Kρ9

(x3, x4)Kρ10
(x4, x5)

depending on the 10 face labels. The complete state sum
as a sum (and integral) over labellings c of the triangu-
lation takes the form

ZBC = N
∑

c

∏
t

At

∏
f

ρf
2
∏
s

(10j)s (5)

where for the tetrahedron t

At =

∫
dxKρ1

(x)Kρ2
(x)Kρ3

(x)Kρ4
(x) (6)

See [1] and [8] for details. Since we think of the indi-
vidual triangulations themselves as Feynman diagrams
for a more fundamental theory called Group Field The-
ory [9], we want to make a summation over triangulated
complexes to produce the full theory.

The actual construction of the theory depends on the
idea that general relativity can be described as a con-
strained version of BF theory [7] [2], which has the action

S =

∫
B ∧ F (7)

where B is a 2-form and F the curvature of a connection
A. In fact, the state sum of the BC model is a constrained
version of the topological CKY model of [10], which is a
quantization of BF theory. The quantization in [10] also
has bivectors as variables. The constraint which trans-
forms the CKY model to the BC one is the restriction to
bivectors that are simple, i.e. that correspond to oriented
area elements rather than superpositions of them.

The steepest descent condition (the analog of the clas-
sical equation of motion) for the CKY model corresponds
to the condition of flat geometry, while the constraint in-
troduced in the BC model converts this to an analog of
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FIG. 1. cone over surface

Ricci flatness, i.e. to a discretization of Einstein’s equa-
tion. In order to make the sum over triangulations finite,
it is very tempting to consider the hypothesis of a ’phase
transition’ in the early universe, in which the constraint
of the BC model emerges as a result of a kind of collapse
of the wave packet of the unmeasured universe. The form
of the constraint mentioned above is suggestive of that,
in that it suppresses superpositions of simple bivectors.
We warn the reader that there is as yet no model of how
this could come about, and that the work in quantum
information theory [11] which suggests it is also lacking
a mechanism. A plausible model for the transition is out-
lined below, and can be thought of as an attempt to make
precise the ’topological phase’ suggestion of Witten [12].

At this point, we discover that the class of triangu-
lated spaces which occur as Feynman graphs for GFT is
broader than the class of triangulated four dimensional
manifolds. As explained in [3], it is possible to have
edges and vertices whose points are conical singularities.
The edge points can appear as cones over closed surfaces,
while the vertices can appear as cones over general three
manifolds, which contain the conical singularities over all
surfaces corresponding to edges incident on the vertex.

Let us restate this. Every Feynman diagram for the
GFT approach to the BC model has the topology of a
four manifold containing a web of conical singularities
taking the form of a graph, the points of whose edges
have neighborhoods which are cones over surfaces, while
the vertices of the graph have neighborhoods which are
cones over 3-manifolds with boundaries, the boundary
components fitting to the boundary surfaces on the inci-
dent edges. This is a theorem of combinatorial topology;
it just summarizes the ways that the 4-simplices in the
model can be glued together.

Differently put, in passing from physical theories de-
scribed by differential equations to discrete models, we
find that the natural class of spacetimes to consider has
broadened, from smooth manifolds to what mathemati-
cians would call PL pseudomanifolds.

A. How to Get Matter

The conical matter proposal (CMP) is to consider a)
the conical singularities on edges as generating particles

FIG. 2. three manifold with boundary components

FIG. 3. conical vertex as Feynman vertex

which propagate through space, and b) the conical sin-
gularities on vertices as interaction vertices.

Perhaps it is useful to try to picture this. Feynman
taught us to think of the vacuum as full of processes de-
scribed by Feynman diagrams. Instead, we are proposing
a picture where spacetime is full of edges, each point of
which is a cone over a surface (fig 1), joined at vertices
which are cones over three manifolds with boundary; in
the simplest case, cones over link complements (fig 2).
These would fit together into complexes with a combi-
natorial structure analogous to Feynman diagrams (fig
3).

It is interesting to note that this is a direct extension
of the most popular technique for adding matter in 2+1
dimensional gravity to the 3+1 setting. In 2+1 dimen-
sions, matter is added in the form of conical curvature
singularities. In the quantum theory, this is expressed by
adding punctures to the Riemann surfaces of the spatial
slices. In 2+1 dimensions, a conical singularity is not a
topological defect; that is a new feature in 3+1 dimen-
sions.

