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We report recent results in rare B decays. Our focus will be on b → dγ and b → sℓ+ℓ− transitions. We discuss their
impact on the CKM phenomenology and their role within our search for new physics. In particular, we analyse the impact
of a recent lattice QCD estimate of the B → K∗ form factor at zero recoil. We also briefly discuss the presently available
optimal theoretical tools for the inclusive and exclusive modes.

1 Introduction

Rare B decays, as flavour changing neutral cur-
rent processes (FCNC), are the most important tools
within our (indirect) search for new physics in the
present era of B factories (for a recent review see [1]).
Among them, the inclusive b → sγ mode is still the
most prominent, because it has already measured by
several independent experiments [2–6]. The present
world average is [7]:

B(B → Xsγ) = (3.34 ± 0.38)× 10−4. (1)

The present next-to-leading -logarithmic (NLL) QCD
prediction, based on the original QCD calculations of
several groups ([8–11]), has an additional charm mass
renormalization scheme ambiguity as was first noticed
in [12]. The MS scheme is used in the most recent up-
dates [12,13]. This choice is guided by the experience
gained from many higher order calculations where the
mass is dominantly off-shell and leads to the following
theoretical prediction for the ‘total’ branching ratio:

B(B → Xsγ) = (3.70 ± 0.30)× 10−4. (2)

However, the renormalization scheme for mc is an
NNLL issue, and one should regard the preference
for the MS scheme in comparison with the pole mass
scheme (which was used within all previous NLL pre-
dictions) just as an educated guess of the presently
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unknown NNLL corrections. Therefore, one could also
argue for a slightly larger theoretical error in (2). A
complete resolution of this problem can be achieved by
a NNLL calculation which is presently under study.

The stringent bounds obtained from the B → Xsγ
mode on various non-standard scenarios (see e.g. [14–
18]) are a clear example of the importance of clean
FCNC observables in discriminating new-physics mod-
els. The exclusive modes, however, often have large
uncertainties due to the hadronic form factors and are
not clean enough to disentangle possible new physics
effects from hadronic uncertainties, but they can serve
as important QCD tests. Exceptions are ratios of ex-
clusive quantities like asymmetries in which a large
part of the hadronic uncertainties cancel out.

Regarding the corresponding exclusive mode B →
K∗γ, quite recently a preliminary lattice determina-
tion of the B → K∗ form factor at zero recoil [19]
was presented which is in perfect agreement with the
previous indirect determinations. We analyse the im-
pact of this new result on the CKM phenomenology
in section 3.2.

Besides the b → sγ mode, also the b → sℓ+ℓ− tran-
sitions are already accessible at B factories [20–22],
inclusively and exclusively. The b→ sℓ+ℓ− mode rep-
resents new sources of interesting observables, particu-
larly kinematic observables such as the invariant dilep-
ton mass spectrum and the forward–backward (FB)
asymmetry. Rare B decays are also relevant to the
CKM phenomenology; the b→ dγ is especially impor-
tant in this respect. In the following, we will focus on
the latter two rare modes and also briefly discuss the
theoretical tools available for the analysis of exclusive
and inclusive channels.
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2 Theoretical Tools

The effective field theory approach serves as a the-
oretical framework for both inclusive and exclusive
modes. The standard method of the operator product
expansion (OPE) allows for a separation of the B me-
son decay amplitude into two distinct parts, the long-
distance contributions contained in the operator ma-
trix elements and the short-distance physics described
by the so-called Wilson coefficients. The W boson and
the top quark with mass larger than the factorization
scale are integrated out, i.e. removed from the the-
ory as dynamical fields. The effective Hamiltonian for
radiative and semileptonic b → s/d transitions in the
SM can be written as

Heff = −4GF√
2

[

λtq

10
∑

i=1

CiOi + λuq

2
∑

i=1

Ci(Oi −Ou
i )

]

(3)

where Oi(µ) are dimension-six operators at the scale
µ ∼ O(mb); Ci(µ) are the corresponding Wilson co-
efficients. Clearly, only in the sum of Wilson coeffi-
cients and operators, within the observable H, does
the scale dependence cancels out. GF denotes the
Fermi coupling constant and the explicit CKM fac-
tors are λtq = VtbV

∗
tq and λuq = VubV

∗
uq . The unitarity

relations λcq = −λtq − λuq were already used by us in
(3).

The operators can be chosen as (we only write the
most relevant ones):

O2 = (s̄LγµcL)(c̄Lγ
µbL) , (4)

Ou
2 = (s̄LγµuL)(ūLγ

µbL) , (5)

O7 = e/g2
smb(s̄Lσ

µνbR)Fµν , (6)

O8 = 1/gsmb(s̄Lσ
µνT abR)Gaµν , (7)

O9 = e2/g2
s(s̄LγµbL)

∑

ℓ

(ℓ̄γµℓ) , (8)

O10 = e2/g2
s(s̄LγµbL)

∑

ℓ

(ℓ̄γµγ5ℓ) , (9)

where the subscripts L and R refer to left- and right-
handed components of the fermion fields. In b → s
transitions the contributions proportional to λus are
rather small, while in b → d decays λud is of the same
order as λtd and they play an important role in CP
and isospin asymmetries. The operators O9 and O10

only occur in the semileptonic b→ s/d ℓ+ℓ− modes.

