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Abstract

We examine the contributions to rare processes that arise in models where the

Standard Model fermions are localized at distinct points in compact extra dimensions.

Tree-level flavor changing neutral current interactions for the Kaluza-Klein (KK) gauge

field excitations are induced in such models, and hence strong constraints are thought

to exist on the size of the additional dimensions. We find a general parameterization

of the model which does not depend on any specific fermion geography and show that

typical values of the parameters can reproduce the fermion hierarchy pattern. Using

this parameterization, we reexamine the contributions to neutral meson mixing, rare

meson decays, and single top-quark production in e+e− collisions. We find that is it

possible to evade the stringent bounds for natural regions of the parameters, while

retaining finite separations between the fermion fields and without introducing a new

hierarchy. The resulting limits on the size of the compact dimension can be as low as

TeV−1.
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1 Introduction

In recent years there has been much interest in the possibility that there may exist compact

extra dimensions with sizes far above the Planck length. In particular, the possibility of

TeV−1-sized extra dimension arises in braneworld theories [1, 2, 3, 4, 5, 6]. By themselves,

they do not allow for a reformulation of the hierarchy problem, but they may be incorporated

into a larger structure in which this problem is solved, such as the case of large extra

dimensions [7, 8, 9]. In the scenario with TeV−1 extra dimensions, the Standard Model

(SM) fields are phenomenologically allowed to propagate in the bulk. These models are hence

subject to stronger experimental constraints and have distinct experimental signatures from

the case where gravity alone is in the bulk.

There are many possibilities for how to place the Standard Model fields in the TeV−1

bulk. In the universal extra dimensions scenario all fields see the extra dimensions, giving rise

to a conserved parity that relaxes direct production and precision electroweak constraints,

and may provide a dark matter candidate [10, 11, 12, 13]. The effects of universal extra

dimensions in rare processes have been considered in [14, 15, 16, 17]. It is also possible

to localize the fermions without localizing the bosons, which allows for the gauge fields

to propagate freely throughout the bulk. More recently it was noticed by Arkani-Hamed

and Schmaltz (AS) that one could localize different fermion species at different points in

the TeV−1 extra dimensions [18]. These “split fermion” models naturally suppress many

dangerous operators, particularly those inducing proton decay. They also can naturally

generate large Yukawa hierarchies; and it has been shown by multiple authors that there

exist models which can generate the correct spectrum of fermion masses, as well as the

correct magnitudes for CKM matrix elements [19, 20, 21]. The most stringent generic limits

in this case arise from precision electroweak measurements, which place the compactification
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radius at R . 2 − 4 TeV−1 [22, 23, 24, 25].

This makes the split fermion scenario an attractive possibility for the origin of the

Yukawa hierarchy. However, split fermions (like most models of the fermion spectrum) are

also capable of generating large flavor changing neutral currents (FCNC). The magnitude

of these currents in the neutral meson sector has been estimated by several groups, and

apparently generate strong constraints[21, 26, 27, 28]. In this paper we reexamine these

computations to derive more model independent constraints on split fermion models arising

from FCNC and show that it is possible to evade the stringent bounds for natural regions of

the parameters.

This paper is organized as follows. In Section 2 we set up the split fermion scenario

in as much generality as possible and give statistical arguments to demonstrate that they

can account for the observed fermion spectrum. We then describe how FCNC are generated

in this scenario. In section 3 we calculate the effects on neutral meson oscillation. Section

4 presents the effects on rare B decays, and single top production in e+e− collisions, and

Section 5 concludes.

2 The Model of Split Fermions

Here, we construct a very general model that characterizes the effects of separating the

Standard Model fermions in an extra dimension. We start by examining the original model

considered by AS.

In the AS model there is one extra dimension, which is taken to be flat. It is possible

that this extra dimension is actually a “brane” with a finite width embedded in some other

extra-dimensional scenario. For this reason TeV−1 dimensions are often called “fat branes”,

but they need not be tied to other models. Note that if the brane is not a string theory
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object, but arises from some field theory mechanism, then it necessarily has finite extent

in the extra dimensions. This makes the study of fat branes essential to building realistic

field-theoretic models of extra dimensional scenarios.