In comparison to other fundamental physical theories
involving matter, the CMP has one advantage: matter
is naturally included in the theory of quantum gravity,
rather than added by hand. There is no new element;
neither a gauge group, nor extra dimensions, nor a topol-
ogy on a compact manifold. The surfaces are not inser-
tions into the space-time; they are only descriptions of
part of its topological structure. It is therefore highly
remarkable, as we will explain, that the most natural ap-
proximation scheme available suggests that the Standard
Model may emerge from it.

In order to investigate the implications of the CMP for
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low energy physics, two approximation techniques had to
be adopted. It was assumed that the low energy behavior,
both at conical singularities along edges and at vertices,
would be dominated by the flat metrics on the regions
around the singularities. It was further assumed that
the state propagating along an edge would correspond to
the states of the topological quantum field theory of the
Lorentz algebra on the boundary surface of the conical
singularity.

We should justify these assumptions by saying that any
configuration around the singularity which required cur-
vature would therefore be very massive, and that since
the CSW TQFT [12] has flatness for an equation of mo-
tion, it is a quantization of the flat geometries. We re-
gard this approach as preliminary, and hope that further
progress in understanding the CSS models will provide a
better underpinning for it.

Another way of thinking of this approximation is as
a novel form of the holographic principle [13] [14]. The
conical regions are analogous to black holes with more
complex topology. The spaces of states on them is de-
scribed by the states of CSW on their boundaries.

The implications of these assumptions are interesting.
The classification of flat Lorentzian metrics over a cone
is equivalent to the classification of hyperbolic metrics
on its boundary. This means that the space of flat ge-
ometries on the cone over a surface is described by its
Teichmuller space. If we take this as confirmation that
the effective low energy states of the theory are given by
the CSW theory for the q-deformed Lorentz algebra on
the once punctured torus, then this has the structure of
the quantum group Uq(su(2)), which as an algebra has
the structure

Uq(su(2)) =

∞⊕
n=1

Matn(C) (8)

of a direct sum of one matrix algebra of each dimen-
sion. The unitary part of this reproduces the gauge
group of the Standard Model in a manner analogous to
the Connes-Lott model [15], if truncated after the first
three terms. Since noncommutative geometries arise nat-
urally in the description of singular spaces, in particular
of spaces which admit descriptions as quotients of more
regular spaces, as conical singularities do, it would be
reasonable to try to connect our picture more directly
with the noncommutative geometry approach.

The truncation can either be done by picking a third
root of unity for q as in [16], or one can simply consider
the possibility that particles with su(4) or higher quan-
tum numbers are extremely massive, a possibility which
is at least open to study.

Consider the easiest nontrivial cobordism (3-manifold
with boundary) linking three tori. The most obvious in-
teraction between them corresponds to multiplication in
the algebra Uq(su(2)), so that the states on the torus get
a natural interpretation as gauge bosons for the Stan-
dard Model. The question of the orientation of the sur-

face needs careful study. Thus, we have candidates for
photons, gluons etc. in our model, with the right sort of
interactions. In order to determine the masses, propaga-
tion and spins of these, we will need better approxima-
tions.

The problem of incorporating fermions is more diffi-
cult to understand. The space of states on the cone over
a Klein bottle seems a natural candidate, but more devel-
oped approximations will be necessary to study this ques-
tion. The one thing we can say is that one might look for
chiral asymmetry in the interaction vertices represented
by 3-manifolds with boundary; in particular, link com-
plements. Given the discovery of neutrino masses, this
at least seems a plausible approach.

The case of flat metrics over a vertex is more complex.
Hyperbolic three manifolds with complete metrics corre-
spond to Kleinian groups and play an important role in
the topology of three dimensional manifolds.

A number of important facts are known about hyper-
bolic 3-manifolds with boundary. For instance, if any
of the boundary components have genus greater than 1,
then the complete hyperbolic metric has infinite volume,
which in fact grows exponentially as we approach the end,
while the genus 1 (tori and Klein bottle) have finite total
volume. Another rather obvious fact is that 3-manifolds
with boundary give natural examples of topological ob-
jects which are not equivalent to their mirror images,
such as the class of 3-manifolds arising from taking the
complement of an ordinary link in S3.

