
SLAC–PUB–10019
June 2003

Spontaneous Gravitational Instability of Star Distribution
in a nonrotating Galaxy∗

Alex Chao, Stanford Linear Accelerator Center, Stanford, California

Abstract

Gravitational instability of the distribution of stars in a galaxy is a well-
known phenomenon in astrophysics. This work is a preliminary attempt to
analyze this effect using the standard tools developed in accelerator physics.
The result is first applied to nonrotating gallaxies with spherical and planar
symmetries. Extensions to rotating galaxies are not studied here.

Presented at the Workshop on Quantum Aspects of Beam Physics
Hiroshima University, Higashi Hiroshima, Japan

January 7-11,2003

∗Work supported by Department of Energy contract DE–AC03–76SF00515.



Spontaneous Gravitational Instability

of Star Distribution in a nonrotating Galaxy

Alex Chao

1 Introduction

Consider a distribution of stars in a galaxy described by a distribution density

ρ(�x,�v, t) in the phase space (�x,�v). We wish to analyze the stability of this

distribution of stars under the influence of their collective gravitational force. To

simplify the problem, we will use a flat Euclidean space-time and will consider

Newtonian, nonrelativistic dynamics only. The instability does not assume a

specific cosmological model other than Newtonian gravity. If this approach

turns out successful, a large arsenal of analysis tools can be transported from

accelerator physics to this problem.

The instability we are interested in is self-generated, i.e. it occurs spon-

taneously. In particular, it does not require an initial “seed” fluctuation at

the birth of the galaxy. The instability growth pattern as well as its rate of

growth are intrinsic properties of the system. This gravitational instability is

a wel-known problem; its first analysis was almost a century ago [1]. What we

do in the following is to treat the same problem using the standard techniques

developed in the study of collective instabilities in circular accelerators [2].



2 Dispersion Relation

Consider a particular star in the galaxy. The equations of motion of this star

are

�̇x = �v

�̇v = G

∫
d�v′

∫
d�x′ ρ(�x

′, �v′, t)(�x′ − �x)
|�x′ − �x|3 (1)

Note that these equations do not depend on the mass of the star under consid-

eration.

Evolution of ρ is described by the Vlasov equation

∂ρ

∂t
+

∂ρ

∂�x
· �̇x +

∂ρ

∂�v
· �̇v

=
∂ρ

∂t
+

∂ρ

∂�x
· �v +

∂ρ

∂�v
· G

∫
d�v′

∫
d�x′ ρ(�x

′, �v′, t)(�x′ − �x)
|�x′ − �x|3

= 0 (2)

Let the galaxy distribution be given by an unperturbed distribution ρ0 plus

some small perturbation. Let the unperturbed distribution ρ0 depend only on

�v,

ρ0 = ρ0(�v) (3)

This unperturbed distribution is uniform in �x, i.e. it is uniform in the infinite

3-D space. The function ρ0(�v) is so far unrestricted, and is to be prescribed

externally.

The perturbation around ρ0 will have some structure in t and in �x. We

Fourier decompose this structure and write

ρ(�x,�v, t) = ρ0(�v) + ∆ρ(�v) e−iωt+i�k·�x (4)



The quantity ∆ρ is considered to be infinetisimal compared with ρ0.

Substituting Eq.(4) into Eq.(2) and keeping only first order in ∆ρ yield

−i(ω − �v · �k)∆ρ(�v) + G

(∫
d�v′ ∆ρ(�v′)

)
∂ρ0(�v)
∂�v

· �q(�k) = 0 (5)

where

�q(�k) ≡
∫

d�x′ e
i�k·(�x′−�x)(�x′ − �x)

|�x′ − �x|3 =
∫

d�y
ei

�k·�y �y

|�y|3 (6)

is a well-defined quantity depending only on �k; it is the Fourier transform of the

Newton kernel, and might be called the graviton propagator. In fact, avoiding

the singularity at the origin �k = �0, it can be shown that

�q(�k) =
4πi

|�k|2
�k (7)

Eq.(5) can be rewritten as

∆ρ(�v) = −iG

(∫
d�v′ ∆ρ(�v′)

) ∂ρ0(�v)
∂�v · �q(�k)

ω − �v · �k
(8)

Integrating both sides over �v and canceling out the mutual factor of
∫
d�v′ ∆ρ(�v′)

then gives a dispersion relation that must be satisfied by ω and �k,

1 = −iG

∫
d�v

∂ρ0(�v)
∂�v · �q(�k)

ω − �v · �k
(9)

We need to solve this dispersion relation for a given ρ0(�v) to find the most

unstable pattern of perturbation and its corresponding growth rate, as will be

described next. This result, we hope, could say something about the character-

istic dimension of galaxies.