In this model the Standard Model fields are localized to the brane. Note that the

word brane here refers to any mechanism for achieving this localization. It may or may not

be the same as the branes encountered in string theory. Initially, all fields are allowed to

propagate in the entire dimension. In addition to the fields present in the Standard Model,

there is a real scalar field which couples to the fermions, but not to the gauge bosons or the

Higgs.

If the scalar has a Z2-symmetric potential, then it can develop a stable solution which

tunnels from one of the vacua to the other, called a kink solution. A mechanism for localizing

fermions to a thin but finite width region inside a domain wall has been known for some time

[29]. There it was noted that in 1+1 dimensions a massless fermion with a Yukawa coupling

to a scalar field that has a kink-profile vacuum expectation will develop a zero mode, with a

Gaussian profile centered at the location of the kink. This can be trivially extended to more

dimensions by considering a domain wall instead of a soliton and making all zero modes

constant in the transverse directions. Note that a five-dimensional fermion field contains

two four-dimensional fermions, one of each chirality. If the extra dimension is infinite, then

the zero-mode of only one chirality is normalizable. If the extra dimension is finite then

something else is needed to produce chirality. A standard procedure is to compactify the

dimension on an S1/Z2 orbifold, which projects out the unwanted chirality. A nice side-effect

of this is to render the kink absolutely stable.†

In contrast to the fermion sector, the gauge bosons are free to propagate throughout

the extra dimension. Since the dimension is compact, and flat, the mass spectrum of the

†It is interesting to think that if one invokes a mechanism to localize the gauge bosons, as in [30], then
one could have a fat brane residing in an infinite dimension.
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Kaluza-Klein gauge states is linear with M2
n = n2/R2, and the orbifold boundary conditions

project out the odd solutions, so the wavefunctions along the fifth dimension, y where 0 ≤

y ≤ R, are

A(n)µ(x, y) =

√

2

R
cos(

nπy

R
)Aµ(x) (n ≥ 1), (1)

where R is the size of the extra dimension. Putting all this together allows investigation of

brane world models where there is a single extra-dimension of roughly inverse TeV size with

fermions localized in the center and gauge bosons propagating though the entirety.

A more interesting picture can be obtained by thinking about the fermion localization

mechanism. There is a simple heuristic for why this should occur. The fermion is Yukawa

coupled to a scalar field which develops a non-zero VEV. The ordinary fermion Higgs phe-

nomena should then give the fermion a mass. However, the VEV is position dependent and

in particular there is a place where it is zero (the center of the kink). So the fermion has

a position dependent mass, which is somewhere zero. Thus, the fermion is easiest to excite

near the zero mass, and so most of the probability for the lowest lying state (the zero mode)

will live near the center of the kink.

Given that heuristic, it should be reasonable that if the 5D fermion has a massM , then

the center of the Gaussian moves to y = M/2µ2, where µ is the slope of the kink profile, and v

is the scale of the VEV. Indeed, it turns out that this is the case, as was first noted by Arkani-

Hamed and Schmaltz [18]. This allows different fermion fields to be localized at different

points in the extra dimension. To see why this is desirable, consider an operator, O, that

involves fermions separated by a distance d. The effective 4D coupling in the dimensionally

reduced theory is proportional to the integral over the extra dimensions of the wavefunctions

of all fields appearing in O. Since the fermion wavefunctions are Gaussian, this gives a

suppression proportional to e−aµ2d2

, where a depends on the operator being considered. This
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has been shown to be very effective at suppressing dangerous higher-dimensional operators,

such as proton decay. Additionally, the fact that exponentially different couplings can result

from linear separations provides a natural means of explaining the fermion mass hierarchy.

Lighter fermions have greater separation between their left and right handed components.