While the Wilson coefficients Ci(µ) enter both in-
clusive and exclusive processes and can be calcu-
lated with perturbative methods, the calculational ap-
proaches to the matrix elements of the operators differ
in both cases. Within inclusive modes, one can use
quark-hadron duality in order to derive a well-defined

heavy mass expansion of the decay rates in powers of
ΛQCD/mb (HME). In particular, it turns out that the
decay width of the B → Xsγ is well approximated by
the partonic decay rate, which can be calculated in
renormalization-group-improved perturbation theory:

Γ(B → Xsγ) = Γ(b→ Xparton
s γ) + ∆nonpert. (10)

Non-perturbative effects, ∆nonpert., are suppressed by
inverse powers of mb and are well under control thanks
to the Heavy Mass Expansion (HME); they can be fur-
ther estimated through the application of the Heavy
Quark Effective Theory (HQET). In exclusive pro-
cesses, however, one cannot rely on quark-hadron du-
ality and has to face the difficult task of estimating ma-
trix elements between meson states. A promising ap-
proach is the method of QCD-improved factorization
that has recently been systemized for non-leptonic de-
cays in the heavy quark limit. This method allows for
a perturbative calculation of QCD corrections to naive
factorization and is the basis for the up-to-date predic-
tions for exclusive rare B decays. However, within this
approach, a general, quantitative method to estimate
the important 1/mb corrections to the heavy quark
limit is missing. More recently, a more general quan-
tum field theoretical framework for the QCD-improved
factorization was proposed - known under the name of
Soft Collinear Effective Theory (SCET).

2.1 Inclusive Modes

In contrast to the exclusive rare B decays, the inclu-
sive ones are theoretically clean observables and dom-
inated by the partonic contributions. Bound-state ef-
fects of the final states are eliminated by averaging
over a specific sum of hadronic states. Moreover, also
long-distance effects of the initial state are accounted
for, through the heavy mass expansion in which the
inclusive decay rate of a heavy B meson is calculated
using an expansion in inverse powers of the b quark
mass.

The optical theorem relates the inclusive decay rate of
a hadron Hb to the imaginary part of certain forward
scattering amplitudes

Γ(Hb → X) =
1

2mHb

Im 〈Hb | T | Hb〉 , (11)

where the transition operator T is given by T =
i
∫

d4xT [Heff (x)Heff (0)]. It is then possible to con-
struct an OPE of the operator T, which gets expressed
as a series of local operators – suppressed by powers of
the b quark mass and written in terms of the b quark
field:

T
OPE
=

1

mb

(

O0 +
1

mb
O1 +

1

m2
b

O2 + ...
)

. (12)
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This construction is based on the parton–hadron du-
ality, using the facts that the sum is done over all
exclusive final states and that the energy release in
the decay is large with respect to the QCD scale,
ΛQCD ≪ mb. With the help of the HQET, namely
the new heavy-quark spin-flavour symmetries arising
in the heavy quark limit mb → ∞, the hadronic ma-
trix elements within the OPE, 〈Hb | Oi | Hb〉, can
be further simplified. The crucial observations within
this well-defined procedure are the following: the free
quark model turns out to be the first term in the con-
structed expansion in powers of 1/mb and therefore
the dominant contribution. This contribution can be
calculated in perturbative QCD. Second, in the appli-
cations to inclusive rare B decays one finds no correc-
tion of order 1/mb to the free quark model approxi-
mation, and the corrections to the partonic decay rate
start with 1/m2

b only. The latter fact implies a rather
small numerical impact of the non-perturbative cor-
rections to the decay rate of inclusive modes.

The 1/m2
b corrections correspond to the OPE for

T(O†
7O7). There are additional non-perturbative ef-

fects if one also takes into account the operator O2.
They can be analysed in a model-independent way and
scale with 1/m2

c. Due to small coefficients in the ex-
pansion also their impact is very small [23–25].

2.2 Exclusive Modes

The naive approach to the computation of exclusive
amplitudes consists in writing the amplitude A ≃
Ci(µb)〈Oi(µb)〉 and parametrizing 〈Oi(µb)〉 in terms of
form factors. A substantial improvement is obtained
through the QCD-improved factorization [26,27] and
SCET [28–33] approaches.

Let us consider processes involving the decay of a
heavy meson into fast moving light particles (B →
γeν, B → (ρ,K∗)γ, B → Kπ, ...) and indicate with
Q ∼ O(mb) their typical large energy. The idea is to
isolate all the relevant degrees of freedom necessary to
correctly describe the infrared structure of QCD below
the scale Q and associate independent fields to each
of them. It is possible to identify two distinct pertur-

bative modes, called hard (p2 ∼ Q2) and semi-hard
(p2 ∼ ΛQCDQ). These modes are produced, for in-
stance, in interactions of energetic light particles with
the heavy quark and the B-meson spectator, respec-
tively. These two modes do not appear in the initial
and final states and, therefore, have to be integrated
out. We do not wish to entertain here a comprehen-
sive discussion of the technicalities involved in this
step. It will suffice to say that the resulting theory
(also called SCETII in the literature) contains only
non-perturbative degrees of freedom with virtualities
O(Λ2

QCD
) and that hard and semi-hard modes are re-

flected in the coefficient functions in front of the op-
erators of that (SCETII) theory. We note that these
coefficients depend, in general, on energies of order Q
and ΛQCD. Moreover, the hierarchy ΛQCD ≪ Q allows
for an expansion in the small parameter λ = ΛQCD/Q.