3 Uniform Isotropic Galaxy

We next consider an unperturbed distribution that depends only on the magni-

tude of �v, i.e., let

ρ0 = ρ0(|�v|2) (10)

which gives

∂ρ0

∂�v
= 2�v ρ′0(|�v|2) (11)

This is the case of a uniform isotropic (spherically symmetric) galaxy. Normal-

ization condition is

∫ ∞

0

4πv2dv ρ0(v2) = ρm

= volume mass density of stars (12)

Substituting Eqs.(7) and (11) into Eq.(9) then gives

1 =
8πG

|�k|2

∫
d�v ρ′0(|�v|2)

�v · �k
ω − �v · �k

(13)

Let �k = (0, 0, k), and choose coordinates so that �v = v(sin θ cosφ, sin θ sinφ, cos θ),

Eq.(13) becomes, with a change of variable u = cos θ,

1 =
16π2G

k

∫ ∞

0

v3dv ρ′0(v
2)

∫ 1

−1

du
u

ω − kvu
(14)

One must refrain from performing the integration over u at this time. Proper

treatment of the singularity is first necessary. We then follow the standard

technique used in accelerator physics on Landau damping [3]. The treatment

amounts to adding an infinitesimal positive imaginary part to ω, i.e. ω → ω+iε,

I(ω, kv) ≡
∫ 1

−1

du
u

ω − kvu



→
∫ 1

−1

du
u

ω + iε− kvu

= P.V.

∫ 1

−1

du
u

ω − kvu
− i

πω

k2v2
H

(
1 −

∣∣∣ ω
kv

∣∣∣)

= − 2
kv

− ω

k2v2
ln

∣∣∣∣ω − kv

ω + kv

∣∣∣∣ − i
πω

k2v2
H

(
1 −

∣∣∣ ω
kv

∣∣∣) (15)

where P.V. means taking the principal value of the integral, and H(x) = 1 for

x > 0 and 0 for x < 0 is the step function.

To be specific, we next take a uniform distribution of ρ0,

ρ0(v2) =

{ 3ρm

4πv3
0

if v2 < v2
0

0 otherwise
(16)

with

ρ′0(v
2) = − 3ρm

8πv4
0

δ(v − v0) (17)

The quantity v2
0 is related to the “temperature” of the stars. Substituting

Eq.(17) into Eq.(14) gives the dispersion relation

1 = −6πGρm
kv0

I(ω, kv0) (18)

Substituting Eq.(15) into Eq.(18) then gives

λ =
1

2 + x ln
∣∣∣x−1
x+1

∣∣∣ + iπxH(1 − |x|)
(19)

where

λ =
6πGρm
k2v2

0

and x =
ω

kv0
(20)

4 Stability Condition

We next need to compute the instability growth rate, which is given by the

imaginary part of ω, as a function of k. The star distribution ρ0(�v) is unstable



when ω is complex with a positive imaginary part. We need to compute x as a

function of λ using Eq.(19) in order to obtain ω as a function of k.

In general x is complex, but at the edge of instability, x is real. The edge of

stability can be seen by plotting the RHS of Eq.(19) as x is scanned along the

real axis from −∞ to ∞. Fig.1 shows the real and imaginary parts of the RHS

of Eq.(19) in such a scan. The horizontal and vertical axes of Fig.1 are the real

and imaginary parts of the RHS of Eq.(19) respectively. As x is scanned from

−∞ to ∞, the RHS of Eq.(19) traces out a cherry-shaped diagram, including

the “stem” of the cherry running from −∞ to 0 along the real axis. If λ lies

inside this cherry diagram (including the stem), the galaxy distribution is stable.