In this way Arkani-Hamed and Schmaltz proposed a theory to explain the Yukawa hierarchy

without invoking new symmetries, and which is safe from proton decay. Several authors

have proposed specific “geographies” that do indeed reproduce the correct fermion masses,

as well as the CKM parameters [19, 20, 21].

There are, however, other potentially dangerous effects of the fermion separation

which are not suppressed by this mechanism. The gauge bosons will have a Kaluza-Klein

(KK) tower of states. The zero modes, which are flat in the extra dimensions, correspond

to the SM gauge fields, and have the correct couplings to the fermion zero modes. On

the other hand, the excited states have cosine profiles, as given in Eq. (1).‡ The coupling

strength of these modes to the fermions are scaled by an integral over the overlap of the

fermion and gauge wavefunctions. However, since the height of the boson wavefunction will

be different at the locations of the different fermions, there will be non-universal couplings

of a single gauge KK-state to different fermion species. This leads to the possibility of flavor

changing interactions, including tree-level neutral currents, for the KK-modes of the γ, Z,

and gluon, as illustrated in Fig 1. One then expects large effects to come from the tree-level

contributions of the KK gluon states to FCNC processes, in particular to neutral meson

oscillation. Calculation of these effects can put limits on the size of the extra dimension.

Also, note that while this discussion was motivated by the kink model, these issues will be

relevant to any model with split fermions. This is an example of the general principle that

any attempt to explain the Yukawa hierarchy will necessarily treat flavors differently, and

will tend to generate large flavor-changing effects.

‡In general they are exponentials, einy, but the orbifolding projects out the odd modes.
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Figure 1: Feynman diagram for the tree-level KK gauge exchange mediating neutral meson oscil-
lation.

In practice, geography independent constraints have been difficult to obtain due to

the large number of parameters in the model. These are, R, σ, the width of the fermion

wavefunctions (which is 1/µ in the kink model), and (dn−d) positions, where d is the number

of extra dimensions and n is the number of independent fermion fields. Previous discussions

[21, 26, 28] have put constraints on R only by first obtaining a single set of positions that

reproduce the Yukawa couplings of the Standard Model, and calculating the flavor-changing

effects in that particular geography. However, one would like a more model-independent way

of understanding the magnitude of flavor effects in this class of models.

To accomplish this we consider the problem of FCNC in split fermion models in as

much generality as possible. A specific, realistic model exists in string theory [28], as well as

the field theory example just presented. In summary, we abstract from these the following

points:

1. There exist one or more extra dimensions, compactified with a radius R.§

2. Each fermion field, ψi has a chiral zero mode that is localized near the center of the

§In one dimension the compactification is S1/Z2. In more dimensions we take the compactification to be
flat, and orbifolded in such a way that it looks like a simple product of single dimensions.
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dimension at yi, with Gaussian profiles ψ ∼ e−(y−yi)
2/σ2

, where the width σ � R.

If there is more than one extra dimension they are taken to be isotropic in those

dimensions ψ ∼ e−(~y−~yi)2/σ2

.

3. The gauge bosons are free to propagate in the entire “fat brane” part of the extra

dimension. (There may be a larger bulk accessible to gravity.)

4. The boundary conditions for the bosons are taken to be such that the wavefunction

for the n-th KK-mode is A ∼ cos(nπy/R). Note that these are generally the same

conditions that allow chiral zero modes for the fermions.

5. The field content (gauge group, number and charge of matter fields) is identical to the

Standard Model, plus whatever fields are necessary to localize the fermions.

These assumptions generate an effective four-dimensional Lagrangian that reduces to the

Standard Model at low energies. The new features present are the propagating gauge KK-

modes, their couplings, and the fact that the Higgs Yukawa couplings are determined by the

fermion locations.

We now construct the interaction Lagrangian for this scenario, focusing on the quark

sector in this paper. An analogous treatment of the leptonic sector can be performed.

Note that there are excited states of the fermion fields in addition to the KK boson states.