A simple physical interpretation of these facts is that
at low energy the states corresponding to singularities
over higher genus surfaces decouple both from the genus
1 states and from one another. The states on tori and
Klein bottles remain interacting, giving rise to a world of
gauge bosons and fermions, as conjectured above. The
higher genus states, therefore, were interacting with the
genus 1 states in the early universe, but decoupled at
some later stage.

The assumptions that we can take the TQFT Hilbert
space on the boundary of a conic singularity as the phys-
ical Hilbert space of its states, and the CSW amplitude
for the three dimensional boundary of a conical vertex
as its amplitude, have the further interesting implication
that the dimension of the Hilbert space goes up exponen-
tially with the area of the boundary, while the amplitude
of the vertex goes up exponentially with its volume.

The first observation is closely analogous to the obser-
vation that the dimension of the Hilbert space on a punc-
tured sphere goes up exponentially with the number of
punctures, which led Smolin [2] to conjecture a connec-
tion between TQFT and quantum gravity. Higher genus
surfaces are very similar to surfaces with many punc-
tures in TQFT. The second observation has interesting
implications for a universe with higher genus conical dark
matter.
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decoupling of dark matter
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FIG. 4. history of early universe

V. CONNECTIONS

The picture which thus arises from considering CSS
models, including the suggestion of a TQFT-BC type
phase transition and the CMP, makes contact with a
range of puzzles in early universe phenomenology.

Let us summarize the picture of the history of the uni-
verse which our model seems to suggest (fig 4). There
would be an early (or rather sub-Planckian) phase, in
which the universe would be modelled by a topologi-
cal quantum field theory, but with conic singularities in-
cluded in the manifold. This phase would be a substitute
for the initial singularity of the SBB model. It would be
followed by a phase of quantum gravity, in which genus
1 and higher genus conic singularities would be inter-
acting, while the universe expanded and cooled. Next
would come a decoupling, in which further interactions
involving higher genus singularities would be suppressed
by topological obstructions, leaving an interacting world
composed of genus 1 singularities.

We now discuss how features of this CSS program
relate to the specific phenomenological issues outlined
above.

A. The Cosmological Constant and Quantum Groups

Since it is very natural to pass from classical to quan-
tum groups in constructing categorical state sums, and
in particular since the q-BC model is well behaved [17],
our discussion above easily accommodates a cosmolog-
ical constant, and indeed may even require it. The
representation theory of the quantum Lorentz algebra
seems to give a quantum geometry of space with con-
stant curvature very similar to the quantum geometry of
flat space provided by the unitary representations of the
usual Lorentz algebra. It also provides additional regu-
larization, which may be useful for suitable normaliza-
tions; in particular, for the contribution of higher genus
singularities.

B. The Flatness and Horizon Problems and the

Topological Phase

The idea of a ’phase transition’ from the BF TQFT
to a BC type model suggests an approach to the flat-
ness problem, since the equations of motion for the BF
theory are exactly flatness. Also, since a TQFT has no
light cones, the distribution of conical matter would be
random, transforming into a thermal distribution when
the metric materialized. This also suggests an approach
to the horizon problem: we regard the substitution of a
topological phase for a point-like singularity as a positive
feature of our model.

The phase transition might arise as a result of coarse
graining of the topological universe, which at the origin of
time fluctuated into a combination of quantum variables
corresponding to a sufficiently large ’size’. Small black
holes would cause a loss of phase information, which
would mediate a transformation to a regime described by
a sum over simple bivectors only, which, as we explained
above, has GR as a classical limit. The GR equations
of motion would then prevent the escape of information
from the black holes. We believe this process could be
modeled using techniques similar to those of [11].

Although this proposal is self-consistent, it has a dis-
turbing chicken versus egg quality. The question of the
phase transition is the point which most strongly sug-
gests to us that still deeper theoretical constructions will
ultimately be needed in this approach.