Given a process, one has to construct the most gen-
eral set of (SCETII) operators at a given order in λ,
and show that all the possible gluon exchanges can
be reabsorbed, at all orders in perturbation theory,
into form factors and meson light-cone wave func-
tions. The resulting amplitude is a convolution of
these non-perturbative universal objects with the co-
efficient functions encoding the contribution of hard
and semi-hard modes. Questions regarding the conver-
gence of these convolution integrals can be addressed
using symmetries, power counting and dimensional
analysis (a discussion on this point is presented in
Ref. [33]).

The few form factors that describe the transition B →
M (whereM denotes a pseudo-scalar or vector meson)
can be written as [34]:

FB→M
i = Ci ξ

B→M + φB ⊗ Ti ⊗ φM +O

(

Λ

mb

)

(13)

where ξB→M is the so-called non-factorizable (or soft)
contribution to the form factors (actually there is one
soft form factor for the decay into pseudoscalar meson
and two for the decay into vector mesons); φB,M are
the B and M meson light-cone wave functions; Ci are
Wilson coefficients that depend on hard scales; and Ti
are perturbative hard scattering kernels generated by
integrating out hard and semi-hard modes. In Ref. [35]
the factorization formula Eq. (13) has been proved at
all orders in perturbation theory and at leading order
in ΛQCD/mb, using SCET techniques.3 The strength
of Eq. (13) is that it allows us to express several inde-
pendent QCD form factors in terms of only one soft
form factor (two in the case of vector mesons) and
moments of the light-cone wave functions of the light
pseudo-scalar (vector) and B mesons.

Let us now briefly discuss the form of factorization for
the decays B → V γ (with V = K∗, ρ). At leading
order, only the operator O7 contributes and its matrix
element between meson states is given by an expres-
sion similar to (13). The choice of using either the full
QCD form factor TB→V or the soft one ξ⊥ clearly is a
matter of taste (note that non-perturbative methods,
such as lattice-QCD and light-cone QCD sum rules,
give only informations on the full QCD form factors
and not on the soft contributions alone). The advan-
tage of the QCD-improved factorization approach is

3We note that a discussion of the convergence of the convolution
integrals is still missing.
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evident in the computation of the next-to-leading or-
der (in αs) corrections. In fact, one can show that the
matrix elements of the operators O2 and O8, which are
expected to contribute at this order, are given by the
matrix element of O7 times a computable hard scat-
tering kernel. Moreover, spectator interactions can
be computed and are given by convolutions involving
the light-cone wave functions of the B and V mesons.
It must be mentioned that light-cone wave functions
of pseudo-scalar and vector mesons have been deeply
studied using light-cone QCD sum rules methods [36–
39]. On the other hand, not much is known about
the B meson light-cone distribution amplitude, whose
first negative moment enters the factorized amplitude
at NLO. Since this moment enters the factorized ex-
pression for the B → γ form factor as well, it might
be possible to extract its value from measurements of
decays like B → γeν, if it can be shown that power
corrections are under control [40].

Finally, let us stress that a breakdown of factorization
is expected at order ΛQCD/mb [27,41,42]. In Ref. [41],
in particular, the authors have shown that in the anal-
ysis of B → K∗γ decays at subleading order an in-
frared divergence is encountered in the matrix element
of O8. Nevertheless, some very specific power correc-
tions might still be computable. Indeed, this is the
case for the annihilation and weak exchange ampli-
tudes in B → ργ at the one-loop level.

3 b → dγ Transitions

3.1 B → Xdγ

Most of the theoretical improvements on the per-
turbative contributions and the power corrections in
1/m2

b and 1/m2
c, carried out in the context of the

decay B → Xsγ, can straightforwardly be adapted
to the decay B → Xdγ; thus, the NLL-improved
decay rate for B → Xdγ decay has much reduced
theoretical uncertainty [43]. But as λud = VubV

∗
ud for

b → dγ is not small with respect to λtd = VtbV
∗
td and

λcd = VcbV
∗
cd, one also has to take into account the

operators proportional to λud and, moreover, the long-
distance contributions from the intermediate u-quark
in the penguin loops might be important. However,
there are three soft arguments that indicate a small
impact of these non-perturbative contributions: first,
one can derive a model-independent suppression fac-
tor ΛQCD/mb within these long-distance contributions
[44]. Second, model calculations, based on vector
meson dominance, also suggest this conclusion [45].
Furthermore, estimates of the long-distance contri-
butions in exclusive decays B → ργ and B → ωγ
in the light-cone sum rule approach do not exceed
15% [46]. Finally, it must be stressed that there

is no spurious enhancement of the form log(mu/µb)
in the perturbative contribution, as was shown in
[9,47]. All these observations exclude very large long-
distance intermediate u-quark contributions in the
decay B → Xdγ. Nevertheless, the theoretical status
of the decay B → Xdγ is not as clean as that of
B → Xsγ.

