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Abstract

The COntractor REnormalization group (CORE) approximation, a new method for solving
Hamiltonian lattice systems, is in troduced. The approach combines variational and contraction
techniques with the real-space renormalization group approach and is systematically improvable.
Since it applies to lattice systems of in�nite extent, the method is suitable for studying critical
phenomena and phase structure; systems with dynamical fermions can also be treated. The method
is tested using the 1+1-dimensional Ising model.

1. Introduction

Perturbative methods are inadequate for investigating
many current problems in high energy and condensed
matter physics, such as the con�nement of quarks
and gluons in QCD. Thus, the development of new
nonperturbative tools is important. The COntractor
REnormalization group (CORE) approximation, a
new nonperturbative method for studying Hamiltonian
lattice systems, is presented in this talk. The method
is a hybrid of contraction, variational, cluster, mean-
�eld, and block renormalization-group techniques. It
is systematically improvable and applies to lattice
systems of in�nite extent, enabling direct study of phase
structure and critical phenomena. Dynamical fermions
can be treated without problem.

We briey describe the method, then apply two
variants of the CORE approximation to the 1+1-
dimensional Ising model.

2. Description of the Method

The success of any variational calculation, especially
one involving an in�nite number of degrees of freedom,
depends crucially on choosing a good trial state. An
algorithm for building trial states suitable for lattice
systems is the Hamiltonian real-space renormalization

group (RSRG) method [1]. In this approach, the lattice
is partitioned into blocks including a few sites and the
block-Hamiltonians are diagonalized. The Hilbert space
is then thinned by discarding all high-energy states,
retaining only those states which can be constructed
from tensor products of some small subset of lo w-
lying block eigenstates, and an e�ective Hamiltonian
which describes the mixing of the remaining states is
computed. This thinning process is repeated again and
again until the e�ective Hamiltonian takes a �xed form
which can be diagonalized.

Unfortunately, simple RSRG truncation procedures
often have di�culties accurately describing the long-
wavelength modes on the full lattice because they badly
underestimate the block-to-block mixings. Past ap-
proaches to overcoming this problem have concentrated
on using larger blocks, increasing the number of states
retained per block, or introducing more sophisticated
truncation schemes. The CORE approximation is a new
approach to this problem which emphasizes simplicity
and versatility; it frees one from the need to develop
clever truncation schemes and allows the use of mani-
festly gauge-invariantRSRG schemes when studying lat-
tice gauge theories.

The basic idea of the CORE approach is to steer
the RSRG iteration using contraction techniques. An
important part of this steering process is reliably
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approximating the expectation value

E(t) =
h�var je

�tHHe�tH j �vari

h�var j e�2tH j �vari
; (1)

which tends to the lowest eigenvalue �0 of Hamiltonian
H as t ! 1, assuming the trial state j�vari has non-
vanishing overlap with the ground state of H. Since
e�tH cannot be computed exactly, it is replaced in
the CORE method by an operator T (t) which closely
approximates e�tH for t in some range 0 < t < tmax

and which can be easily evaluated. A procedure for
constructing such an operator has been described in
Ref. [2]. In this procedure, one expresses e�tH as a
symmetric product of explicitly computable terms; for
example, if H = H1 + H2, where e�tH1 and e�tH2 can
be evaluated exactly, then

e�tH = e�tH1=2 e�tH2=2 eC3(t) e�tH2=2 e�tH1=2; (2)

where C3(t) is order t3 or higher. To construct T (t),
one then either replaces eC3(t) by the identity operator
or retains low-order terms in C3(t), rewriting their
exponential again as a symmetric product of computable
terms. A given contractor T (t) can also be improved by
using Tp(t) = [T (t=p) ]p.

Having chosen a contractor T (t), a variational best
estimate for �0 can be obtained by minimizing

ET (t) =
h�var j T (t)H T (t) j�vari

h�var j T (t)2 j�vari
(3)

with respect to t and any parameters in j�vari. For
a trial state j�vari =

Pn
j=1 �jj�ji, where fj�jig is

any set of orthonormal states, minimizing ET (t) with
respect to the �j parameters is equivalent to solving the
generalized eigenvalue problem

det
�
[[T (t)HT (t)]]� �[[T (t)2]]

�
= 0; (4)

where [[: : :]] denotes truncation to the subspace spanned
by the j�ji states. Hence, we can replace the problem of
�nding the best trial state by that of diagonalizing the
e�ective Hamiltonian

He�(t) = [[T (t)2 ]]�1=2 [[T (t)H T (t) ]] [[T (t)2 ]]�1=2: (5)

Developing this operator in the RSRG iteration instead
of [[H ]] is the key innovation of the CORE approach.