However, since the fermions are localized with a width smaller than R, the scale of the fermion

excitations will be significantly higher than that of the KK gauge states. In addition, the

fermion KK modes do not participate in the processes considered here. We therefore only

consider the fermion zero modes, while we include the complete KK-tower for the bosons.

With one extra dimension the coupling of the n-th KK boson to a flavor localized at the

scaled position ` = x/R is determined by the overlap of wavefunctions
∫ 1

0

dyψ̄(y)ψ(y)A(n)(y) '
∫ 1

0

dy cos (nπy) e−(y−`)2R2/σ2 ' cos (nπ`) e−n2σ2/R2

. (2)
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where y has now been normalized to R. For δ extra TeV−1 dimensions this generalizes to

c(~n)(`) ≡
(

δ
∏

k=1

cos (nkπ`k)

)

e−~n2σ2/R2

. (3)

The gauge coupling of the gluons, for instance, can then be written in flavor space as

Lint =
√

2gsG
A
(n)µ

(

d̄Lγ
µTAC

(n)
L dL + d̄Rγ

µTAC
(n)
R dR

)

+ (d → u) + h.c.. (4)

Here dL(R) is the vector of left (right) handed down-type quarks, d̄ = (d s b), gs is the SU(3)

coupling constant, and G(n)µ is the n-th KK gluon field. The diagonal matrices C
(n)
i are the

wavefunction overlaps given by Eq. (2). The factor of
√

2 arises from the rescaling of the

gauge kinetic terms to the canonically normalized value for all n.

Now, the Higgs zero mode, which is the Standard Model Higgs, is flat in the extra

dimension, H0 ∝ 1/R. Then the Yukawa couplings to the 4D Higgs field are given by

Rλ5

∫ 1

0

dyH0q̄LqR ' λ5

∫ 1

0

dy e−(y−yi)2/σ2

e−(y−yj )2/σ2 ' λ5e
−(yi−yj)2/σ2

. (5)

Here λ5 is an overall 5D coupling constant that is fixed to be O(1) by the top quark mass.

We write the 4D Yukawa couplings to (for instance) the down-type quarks in the flavor basis

as

LYukawa = d̄V
(d)†
R MdV

(d)
L d (6)

Where V
(d)†
R MdV

(d)
L is the matrix of Yukawa couplings with elements given by Eq. (5), and

Md is the diagonal mass matrix.

We can now write the relevant terms of the Lagrangian as

L = d̄LV
(d)†
R MdV

(d)
L dR + ūLV

(u)†
R MuV

(u)
L uR +

g√
2
W (0)

µ ūLγ
µdL

+

∞
∑

n=1

[√
2gsG

(n)A
µ

(

d̄Lγ
µTAC

(n)
L dL + d̄Rγ

µTAC
(n)
R dR

)

+ (d → u)
]

+ h.c. (7)
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After the usual transformation to the mass basis, the CKM-matrix is clearly the product

V
(u)†
L V

(d)
L . Note, however, the presence of non-universal couplings prevents the products

U
q(n)
i ≡ V

(q)†
i C

(n)
i V

(q)
i from being trivial, so there are flavor-changing interactions in the KK-

gluon sector. These also occur in the excited photon and Z couplings. However, those are

suppressed relative to the gluons by a factor of g/gs, so we expect that the KK-gluons will

dominate any process to which they contribute.

Before examining the numerical impact of the tree-level FCNC interaction in rare

processes, it will first be useful to get a handle on how far the fermions need to be separated.

It has been shown by Grossman and Perez [19] that there exists at least one set of positions

that correctly reproduces the observed fermion spectrum and magnitude of the CKM ele-

ments. They found that, subject to a certain set of naturalness assumptions, there was a

single solution. A different solution was found in [21] by choosing different up and down-type

Yukawa coupling constants in the 5D theory. Typical separations in these solutions are from

1− 20 units of the fermion width. In what follows, we parameterize the separation between

2 fermions in units of the width, i.e. ∆y = yi − yj = αijσ, and treat αij as phenomenological

parameters. In addition, we find it useful to define ρ = σ/R.