While the b → s transitions like B → Xsγ have no
relevant impact on the CKM phenomenology because
of the flatness of the corresponding unitarity trian-
gle (for example: Vts cannot be further constrained
by the B → Xsγ measurement if the unitarity con-
straint is not used in the theoretical prediction, be-
cause the charm contribution is twice as large as the
top contribution), b → d transitions give important
complementary information on the unitarity triangle,
which is also tested by the measurements of Vub/Vcb,
∆MBd

, and ∆MBd
/∆MBs

. Thus, a future measure-
ment of the B → Xdγ decay rate will help to reduce
the currently allowed region of the CKM Wolfenstein
parameters ρ and η significantly.

Regarding new physics, the branching ratio of B →
Xdγ might be of interest, because its CKM suppres-
sion by the factor |Vtd|2/|Vts|2 in the SM may not be
true in extended models. We also emphasize that in
the ratio

R(dγ/sγ) ≡ B(B → Xdγ)

B(B → Xsγ)
, (14)

a good part of the theoretical uncertainties cancel out.
It is therefore of particular interest for CKM phe-
nomenology and for the new physics search.

A measurement of the B → Xdγ is rather difficult but
perhaps within the reach of the high-luminosity B fac-
tories. Such a measurement will rely on high statistics
and on powerful methods for the kaon–pion discrimi-
nation. At present only upper bounds on correspond-
ing exclusive modes are available (see next section).

The direct normalized CP asymmetry of the inclusive
decay modes represent another interesting observable:

αCP =
Γ(B̄ → Xs/dγ) − Γ(B → Xs̄/d̄γ)

Γ(B̄ → Xs/dγ) + Γ(B → Xs̄/d̄γ)
. (15)

CLEO has already presented a measurement of the
CP asymmetry in the inclusive decay B → Xsγ, ac-
tually a measurement of a weighted sum, αCP =
0.965αCP (B → Xsγ) + 0.02αCP (B → Xdγ) [48],
which already excludes very large effects. The same
conclusion can be deduced from the measurements of
the CP asymmetry in the exclusive modes (see next
section).
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Theoretical NLL QCD predictions of the normalized

CP asymmetries of the inclusive channels ([43,49])
within the SM can be expressed by the approximate
formulae (see [50]):

αCP (B → Xsγ) ≈ 0.334 × Im [ǫs] ≈ +0.6% ,
αCP (B → Xdγ) ≈ 0.334 × Im [ǫd] ≈ −16%,

(16)

where

ǫs =
V ∗
usVub
V ∗
tsVtb

≃ −λ2(ρ− iη), ǫd =
V ∗
udVub
V ∗
tdVtb

≃ ρ− iη

1 − ρ+ iη

Numerically, the best-fit values of the CKM parame-
ters are used. The two CP asymmetries are connected
by the relative factor λ2 ((1−ρ)2 +η2). Moreover, the
small SM prediction for the CP asymmetry in the de-
cay B → Xsγ is a result of three suppression factors.
There is an αs factor needed in order to have a strong
phase; moreover, there is a CKM suppression of order
λ2 and there is a GIM suppression of order (mc/mb)

2,
reflecting the fact that in the limit mc = mu any CP
asymmetry in the SM would vanish.

It will be rather difficult to make an inclusive mea-
surement of the CP asymmetry in the b→ d channel.
However, based on CKM unitarity, one can derive the
following U-spin relation between the un-normalized

CP asymmetries [51]:

∆Γ(B → Xsγ) + ∆Γ(B → Xdγ) = 0. (17)

Within the inclusive channels, one can rely on parton–
hadron duality and can actually compute the U-spin
breaking by keeping a non-vanishing strange quark
mass [52]. Going beyond the leading partonic con-
tribution, one can further check if the large suppres-
sion factor from the U-spin breaking is still effective,
in addition to the natural suppression factors already
present in the corresponding branching ratios [53]; this
finally leads to the SM prediction

∆Γ(B → Xsγ) + ∆Γ(B → Xdγ) = 1 × 10−9. (18)

This prediction provides a very clean SM test, whether
generic new CP phases are active or not. Any signif-
icant deviation from the estimate would be a direct
hint of non-CKM contributions to CP violation.

3.2 B → ργ

In the analysis of exclusive B → V γ decays (with V =
K∗, ρ, ω) we will construct the various observables
in terms of the CP -averaged quantities - which are
much easier to measure than the individual channels
- unless otherwise stated. In the NLL approximation,

this procedure is equivalent to defining two distinct
observables for the charge-conjugate modes and then