Since λ is necessarily real and positive, the stability condition therefore reads

λ <
1
2

(21)

Eq.(21) indicates that a hot universe (high temperature, i.e. large v0) is more

stable than a cold universe. This is expected due to the Landau damping mecha-

nism. It also indicates that the star distribution is unstable for long-wavelength

perturbations (small k). The threshold wavelength is given by 2π/kth, where

kth =
√

12πGρm
v0

(22)

Perturbations with wavelength longer than that corresponding to Eq.(22) are

unstable. One might expect that the galaxy will have a dimension of the order

of this wavelength because if the galaxy had a larger dimension, it would have

broken up due to the instability. There will be more discussions on this point

later.
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Figure 1: Stability diagram for the galaxy distribution.

5 Spontaneous Gravitational Instability

When λ > 1/2, ω will be complex. The instability growth rate will be deter-

mined by the imaginary part of ω,

τ−1 = Im(ω) (23)

We need to go back to Eq.(19), but modify it slightly for complex ω. Let

ω

kv0
= x + iy, (y > 0) (24)

Eq.(19) then becomes

λ =
1

2 +
(
x+iy

2

)
ln

[
(x−1)2+y2

(x+1)2+y2

]
+ (ix− y)

[
tan−1

(
x+1
y

)
− tan−1

(
x−1
y

)] (25)

When y → 0+, we obtain Eq.(19) as it should.



We will need to solve Eq.(25) for x and y for given λ > 1
2 . It turns out that

in this range there is always one solution with purely imaginary ω, i.e. x = 0,

and

λ =
1

2 − 2y tan−1
(

1
y

) (26)

or, written out explicitly,

6πGρm
k2v2

0

=
1

2 − 2τ−1

kv0
tan−1

(
kv0
τ−1

) (27)

We need to find τ−1 as a function of k. To do so, we first scale the variables by

u =
kv0√

6πGρm
, v =

τ−1

√
6πGρm

(28)

and then

1
u2

=
1

2 − 2
(
v
u

)
tan−1

(
u
v

) (29)

Fig.2 shows the result.

As seen from Fig.2, the growth rate vanishes (v = 0) when u =
√

2, corre-

sponding to λ = 1/2, i.e. at the stability boundary. This is of course expected.

Fig.2 also shows that instability occurs fastest for small u, i.e. small k and large

wavelegnth. The growth rate is maximum at u = 0 with v =
√

2/3. This means

the maximum growth rate occurs for perturbation of infinite wavelength, and is

given by

(τ−1)max =
√

4πGρm (30)

Note that the growth rate is independent of v0, even though there is still the

condition that the distribution is unstable, i.e. λ > 1/2, which does depend on
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Figure 2: v vs u according to Eq.(29).

v0 and can be cast into the form (see Eq.(22))

k <

√
3

v0
(τ−1)max (31)

The fastest instability corresponds to k = 0, or an instability wavelength of

infinity.†

According to Eq.(31), all stable galaxies must have a dimension smaller than

a critical value, i.e.

galaxy dimension <
2πv0√

12πGρm
(32)

†This result depends on our assumption of Newtonian dynamics of action-at-a-distance.

Perturbation at one location instantly affects locations infinitely far away. If this action-at-a-

distance effect is appropriately removed, it is expected that the instability for perturbations

with very large wavelengths will be weakened.



The stability is provided through Landau damping. When the temperature

v0 → 0, no galaxies can be stable. Eqs.(30) and (32) are our main results.

6 Numerical Estimates

For a numerical application, we take estimates from the Milky Way,

ρm = 2 × 10−23 g/cm3

v0 = 200 km/s

We obtain a maximum growth time of τmax = 7 × 106 years for perturbations

with very large wavelengths. For stability, the galaxy dimension must be smaller

than 14000 light-years, which seems to be consistent with the size of the Milky

Way.