As a counterpoint to the studies in [19] and [21] we have performed a simple Monte-

Carlo analysis in an attempt to see how large of a hierarchy is generated naturally for fermions

randomly distributed on an interval. To do this we randomly draw fermion positions from

a distribution flat on the interval [0, αmax], and use these to compute the Yukawa matrices

from Eq. (5). We then compute the singular values of these matrices, which are the fermion

masses. We can get a sense of the hierarchy by taking a particular Yukawa matrix (say the

up-type) and finding the ratio of the largest to smallest singular value. In Fig 2 we show a

histogram of the log of this ratio for αmax = 15. For comparison we have computed the same
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value for a “null hypothesis” where instead of the split fermion scenario, the entries of the

Yukawa matrices themselves are drawn directly from a distribution flat on the interval [0, 1].

As expected, the case of split fermions clearly generates a much larger hierarchy. What is

surprising is that one needs to set αmax ≈ 10−15 before a hierarchy of six orders of magnitude

becomes common, while in [18] it was claimed this hierarchy could result from αmax ≈ 5.

The discrepancy is due to the fact that, while a separation of α = 5 will indeed generate

a matrix element of order 10−6, the singular values (which are the actual masses) of a full

Yukawa matrix with separations no larger than 5 will tend to be too large. We note that the

full fermion spectrum can be generated by ρ as large as 1/15, i.e. without introducing a new

large hierarchy between the compactification and fermion localization scales. Also note that

αmax represents the part of the extra dimension in which the fermions can be localized and

need not be the same as 1/ρ, which is the size of the dimension through which the gauge

bosons can propagate.

3 Constraints from Neutral Meson Oscillation

Significant effects from the flavor-changing gluonic couplings should show up in neutral

meson oscillations. We start by examining the effects on Kaon mixing. The ∆S = 2 effective

Lagrangian from the single KK-gluon exchange depicted in Fig. 1 is

L∆S=2
eff =

2

3
g2

s

∞
∑

~n=1

1

M2
n

∑

i,j=L,R

U
d(n)∗
i(sd) U

d(n)
j(ds)s̄iγ

µdis̄jγµdj

=
2

3
g2

s

(

∑

i,j=L,R

V d
i(11)V

d∗
i(12)V

d∗
j(11)V

d
j(12)

× ×
∞
∑

n=1

(cos(nπxdi
) − cos(nπxsi

))(cos(nπxdj
) − cos(nπxsj

))

M2
n

e−ρ2n2

)

. (8)
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Figure 2: Histograms of 105 random trials of the size of the fermion hierarchy, log(m1/m3), where
m1 is the largest and m3 the smallest mass for a single Yukawa matrix. Main graph: In the split
fermion model where the positions are randomly drawn on the interval [0, 15] in units of the fermion
width. Inset: In a “null hypothesis” where the Yukawa matrix elements are randomly drawn from
the interval [0, 1].

Here, the xi are the positions of the d quark fields, yi of the s quark, and we have used the

unitarity of the V ’s (here, we have approximated this with 2 × 2 unitarity, we discuss the

third-generation effects below). We are especially interested in the form of the sum over the

KK-modes. While KK-sums are usually divergent in more than one extra dimension and

require a cutoff, ours contains a natural cutoff arising from the finite width of the fermion

zero mode, and hence is convergent for a number of extra dimensions δ ≥ 1. This is simple

to understand physically. The cutoff sets in when the wavelength of the KK-mode is of order

the fermion width, which occurs at R/nmax = σ. At higher momenta the wavefunction of

the boson is oscillating many times within the fermion allowing it to resolve the fermion’s
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wavefunction, and exponentially decouples. The fact that this cutoff arises naturally in

the field theory model is an attractive feature of that particular mechanism for fermion

localization.