perform the average. The ratios R(ργ/K∗γ) are given
by

R±(ργ/Kγ) =

∣

∣

∣

∣

Vtd
Vts

∣

∣

∣

∣

2 (M2
B −M2

ρ )3

(M2
B −M2

K∗)3
ζ2(1 + ∆R±) ,

R0(ργ/K∗γ) =
1

2

∣

∣

∣

∣

Vtd
Vts

∣

∣

∣

∣

2 (M2
B −M2

ρ )
3

(M2
B −M2

K∗)3
ζ2(1 + ∆R0) ,

where ζ = ξρ⊥(0)/ξK
∗

⊥ (0), and ξρ⊥(0) and ξK
∗

⊥ (0)) are
the form factors at q2 = 0 in the effective heavy
quark theory for the decays B → ρ(K∗)γ [54]. There
are several estimates of the quantity ζ in the present
literature coming from light-cone QCD sum rules
(LCSR) [55], hybrid LCSR [56], improved LCSR [57]
and quark models [58]. In the numerical analysis we
adopt the value ζ = 0.76 ± 0.10; the central value is
taken from the LCSR approach while the error is in-
creased in order to accommodate all the other determi-
nations. The quantities (1+∆R±,0) entail the explicit
O(αs) corrections as well as the power-suppressed an-
nihilation contributions proportional to λud . The lat-
ter contribution, in particular, is effective only for
charged B decays (weak annihilation); in fact, W-
exchange amplitudes are smaller because of the ratio
Qd/Qu = −1/2 and of colour suppression. The ratio
R(ργ/K∗γ) acquires, therefore, a tiny dependence on
the CKM angle α. Within the SM, the numerical value
of these NLO corrections are ∆R± = 0.055± 0.13 and
∆R0 = 0.015 ± 0.11. Explicit expressions for these
quantities, which are valid in the presence of beyond-
the-SM physics, can be found in Refs. [54,59].

Further important observables are the isospin breaking
ratio given by

∆(ργ) =
Γ(B+ → ρ+γ) − Γ(B− → ρ−γ)

2 (Γ(B0 → ρ0γ) + Γ(B̄0 → ρ̄0γ))
− 1(19)

and the CP asymmetries in the charged and neutral
modes,

A±
CP (ργ) =

Γ(B− → ρ−γ) − Γ(B+ → ρ+γ)

Γ(B− → ρ−γ) + Γ(B+ → ρ+γ)
, (20)

A0
CP (ργ) =

Γ(B̄0 → ρ0γ) − Γ(B0 → ρ0γ)

Γ(B̄0 → ρ0γ) + Γ(B0 → ρ0γ)
. (21)

Recently, the BABAR collaboration has reported a
significant improvement on the upper limits of the
branching ratios for the decays B0(B̄0) → ρ0γ and
B± → ρ±γ. Averaged over the charge-conjugated
modes, the current 90% C.L. upper limits are [60]:

B(B0 → ρ0γ) < 1.4 × 10−6 , (22)

B(B± → ρ±γ) < 2.3 × 10−6 , (23)

B(B0 → ωγ) < 1.2 × 10−6 . (24)
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They have been combined, using isospin weights for
B → ργ decays and assuming B(B0 → ωγ) = B(B0 →
ρ0γ), to yield the improved upper limit

B(B → ργ) < 1.9 × 10−6 . (25)

Note that the equality between the ρ and ω branching
ratios receives SU(3)-breaking corrections that can be
as large as 20%. The current measurements of the
branching ratios for B → K∗γ decays by BABAR [61],

B(B0 → K∗0γ) = (4.23 ± 0.40 ± 0.22) × 10−5 (26)

B(B+ → K∗+γ) = (3.83 ± 0.62 ± 0.22) × 10−5 (27)

are then used to set a 90% C.L. upper limit on the
ratio of the branching ratios [60]:

R(ργ/K∗γ) ≡ B(B → ργ)

B(B → K∗γ)
< 0.047 . (28)

This bound is typically a factor 2 away from the SM
estimates [54], which we quantify more precisely in
this letter. In beyond-the-SM scenarios, this bound
provides a highly significant constraint on the relative
strengths of the b→ dγ and b→ sγ transitions.

Let us present an updated analysis of the constraints
in the (ρ̄, η̄) plane from the unitarity of the CKM ma-
trix, including the measurements of the CP asymme-
try aψKs

in the decays B0/B0 → J/ψKs (and re-
lated modes), and show the impact of the upper limit
R(ργ/K∗γ) ≤ 0.047 [60]. The SM expressions for ǫK
(CP-violating parameter in K decays), ∆MBd

(B0
d–

B̄0
d mass difference), ∆MBs

(B0
s–B̄

0
s mass difference)

and aψKs
are fairly standard and can be found, for

instance, in Ref. [62]; the values of the theoretical pa-
rameters and experimental measurements that we use
are taken from Ref. [59]. The SM fit of the unitarity
triangle is presented in Fig. 1. Note that where the

hadronic parameters fBd

√

B̂Bd
and ζs are concerned,

we adopt very recent lattice estimates that take into
account uncertainties induced by the so-called chiral
logarithms [63]. These errors are extremely asymmet-
ric and, once taken into account, reduce sizeably the
impact of the ∆MBs

/∆MBd
lower bound on the UT

analysis. In Fig. 1 we explicitly show what happens
to the allowed regions once these errors are taken into
account. The 95% C.L. contour is drawn, taking into
account chiral logarithms uncertainties.