The e�ective Hamiltonian cannot be exactly deter-
mined. The last step in the CORE approach is to apply
cluster techniques to approximate He�(t) (see Ref. [3]
and references cited therein). Essentially, this involves
evaluatingHe�(t) on increasingly-larger, connected sub-
lattices and using the principle of inclusion-exclusion to
appropriately combine the results for the full lattice.

In summary, CORE is an iterative blocking and
thinning process, developing the low-lying physics in a
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Figure 1. Fractional error ��0 in the ground-state energy
density estimates against �. Results using T 2

1
(dashed curve),

T 16

1
(solid), and T 12

2
(diamonds with dotted curve) are shown.

sequence of e�ective sub-Hamiltonians H(n)
e� (t�n) using

the recursion relation

H
(n+1)
e� (t) = Rn(t)[[T

(n)(t)H
(n)
e� (t�n)T

(n)(t) ]]Rn(t); (6)

where Rn(t) = [[T (n)(t)2 ]]�1=2, the contractor T (n)(t)

approximates exp[�tH
(n)
e� (t�n)], and t�n is a best value

for t selected for each RG iteration in some manner:
minimizing H

(n)
e� (t) in a simple product state is one

possibility. As the recursion proceeds, the e�ective
Hamiltonian evolves eventually into a simple form which
can be easily diagonalized, yielding estimates of the
ground state energy and the energies of some low-lying
excited states.

CORE can also be used to estimate the vacuum
expectation value of an extensive operator O. Using
the same RSRG transformations as for H, one �rst

computes the sequence of e�ective operators O
(n)
e� (t�n).

Once He� has evolved su�ciently such that its ground
state can be found, the matrix element of Oe� in the
ground state of He� then yields the desired expectation
value.

3. The 1+1-Dimensional Ising Model

The Ising model in 1 + 1 dimensions is often used as
a testing ground for new calculational methods. Its
Hamiltonian is given by

HIsing = �
X

j

[c��z(j) + s��x(j)�x(j + 1)] ; (7)

where j labels the sites in the in�nite chain, c� =
cos(��=2), and s�=sin(��=2), for 0���1. A second-
order phase transition occurs in this model at �= 1=2.
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Figure 2. Mass gap estimates � against �. The diamonds and
squares indicate CORE estimates obtained using T 16

1
and T 12

2
,

respectively. The exact mass gap appears as a solid curve.

When � < 1=2, the order parameter h�x(j)i = 0 and
the ground state is unique. For � > 1=2, spontaneous
symmetry breaking occurs and the order parameter
takes values h�x(j)i=�(1 � cot2(��=2))1=8.

We tested the CORE approximation in two di�er-
ent applications to the Ising model. In both appli-
cations, the Hilbert space was thinned to the lowest
two eigenstates in each block, the cluster expansion of
He�(t) was truncated after three-block clusters, and t
was �xed by minimizing the expectation value of He�

in a mean-�eld state. Two-site blocking was used in
the �rst application, and blocks containing three sites
were used in the second application. The contrac-
tor for the �rst application was T1(t) = Sy1(t)S1(t),
with S1(t) =

Q
�f
Q

j [1 + tanh(c�t=2)O�(j)]g; where c�
are couplings, � labels the di�erent types of operators
O�(j), such as �z(j) and �x(j)�x(j+1), and j is a site la-

bel. The second contractor used was T2(t) = Sy2(t)S2(t)
with S2(t) = exp(�tV=2) exp(�tHb=2), where Hb con-
tains all intra-block interactions and V contains all
inter-block operators (those which cross block bound-
aries). Note that exp(�tHb=2) =

Q
p exp(�tHb(p)=2)

and exp(�tV=2) =
Q

p exp(�tV (p)=2), where p labels
the blocks. Calculations were done using Tn

1 (t=n) and
Tn
2 (t=n) for various values of n.
Fractional errors ��0 = j(E0� �0)=�0j in the ground-

state energy estimates E0 from both variants of the
CORE approach are shown in Fig. 1. Selected estimates
for the mass gap � and magnetization M = jh�x(j)ij,
for some site j, are compared to the exactly-known
results in Figs. 2 and 3. Considering that only the �rst
three terms in the cluster expansion are included in the
calculations, the accuracy of the results is striking. The
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Figure 3. MagnetizationM against �. The diamonds indicate
CORE estimates obtained using T 12

2
, the solid curve shows the

exact magnetization, and the dot-dashed curve shows the
estimates from mean-�eld theory.

CORE approximation reproduces the correct location of
the critical point with remarkable precision. Including
more terms in the cluster expansion should signi�cantly
improve these results.

4. Conclusion

We believe that the CORE approximation will prove to
be a powerful tool for studying nonperturbative systems.
An exciting feature of the method is that it can be
used to analyze systems containing dynamical fermions,
systems which resist treatment by present stochastic
means. We are presently extending the method for use
with lattice �eld theories.
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