7 Discussions

• The case studied so far is that of a galaxy with uniform distribution of

stars. One direction of generalization is to consider galaxies with a finite

spherically symmetric distribution. One attempt was made and included

in Appendix A. Our finding here is that a spherically symmetric distri-

bution of the Haissinski type (to be explained in Appendix A) does not

exist.

• Appendix B gives an extension to a planar galaxy, still nonrotating. The

unperturbed distribution does exist and is given in Appendix B. However,



this planar distribution is found, as shown in Appendix C, to be always

stable against perturbations that do not involve transverse structures. Any

instability of the planar galaxy will therefore have to have a sufficiently

complex pattern.

• It is conceivable that the same analysis can be applied to the dynamics

of galaxies in a galaxy cluster, instead of stars in a galaxy. In that case,

ρ(�x,�v, t) describes the distribution of galaxies in the galaxy cluster. We

might then take the corresponding numerical values

ρm = 10−31 g/cm3

v0 = 1000 km/s

We obtain a growth time of τmax = 1 × 1011 years. The galaxy cluster

dimension should be smaller than 1×109 light-years. These values do not

seem to be too unreasonable.

• For more detailed applications, we will have to include the rotation of the

galaxy into the analysis. The unperturbed distribution will then involve

also the angular momentum. The analysis is much more involved but

should be straightforward.

• Still further extensions might include the special relativity and general

relativity to replace Newtonian gravity and to avoid the “action at a dis-

tance” problem.
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Appendix A

So far we have considered the stability of a galaxy whose unperturbed dis-

tribution is uniform in the infinite space and is nonrotating. As a first (unsuc-

cessful) attempt of genralization, we will look for an unperturbed distribution

that is isotropic, nonrotating, and finite in size. To do so, we first note that

Eq.(1) is derivable from a Hamiltonian

H =
�v2

2
−G

∫
d�v′

∫
d�x′ ρ(�x

′, �v′, t)
|�x′ − �x| (33)

We then make the observation that one possible unperturbed distribution is

that it is a function of this Hamiltonian, i.e.

ρ0(�x,�v) = ρ0(H) (34)



For example, one may choose

ρ0(�x,�v) = N e−H/σ2
v = N exp

[
− 1
σ2
v

(
�v2

2
−G

∫
d�v′

∫
d�x′ ρ0(�x′, �v′)

|�x′ − �x|

)]
(35)

where σv is the rms of the magnitude of �v, and is a prescribed input parameter

in this model. The quantity N is a normalization so that integrating ρ0 over �x

and �v gives the total mass of the galaxy M . Note that Eqs.(34) and (35) are

not a useful ansatz for a rotating galaxy because it assumes a distribution that

is isotropic in �v.

Equation (35) is a self-consistent equation for ρ0. It is equivalent to the

Haissinski equation in accelerator physics [4]. Our job is to solve for ρ0 from

Eq.(35). It turns out that the distribution factorizes,

ρ0(�x,�v) =
e−�v2/2σ2

v

(
√

2π σv)3
ρm(�x) (36)

The quantity ρm is then the mass volume density of the stars in the galaxy, now

a function of �x. Substituting Eq.(36) into Eq.(35) yields self-consistent equation

for ρm(�x),

ρm(�x) = (
√

2π σv)3 N exp
[
G

σ2
v

∫
d�x′ ρm(�x′)

|�x′ − �x|

]
(37)

If we now assume ρm is also isotropic, i.e. ρm(�x) = ρm(r) in spherical

coordinates, then Eq.(37) becomes

ρm(r) = (
√

2π σv)3 N exp
[
4πG
σ2
v

∫ ∞

0

r′
2
dr′

ρm(r′)
max(r, r′)

]
(38)

It turns out that no solution exisits that satisfies Eq.(38) while is also nor-

malizable to a finite total mass of the galaxy. This means that an isotropic

unperturbed distribution of the Haissinski type does not exist.



Appendix B

A planar distribution avoids the singularity problem that leads to the failure

of a Haissinski type distribution in the spherical case. Use cylindrical coordi-

nates (�x⊥, z), and let the unperturbed distribution be independent of �x⊥ and

factorizable in such a way that

ρ0(�x⊥, �v⊥, z, vz) = ρ⊥(�v⊥) ρz(z, vz) (39)

where we demand

∫
d�v⊥ ρ⊥(�v⊥) = 1 (40)∫

dz

∫
dvz ρz(z, vz) = Σ

= surface mass density of stars (41)

This unperturbed distribution is that of an infinite disk of finite thickness.