As the bound from the current upper limit on
R(ργ/K∗γ) is not yet competitive to the ones from ei-
ther the measurement of ∆MBd

or the current bound
on ∆MBs

, we use the allowed ρ̄− η̄ region to work out
the SM predictions for the observables in the radiative
B-decays described above. Taking into account these
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/ 

K
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ks
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without chiral logs

Figure 1. Unitary triangle fit in the SM and the result-
ing 95% C.L. contour in the ρ̄ - η̄ plane. The solid lines
show the upper bounds (with and without chiral logs) due to
∆MBd

, the dot-dashed lines the ones due to ∆MBs
. The

impact of the R(ργ/K∗γ) < 0.047 constraint is also shown.
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R(     / K   ) R(     / K   )
∗ ∗ργ ργγ γ

New lattice result

Figure 2. The impact of the new lattice QCD estimate of
the ratio ζ on the R(ργ/K∗γ) constraint.

errors and the uncertainties on the theoretical param-
eters, we find the following SM expectations for the
radiative decays:

R±(ργ/K∗γ) = 0.023± 0.012 , (29)

R0(ργ/K∗γ) = 0.011± 0.006 , (30)

∆(ργ) = 0.04+0.14
−0.07 , (31)

A±
CP (ργ) = −0.10+0.02

−0.03 , (32)

A0
CP (ργ) = −0.06± 0.02 . (33)

In the CP asymmetries the uncertainties due to form-
factors cancel out to a large extent, however, the scale
dependence is rather large because the CP asymme-
tries arise at the O(αs). It is interesting to work out
the extremal values of R(ργ/K∗γ) compatible with
the SM UT analysis. Any measurement of R(ργ/K∗γ)
whose central value lies in the range (0.013, 0.037)
would be compatible with the SM, irrespective of the
size of the experimental error. The error induced by
the imprecise determination of the isospin breaking
parameter ζ currently limits the possibility of having
a very sharp impact from R(ργ/K∗γ) on the UT anal-
ysis.
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Let us comment on the impact of a recent prelimi-
nary lattice determination of the B → (K∗, ρ) form
factor at zero recoil [19]: FK

∗

(0) = 0.25(5)(2) and
ζ = 0.91(8). In the first place, note that the cen-
tral value of the K∗ form factor is in perfect agree-
ment with the indirect determinations obtained in
Refs. [64,65,54]. In these papers, the authors compute
BR(B → K∗γ) at NLL, using the inclusive channel
B → Xsγ to extract the value of the Wilson coefficient
C7. Their conclusion is that in order to accommodate
the experimental data, the form factor at zero-recoil
has to be substantially smaller than the typical light-
cone QCD estimate (TK

∗

s.r. (0) = 0.38 ± 0.06). For in-
stance, in Ref. [54], the fitted value of the form factor
is TK

∗

(0) = 0.27 ± 0.04. In second place, the higher
central value for the ratio ζ given in Ref. [19] strength-
ens the impact of the current R(ργ/K∗γ) upper limit.
In Fig. 2, the additional line has been obtained using
this new determination of the form factors ratio and
gives a bound comparable to the ∆mBs

one. In order
to fully trust this new lattice estimate of the ratio ζ,
an independent cross-check of this result is mandatory;
moreover it is necessary to analyse the old QCD sum
rules estimate deeper so as to understand the reasons
of this discrepancy.

Let us finally discuss the analysis of the exclusive
modes in supersymmetric models and entertain two
variants of the MSSM called in the literature MFV [66]
and Extended-MFV [67] models. In MFV models, all
the flavour changing sources other than the CKM ma-
trix are neglected. In this class of models there are
essentially no additional contributions (on top of the
SM ones) to aψKS

and ∆MBs
/∆MBd

, while the im-
pact on ǫK , ∆MBd

and ∆MBs
is described by a single

parameter, f , whose value depends on the parameters
of the supersymmetric models [62]. EMFV models
are based on the assumption that all the superpart-
ners are heavier than 1 TeV with the exception of
the lightest stop; no constraints are imposed on the
off diagonal structure of the soft breaking terms. It
can be shown [67] that under these assumptions there
are only two new parameters in addition to the MFV
ones, namely: δũL t̃

= M2
ũLt̃

/(Mt̃Mq̃) × Vtd/|Vtd| and

δc̃Lt̃ = M2
c̃Lt̃
/(Mt̃Mq̃)×Vts/|Vts|. Where t̃ is the light-

est stop mass eigenstate andM2 is the up-squark mass
matrix given in a basis obtained from the SCKM one
after the diagonalization of the 2 × 2 stop submatrix.
Since we are interested in the phenomenology of b→ d
transitions, we will consider here only δũL t̃

. With
the inclusion of this new parameter, the description
of the UT-related observables needs one more com-
plex parameter, g = gR + igI [67]. A signature of
these models is the presence of a new phase in the
B0
d − B̄0

d mixing amplitude. Using the parametriza-
tion Md

12 = r2de
2iθdMSM

12 , we get r2d = |1 + f + g| and

= SM central values
= SM at 68% C.L. = EMFV at 68% C.L.

= EMFV central values

= MFV at 68% C.L., C  > 0
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Figure 3. Correlation between R(ργ/K∗γ) and ∆(ργ) in
the SM and in MFV and EMFV models. The light-shaded
regions are obtained varying ρ̄, η̄, the supersymmetric pa-
rameters (for the MFV and EMFV models) and using the
central values of all the hadronic quantities. The darker
regions show the effect of ±1σ variation of the hadronic
parameters.

θd = 1/2 arg(1 + f + g). This implies new supersym-
metric contributions to the CP asymmetry aψKs

.