There is at least one toy candidate for investigating the
phase transition within the timelike q-BC model. The
constraint condition in terms of representations of the
(quantum) Lorentz group is that a real spin label k ∈ 1

2
Z

should equal zero. One could consider a state sum cut
off at any maximum k, the topological theory being re-
covered when k → ∞. If a spacelike model is consid-
ered instead, this ’thermal’ parameter becomes continu-
ous. This idea is strengthened by [18] and [19] in which
a generalized action of the form

S(B, A, φ, µ) =

∫
BIJ ∧ FIJ −

1

2
φIJKLBIJ ∧ BKL + µH

(9)

is discussed, where A is an SO(3, 1) connection, µ and
φ Lagrange multipliers such that φ satisfies φIJKL =
−φJIKL = −φIJLK = φKILJ and

H = a1φ
IJ
IJ + a2φIJKLεIJKL

The Immirzi parameter γ is introduced by

a2

a1

=
1

4
(γ −

1

γ
) (10)

In the Lorentzian case the generalized action always
corresponds to the q-deformed Barrett-Crane model.
When γ = 0 the topological theory is recovered.
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FIG. 5. surface decomposition in 2D TFT

C. Inflation

Let us now briefly recall our current understanding of
the Bekenstein bound for the entropy of a black hole in
terms of TQFTs. The hyperbolic area of a uniform Rie-
mann surface, normalized to a constant curvature of −1,
depends only its genus. Such a surface may be cut up
into cylindrical and trinion pieces, as shown in figure 5.
These pieces are clearly homeomorphic to the punctured
spheres that represent black hole horizons. In a TQFT
that assigns a Hilbert space to each such puncture, the
invariant Z thus depends on the hyperbolic area and in-
creases exponentially with the number of punctures. A
simple corollary of this is that the entropy of the black
hole scales with horizon area. For an overview of entropy
bounds see [14] and references therein.

In an analogous simple analysis of the thermodynamics
near vertices in the conical matter proposal, one considers
the 3-dimensional topological CSW invariant on the hy-
perbolic link complement. Now it so happens that there
is a strongly supported mathematical conjecture due to
Kashaev [20] [21] which states that the closely related
colored Jones invariant JN is asymptotically related to
the normalized hyperbolic volume V (L) of a link com-
plement in S3 by

2π log |JN (L)| ∼ NV (L) N → ∞ (11)

where q = e2πi/N and N ∈ Z.
Assuming that it is reasonable to define thermody-

namic quantities using our partition function, this conjec-
ture seems to suggest that the contribution of the conical
singularities to the pressure (normalized with respect to
energy density) is given by

P

ρ
= −

2π

N

∂logJ

∂V
∼ −1 (12)

A P/ρ ≤ −1/3 drives inflation, so this result is in ac-
cord with an inflation scenario. In this new scenario no

inflaton field is introduced. Inflation arises naturally as
a result of the negative pressure. Decoupling of higher
genus modes at low temperature could end inflation. Ob-
serve that temperature scales as N .

Restating this argument more physically: the free
energy of the vertex, as given by the partition func-
tion for the TQFT, is equal to the Jones polynomial.
Since this equals the exponential of the volume, the sys-
tem has a negative pressure equal to the energy den-

sity. This is analogous to the situation for conven-
tional inflation, where the stress-energy of the infla-
ton field must be proportional to the Lorentz metric
gµν = diag(1,−1,−1,−1) by Lorentz invariance.

We are thus led to conjecture that the appropriate con-
figuration for a vertex inserted into a nearly flat region
(yet to be analysed) will not depend on the choice of a
preferred frame. That is, it will be manifestly Lorentz
invariant. If true, this would give an interesting physical
interpretation to Kashaev’s deep mathematical conjec-
ture.

The main assumption which goes into the above argu-
ment is that the behavior of the state sum in a region
around a singular vertex can be well approximated by
GR coupled to an effective stress-energy with pressure as
above. Since the state sum reproduces Einstein’s equa-
tion as a classical limit, this is plausible, but needs to be
more carefully studied. We have also assumed that the
volume of a spatial slice is proportional to the boundary
volume of a neighborhood of a conical vertex.

A definite weakness of this stage of development of the
model is that we cannot really justify the above assig-
nation of an energy to conical matter configurations. To
investigate this question further, one might find the ’best’
metrics on the union of a conical singularity and a patch
of surrounding nearly flat smooth spacetime, and com-
pute the ADM energy. At this point we can only claim
that we are making the most natural guesses in arriving
at phenomenologically interesting conclusions.