We will first need the equations of motion,

�̇x⊥ = �v⊥

�̇v⊥ = �0

ż = vz

v̇z = 2πG
∫

dv′z

∫
dz′ ρz(z′, v′z) sgn(z′ − z) (42)

Equation (42) is derivable from first principles, as well as from Eq.(1). The

corresponding Hamiltonian is

H⊥ =
�v2
⊥
2

Hz =
v2
z

2
+ 2πG

∫
dv′z

∫
dz′ ρz(z′, v′z) |z′ − z| (43)



We then form the Haissinski ansatz

ρ⊥ =
1

2πσ2
v⊥

e−�v2
⊥/2σ2

v⊥

ρz = N exp
[
− 1
σ2
vz

(
v2
z

2
+ 2πG

∫
dv′z

∫
dz′ ρz(z′, v′z) |z′ − z|

)]
(44)

where σv⊥ relates to the transverse temperature, and σvz relates to the lon-

gitudinal temperature. The fact that the transverse and longitudinal motions

decouple allows the two different temperatures.

Note that although a gaussian form of ρ⊥ is most natural, this assumption

is not compulsary. Any normalized form is acceptable, without affecting our

following analysis.

Writing ρz as

ρz(z, vz) =
1√

2π σvz

e−v2
z/2σ

2
vz ρm(z), with

∫ ∞

−∞
dz ρm(z) = Σ (45)

then gives the Haissinski equation

ρm(z) =
√

2π σvz N exp
[
−2πG

σ2
vz

∫
dz′ ρm(z′) |z′ − z|

]
(46)

Equation (46) can be manipulated to yield

(
ρ′m
ρm

)′
+

4πG
σ2
vz

ρm = 0 (47)

where a prime means taking derivative with respect to z. We then make a

transformation to the scaled variables u and w,

z = u
σ2
vz

GΣ
, ρm = w

GΣ2

σ2
vz

(48)

to obtain (
w′

w

)′
+ 4πw = 0 (49)



where a prime now means taking derivative with respect to u. The Haissinki

equation (46) is rewritten as

w(u) =
√

2π
σ3
vzN
GΣ2

exp
[
−2π

∫ ∞

−∞
du′ w(u′)|u′ − u|

]
(50)

There is also the normalization condition

∫ ∞

−∞
duw(u) = 1 (51)

as well as the condition that w′(0) = 0. The planar unperturbed distribution

has an exponential tail in |z|. The distribution found numerically by MATHE-

MATICA is shown in Fig.3.
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Figure 3: Planar unperturbed star distribution w(u) vs u. w(0) ≈ 1.5822.

Given the function w(u), the planar unperturbed distribution is summarized

as

ρz(z, vz) =
GΣ2

(2π)1/2σ3
vz

exp
(
− v2

z

2σ2
vz

)
w

(
GΣ
σ2
vz

z

)
(52)

ρ0(�v⊥, z, vz) =
GΣ2

(2π)3/2σ2
v⊥σ3

vz

exp
(
− �v2

⊥
2σ2

v⊥
− v2

z

2σ2
vz

)
w

(
GΣ
σ2
vz

z

)
(53)



The thickness of the planar distribution is ≈ σ2
vz/GΣ. This thickness corre-

sponds, not surprisingly, to an equipartition of the longitudinal potential and

kinetic energies.

Appendix C

To study the gravitational stability of the planar unperturbed distribution

Eqs.(52, 53), we need to analyze the behavior of its infinitesimal perturbations.

We have examined perturbations of the type

ρ(�x⊥, �v⊥, z, vz) = ρ⊥(�v⊥) [ρz(z, vz) + ∆ρ(z, vz, t)] (54)

i.e. the perturbation occurs only in the longitudinal (z, vz) dimension. We found

that such perturbations are always stable. Analysis leading to this conclusion

is given in the Appendix. Instabilities of a planar galaxy will therefore have to

involve the transverse coordinates in forms different from Eq.(54).