The phenomenology of the MFV and EMFV models,
analysed by scatter plots over the supersymmetric pa-
rameter space, shows the discrimation power of exclu-
sive modes, if one focus on ratios of exclusive observ-
ables and their correlation. If one also scan over ρ̄
and η̄, and require that each point satisfy the bounds
that come from direct searches, from the B → Xsγ
branching ratio, and from the UT-related observables,
one finally finds the surviving regions presented in
Fig. 3. It shows the correlation of the isospin break-
ing ratio ∆(ργ) and the ratio of the branching ratios
R(ργ/K∗γ). The light-shaded regions are obtained
using the central values of the input parameters while
the dark-shaded ones result from the inclusion of their
1σ errors. In the MFV case, there are two distinct
regions that correspond to the negative (SM-like) and
positive Cs7 case. For Cs7 < 0, the allowed regions in
MFV almost coincide with the SM ones and we do
not draw them. For Cs7 > 0, the allowed regions are
different and, in general, a change of sign of both the
CP-asymmetries (compared to the SM) is expected.
We note that the latter scenario needs very large SUSY
contributions to Cs7 , arising from the chargino-stop di-
agrams, and for fixed values of tanβS it is possible to
set an upper limit on the mass of the lightest stop
squark.

4 b → sℓ+ℓ− Transitions

4.1 B → Xsℓ
+ℓ−

In comparison to the B → Xsγ, the inclusive B →
Xsℓ

+ℓ− decay presents a complementary and also
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more complex test of the SM. This decay is dominated
by perturbative contributions if the cc̄ resonances that
show up as large peaks in the dilepton invariant mass
spectrum are removed by appropriate kinematic cuts.
In the ’perturbative windows’, namely in the low-ŝ
region 0.05 < ŝ = q2/m2

b < 0.25 and also in the
high-ŝ region with 0.65 < ŝ, theoretical predictions
for the invariant mass spectrum are dominated by the
purely perturbative contributions, and a theoretical
precision comparable with the one reached in the de-
cay B → Xsγ is in principle possible. Regarding the
choice of precise cuts in the dilepton mass spectrum,
it is important that one directly compares theory and
experiment using the same energy cuts and avoids any
kind of extrapolation.

In the high-ŝ region, one should encounter the break-
down of the heavy mass expansion at the endpoint.
Integrated quantities are still defined; nevertheless one
finds sizeable Λ2

QCD/m
2
b non-perturbative corrections

within this region.

The decay B → Xsℓ
+ℓ− is particularly attractive be-

cause of kinematic observables such as the invariant
dilepton mass spectrum and the forward–backward
(FB) asymmetry. They are usually normalized by the
semi-leptonic decay rate in order to reduce the uncer-
tainties due to bottom quark mass and CKM angles
and are defined as follows:

Rℓ
+ℓ−

quark(ŝ) =
d

dŝ
Γ(b→ Xsℓ

+ℓ−)/Γ(b→ Xceν̄), (34)

AFB(ŝ) =
1

Γ(b→ Xceν̄)

×
∫ 1

−1

d cos θℓ
d2Γ(b→ Xsℓ

+ℓ−)

dŝ d cos θℓ
sgn(cos θℓ), (35)

here θℓ is the angle between ℓ+ and B momenta in the
dilepton centre-of-mass frame. The so-called ‘normal-
ized’ FB asymmetry, which is also often used, is given
by

AFB(ŝ) =

∫ 1

−1

d cos θℓ
d2Γ(B → Xsℓ

+ℓ−)

dŝ d cos θℓ
sgn(cos θℓ)

∫ 1

−1

d cos θℓ
d2Γ(B → Xsℓ

+ℓ−)

dŝ d cos θℓ

.

(36)

For the low-ŝ region the present partonic NNLL pre-
diction is given by (see [68,69,72]):

∫ 0.25

0.05

dŝRℓ
+ℓ−

quark(ŝ) = (1.27 ± 0.08scale ) × 10−5 (37)

The error quoted in (37) reflects only the renormal-
ization scale uncertainty and is purely perturbative.
There is no additional problem due to the charm mass
renormalization scheme ambiguity within the decay
B → Xsℓ

+ℓ− because the charm dependence starts
already at one loop, in contrast to the case of the de-
cay B → Xsγ. The charm dependence itself leads
to an additional uncertainty of ∼ 7.6% within the
partonic quantity (37), if the pole mass is varied,

mpole
c /mpole

b = 0.29 ± 0.02.

The impact of the NNLL contributions is significant.
The large matching scale µW uncertainty of 16% of the
NLL result was removed; the low-scale uncertainty µb
of 13% was cut in half; and also the central value of
the integrated low dilepton spectrum (37) was signif-
icantly changed by more than 10% due to NNLL cor-
rections. Using the measured semi-leptonic branch-
ing ratio Bslexp., the prediction for the corresponding
branching ratio is given by

B(B → Xsℓ
+ℓ−)Cut: ŝ∈[0.05,0.25] = (38)

= Bslexp.
∫ 0.25

0.05

dŝ
[

Rℓ
+ℓ−

quark(ŝ) +Rm2
b

(ŝ) +Rm2
c
(ŝ)

]

= (1.36 ± 0.08scale ) × 10−6

Rm2
b

(ŝ) and Rm2
c
(ŝ) are the non-perturbative contri-

butions scaling with 1/m2
b and 1/m2

c. The recent first
measurement of BELLE, with a rather large uncer-
tainty [22], is compatible with this SM prediction.