D. Dark Matter and Higher Genus Singularities

One potentially exciting use of the model is in describ-
ing dark matter. Currently there are a few dark matter
candidates, most of which are modelled by weakly in-
teracting scalar fields, like the axion or the neutralino.
But these CDM candidates are problematic for explain-
ing the lack of cuspiness of dwarf galaxies [5]. Naively,
one could imagine that the weak residual interactions of
higher genus conical matter would cause the halo near
the center of a galaxy to thermalize, thus eliminating the
(empirically nonexistent) cusps. This should be suscep-
tible to computational study, and the detail with which
the halos can be observed provides a demanding test.

E. Baryon Asymmetry

The most difficult of Sakharov’s conditions is that con-
cerning baryon and lepton number violating processes.
In the early universe our model would allow baryons or
leptons to couple into higher genus singularities, which
would later freeze out. The necessary asymmetries could
arise from the 3-manifold topology of fermionic interac-
tions.
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F. Higher Genus Matter and PBH Remnants

Another interesting idea is to realize dark matter as
black hole remnants [22] which survive after black holes
evaporate.

Higher genus conical matter could easily emerge as
PBH remnants. Their topology would be an obstruc-
tion to complete evaporation. Currently there is no first
principle realization of PBH from quantum gravity, so
it will be a major development to make this connection
more concrete.

G. CP Violation and 3-Manifolds

We observed above that couplings which arise from 3-
manifolds with boundary, and can therefore easily have
chiral asymmetry, are also interesting as a possible mech-
anism for CP violation.

H. The Phase Transition and Variable Speed of

Light Theories

It would be interesting to see whether or not the TQFT
can be considered a mathematically more elegant version
of the variable speed of light idea, which solves the hori-
zon problem but still lacks a precise quantum gravita-
tional description [23]. Perhaps a more detailed model of
the phase transition would interpolate between acausal
and causal propagation.

VI. CONCLUSIONS

In summary, spin foam cosmology appears to satisfy
the Sakharov conditions and has the potential to ex-
plain a whole host of major cosmological problems. The
computations which go into this picture are very rudi-
mentary. At the semiclassical level, the problem of con-
necting together flat metrics around vertices and edges
into composites for whole spacetimes needs to be studied
much more carefully. The claim that the considerations
of phenomenology discussed here suggest interesting nat-
ural questions for research in the CSS picture, at least,
is well grounded.

It seems very plausible to us that the picture we are
outlining here could play a role analogous to the old
quantum mechanics. It has the flavor of a model con-
structed out of well understood mathematical physical
tools, which bears a reasonable resemblance to otherwise
puzzling phenomenology. It may seem crazy to substitute
discrete categorical diagrams for a continuum lagrangian,
but it may turn out to be not crazy enough! Judging by

historical experience, only a prolonged dialog with phe-
nomenology will guide us to a theory which is sufficiently
crazy.

It is therefore an attractive feature of this model that
it suggests natural procedures for generating refined ap-
proximations. We could use classical GR techniques
to study flat or low curvature metrics on combinations
of conical singularities, on edges and on vertices, and
patches of nearly flat smooth spacetime about these. Cal-
culations based on such approximations could be com-
bined into models for dark matter or inflationary cos-
mologies, among other possibilities, and compared to em-
pirical data.

We have some speculative ideas about the emergence
of a deeper theory. One esthetic drawback to the model
we are proposing is that we begin with spacetime, and
produce matter as a sort of pinch within it. One could
wish, rather, for a theory in which spacetime and matter
played dual roles. A hint that such a model might be
possible is that the genus 1 states form the Hopf algebra
object in the category [24] which is a geometric realiza-
tion of the braided group of Majid [25]. The represen-
tations of the braided group reproduce the category of
representations of the quantum group; this is suggestive
of a deeper model with matter-spacetime duality.

There is enormous scope for investigating early uni-
verse phenomenology in other categorical state sum mod-
els. For example, it appears worthwhile investigating the
variation of the deformation parameter q. The relation
of q to both a Planck scale (as a UV cutoff) and a cos-
mological scale is very suggestive of a duality such as the
aforementioned. One might also consider a 4-dimensional
model constructed from CSW S3 slices of varying q. The
discrete parameter N ∈ Z labels a dimensionless ’time’
for the topological phase, and might heuristically enforce
a real arrow of time.

Of course, it is much too soon to say anything stronger
about the suggestion that this line of development could
lead to a unified field theory than that it leads to a com-
putational program which appears tractable and deserves
further study.
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