In one additional dimension the sum converges even without the exponential sup-

pression. In this case it is insensitive to the value of ρ and can be computed analytically by

ignoring the exponential factor. To do this we need to evaluate

F (x, y) ≡
∞
∑

n=1

(cos(nπx) − cos(nπy))2

n2
, (9)

and

G(x, y) ≡
∞
∑

n=1

(cos(nπx1) − cos(nπy1))(cos(nπx2) − cos(nπy2))

n2
. (10)

The computations for these sums are presented in the appendix. The final result is

F (x, y) =
π2

2
|x− y|, (11)

and

G(x1, y1, x2, y2) =
π2

2
(|x1 − x2| + |y1 − y2| − |x1 − y2| − |x2 − y1|). (12)

This tells us that the flavor changing effects depend, as expected, on any nonzero separation

between fermion fields.

The hadronic matrix elements for the gluonic contributions to Kaon mixing are given

by (computed in the vacuum insertion approximation)[31]:

〈K̄0|s̄Lγ
µdLs̄LγµdL|K0〉 =

1

3
f 2

Kmk (13)

〈K̄0|s̄Lγ
µdLs̄RγµdR|K0〉 = f 2

Kmk

(

1

12
+

1

4

(

m2
K

m2
d +m2

s

))
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as well as those with (L ↔ R), which have the same evaluation. Written out in full, the

contribution to ∆mK is then

∆mK =Re 〈K̄0|L∆S=2|K0〉

=
2

3
g2

sR
2

(

|V d
L 11V

d∗
L 12|2F (xdL

, xsL
)〈K̄0|s̄Lγ

µdLs̄LγµdL|K0〉

+ |V d
R 11V

d∗
R 12|2F (xsR

, xsR
)〈K̄0|s̄Rγ

µdRs̄RγµdR|K0〉 (14)

+ (V d
L 11V

d∗
L 12V

d∗
R 11V

d
R 12)G(xdL

, xsL
, xdR

, xsR
)〈K̄0|s̄Lγ

µdLs̄RγµdR|K0〉

+ (V d
R 11V

∗d
R 12V

∗d
L 11V

d
L 12)G(xdL

, xsL
, xdR

, xsR
)〈K̄0|s̄Rγ

µdRs̄LγµdL|K0〉
)

,

where xdL,R
are the positions of the d field, and the xsL,R

of the s. Note that all possible sep-

arations (between quark fields) are present, but some enter with different signs. In principle

then, the gluonic contribution could be made small for any values of R and ρ by placing

the quarks at appropriate places. However, the terms involving only right or left handed

fields occur with the same sign. So, to achieve significant reduction, cancellations must occur

between those terms and the terms which involve both chiralities. This involves tuning the

quark positions to the values of different hadronic matrix elements, which introduces a fine-

tuning problem. Otherwise, it would imply that the UV physics that localizes the quarks has

information about the IR behavior of QCD! We can therefore expect that cancellations will

be O(1) at most. This is seen clearly in the Monte Carlo trials, where the random positions

have no relation to the hadronic matrix elements and no significant cancellation occurs.

In light of this we can explore the magnitude of the flavor effects just by looking

at a single term in (14); for convenience we choose the first. We can then describe the

contributions with only three parameters: the radius R, the scale ratio ρ, and the separation

between one pair of fermions, α. The sum over KK-modes is then calculable in terms of

these parameters. Since R enters only in the mass in the KK propagator, we can write the
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contribution in the simple form

∆mK =
2

9
g2

sf
2
KmKR

2V 4Fρ(ρα) (15)

where V 4 stands for the appropriate product of 4 elements of the V u,d
L,R matrices, and, as

shown in (11), F (x, y) only depends on the difference of it’s arguments, so we can write it

as a function of only a single variable, given by the product ρα. The subscript on F reminds

us that in two dimensions or more F also depends on ρ directly as the cutoff parameter, in

which case it must be computed numerically. If we demand that this contribution to ∆mK

be no larger than the measured value (a conservative assumption from the point of view of

constraining the model) we get

1

R
≥ βK

√

V 4Fρ(ρα), (16)

where βK is a coefficient of dimension 1, which depends on the meson parameters. This

expression immediately generalizes to other neutral meson systems by using the appropriate

coefficient β, and the appropriate matrix elements of V . Table 1 shows the values of β for

cases of interest, along with representative values of Fρ(ρα).