The phenomenological impact of the NNLL contribu-
tions on the FB asymmetry is also significant [70,71].
The position of the zero of the FB asymmetry, de-
fined by AFB(ŝ0) = 0, is particularly interesting to
determine relative sign and magnitude of the Wilson
coefficients C7 and C9 and it is therefore extremely
sensitive to possible new physics effects. The previous
NLL result, where the error is determined by the scale
dependence, is now modified by the NNLL contribu-
tions [70,71]:

ŝNLL0 = 0.14 ± 0.02 , ŝNNLL0 = 0.162 ± 0.008 . (39)

In the NNLL case the variation of the result induced
by the scale dependence is accidentally very small
(about ±1%) and cannot be regarded as a good es-
timate of missing higher-order effects. Taking into
account the separate scale variation of both Wilson
coefficients C9 and C7, and the charm-mass depen-
dence, one estimates a conservative overall error on ŝ0
of about 5% [70]. In this ŝ region the non-perturbative
1/m2

b and 1/m2
c corrections to AFB are very small and

also under control. An illustration of the shift of the
central value and the reduced scale dependence be-
tween NNL and NNLL expressions of AFB(s), in the
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Figure 4. Comparison between NNLL and NLL results for
AF B(s) in the low s region. The three thick lines are the
NNLL predictions for µ = 5 GeV (full), and µ = 2.5 and
10 GeV (dashed); the dotted curves are the corresponding
NLL results. All curves for mc/mb = 0.29.

low-ŝ region, is presented in fig. 4. The complete effect
of NNLL contributions to the FB asymmetry adds up
to a 16% shift compared with the NLL result, with
a residual error due to higher-order terms reduced at
the 5% level. Thus, the zero of the FB asymmetry in
the inclusive mode turns out to be one of the most
sensitive tests for new physics beyond the SM.

The B factories will soon provide statistics and reso-
lution needed for the measurements of B → Xsℓ

+ℓ−

kinematic distributions. Correspondingly, the recently
calculated new (NNLL) contributions [68–72]4 have
significantly improved the sensitivity of the inclusive
B → Xsℓ

+ℓ− decay in testing extensions of the SM
in the sector of flavour dynamics. However, with the
present experimental knowledge the decay B → Xsγ
still leads to the most restrictive constraints as was
found in [74]. Especially, the MFV scenarios are al-
ready highly constrained and only small deviations to
the SM rates and distributions are possible; therefore
no useful additional bounds from the semi-leptonic
modes beyond what are already known from the B →
Xsγ can be deduced for the MFV models at the mo-
ment. Within the model-independent analysis, the im-
pact of the partial NNLL contributions on the allowed
ranges for the Wilson coefficients was already found
to be significant. In this analysis, however, only the
integrated branching ratios were used to derive con-
straints. It is clear that one needs measurements of
the kinematic distributions of the B → Xsℓ

+ℓ−, the
dilepton mass spectrum and the FB asymmetry in or-
der to determine the exact values and signs of the Wil-

4We add here that the three-loop mixing is fully are under con-
trol. A quite recent calculation of a missing NNLL mixing piece
leads to a correction below 2% [73]
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s
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Figure 5. Four different shapes of the normalized FB
asymmetry AF B for the decay B → Xsℓ

+ℓ−. The four
curves correspond to four sample points of the Wilson coef-
ficients that are compatible with the present measurements
of the integrated branching ratios.

son coefficients. In fig. 5, the impact of these future
measurements is illustrated. It shows the shape of the
FB asymmetry for the SM and three additional sample
points, which are all still allowed by the present mea-
surements of the branching ratios; thus, even rather
rough measurements of the FB asymmetry will either
rule out large parts of the parameter space of extended
models or show clear evidence for new physics beyond
the SM.

4.2 B → K(∗)ℓ+ℓ−

For completeness, let us briefly comment on the im-
pact of exclusive B → K(∗)ℓ+ℓ− modes. First of all,
let us stress that hadronic uncertainties on these exclu-
sive rates are dominated by the errors on form factors
and are much larger than in the corresponding inclu-
sive decays. In fact, following the analysis presented
in Ref. [74], we see that inclusive modes already put
much stronger constraints on the various Wilson coef-
ficients.

Concerning the measurement of a zero in the spec-
trum of the forward-backward asymmetry, things are
different. According to Refs. [75,64] the value of the
dilepton invariant mass (q20), for which the differential
forward–backward asymmetry vanishes, can be pre-
dicted in quite a clean way. In the QCD factorization
approach at leading order in ΛQCD/mb, the value of
q20 is free from hadronic uncertainties at order α0

s (a
dependence on the soft form factor ξ⊥ and the light
cone wave functions of the B and K∗ mesons appear
at NLL). Within the SM, the authors of Ref. [64] find:
q20 = (4.1± 0.6)GeV2. As in the inclusive case, such a
measurement will have a huge phenomenological im-
pact.
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