The Vlasov equation, to first order in ∆ρ, reads

∂∆ρ

∂τ
+

∂∆ρ

∂u
v +

∂∆ρ

∂v

w′(u)
w(u)

−
√

2π ve−v2/2w(u)
∫

dv′
∫

du′ ∆ρ(u′, v′) sgn(u′ − u) = 0 (55)

where we have introduced the scaled dimensionless variables

u =
GΣ
σ2
vz

z, v =
vz
σvz

, τ =
GΣ
σvz

t (56)

The function w′/w in the third term is the gravitational focusing coming from

the unperturbed distribution of the stars.

To proceed, we first try to linearize the problem (thus losing Landau damp-

ing) for small u. In doing so, however, to be self-consistent, we must at the



same time linearize the unperturbed distribution ρz, i.e.

w ≈ w(0)e−2πw(0)u2

ρz ≈ GΣ2w(0)√
2π σ3

vz

e−v2/2−2πw(0)u2
(57)

Substituting Eq.(57) into Eq.(55) gives

∂∆ρ

∂τ
− ω0

∂∆ρ

∂φ
−
√

2π ω2
0r sinφ

ω2
0

4π
e−ω2

0r
2/2

×
∫ ∞

0

r′dr′
∫ 2π

0

dφ′ ∆ρ(r′, φ′, τ) sgn(r′ cosφ′ − r cosφ) = 0 (58)

where

u = r cosφ,
v

ω0
= r sinφ, ω0 =

√
4πw(0) (59)

Consider a collective mode

∆ρ = e−iΩτ
∞∑

m=−∞
Rm(r)e−imφ (60)

Charge conservation requires that

∫ ∞

0

4πrdr R0(r) = 0 (61)

Eq.(58) becomes

−iΩRm(r) + imω0Rm(r) − ω4
0

4π
√

2π
r e−ω2

0r
2/2

∫ 2π

0

sinφdφ eimφ

×
∫ ∞

0

r′dr′
∫ 2π

0

dφ′
∞∑

m′=−∞
Rm′(r′)e−im′φ′

sgn(r′ cosφ′−r cosφ) = 0 (62)

Integration over φ′ and after some algebraic manipulations, we obtain

−iΩRm(r) + imω0Rm(r) − ω4
0√
2π

e−ω2
0r

2/2

∫ ∞

0

r′dr′
∞∑

m′=−∞
Rm′(r′)

× im−m′−1m

∫ ∞

−∞

dk

k2
Jm(kr)Jm′(kr′) = 0 (63)



The case of m = 0 is a special mode. It is the static eigenmode with

Ω = 0, m = 0 (64)

while the corresponding eigenfunction R0(r) is arbitrary as long as it satisfies

Eq.(61).

We now decompose Rm(r) as

Rm(r) =
(
ω0r√

2

)|m|
e−ω2

0r
2/2

∞∑
n=0

amn L(|m|)
n

(
ω2

0r
2

2

)
(65)

where L
(m)
n ’s are the generalized Laguerre polynomials. Using their orthogo-

nality properties, and applying to both sides of Eq.(63) by (for chosen m and

n) ∫ ∞

0

rdr

(
ω0r√

2

)|m|
L(|m|)
n

(
ω2

0r
2

2

)
(66)

we obtain

−i(Ω −mω0) amn (67)

−
√

2ω0

∞∑
m′ =−∞

m+m′=even

∞∑
n′=0

am′n′
mi|m|−|m′|−1(|m|+|m′|+2n+2n′−3)!!

(|m| + n)!n′! 22n+2n′+|m|+|m′| = 0

The infinite matrix equation (67) is then solved for the eigenmode frequency

Ω. Instability of the perturbations of type Eq.(54) is to be identified with

complex solution of Ω, but it is found that all eigenvalues of Ω are real. We

conclude that the planar galaxy is stable against longitudinal perturbations of

the form (54). The largest “frequency shift” occurs for the m = 1 mode with

Ω/ω0 ≈ 1.37. Instabilities, if any, will have to involve transverse dynamics.