The resulting constraints are shown in Fig. 3 and 4, for 1 and 2 extra dimensions

respectively, using the value of β and V 4 appropriate for the Kaon sector, and assuming

that the V are CKM-like in magnitude (we discuss that assumption in detail below). There

are two features of note. First, with one extra dimension the constraint is a simple square-

root function, as can be seen from Eq. (11). This means that the flavor-changing effects

can be made arbitrarily small by reducing ρ. That is, by increasing the hierarchy between

fermion and boson scales. Second, in two dimensions the effect seems to be roughly constant

in ρ, and flattens off at large α. We know that the sum over the KK states is diverging

logarithmically before it reaches the cutoff, and so it should be getting larger as ρ decreases.

However, shrinking ρ brings the fermions closer together making the flavor effects smaller.
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Figure 3: The behavior of the constraint on 1/R with α for various values of ρ. The area below
the curves is excluded. Note that the size of the additional dimension in units of the fermion width
is 1/ρ, so the curve for ρ = 1/10 ends at a maximal separation of α = 10.

In two dimensions these two effects are seen to roughly cancel. In three or more dimensions,

the divergence of the sum wins completely, and the bounds on R−1 are huge, effectively

removing these cases from consideration as realistic models.

In Figs. 5 and 6 we display our results for all meson mass differences, taking ρ =

1/100. For mixing in the Kaon sector and B0
d sector, the bound is set by demanding that the

new physics produce an effect which is no larger than the observed value. For D0 mixing,

the effect is restricted to lie below the current experimental bound. There is no experimental

upper bound on B0
s mixing, so we assume two values, one the size expected in the Standard

Model, the other about 4 times larger, corresponding to the curves labeled small and large,

respectively. Note that the most stringent constraints come from mixings involving the first

and second generation.

This pattern suggests a loop-hole in the otherwise stringent constraints. Namely, the

V matrices need not be CKM-like. Since the CKM matrix is the product V
(u)†
L V

(d)
L , the
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Figure 4: Constraints on 1/R from Kaon mixing for two extra dimensions; the area below the
curves is excluded.

observed CKM hierarchical structure could result from a completely different structure at

the level of the V i. If there is small first to second generation mixing the Kaon and D0

constraints will be relaxed, and all constraints would then be of order a few TeV, even for

large values of ρ.

However, in the previous calculation we ignored the third generation when imposing

the unitarity condition in Eq. (8). Transitions between two 4D mass eigenstates will involve

all three generations in the localization (flavor) basis. In this case the matrices U
(n)
i will

contain the positions of all three generations of quarks, and the unitarity conditions on the

V matrices will be changed. For instance, for the term in Eq. (14) with both left-handed

chiralities (and dropping the L index), in place of |V d
L 11V

d∗
L 12|2F (xd, xs) we should have

|V11|2V12V
∗
13F (xd, xs) + V ∗

11V12V
∗
32V31G(xd, xs, xb, xs)

+V ∗
31V32V

∗
13V11G(xb, xs, xd, xs) + |V31|2|V32|2F (xb, xs) (17)

These additional terms (including the ones not displayed above corresponding to right and
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Figure 5: Constraints from all species of neutral meson mixings for one extra dimension, taking
ρ = 1/100. See text for a description of the experimental values used. Note that the K0 and D0

results are separate lines that overlap due to a numerical coincidence.

Figure 6: Neutral meson constraints for two extra dimensions. The area below the curves is
excluded.
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ρ α = 1 α = 5 α = 10 α = 20 α = 50

1D

10−1 1.15 2.33 4.76 NA NA

10−2 0.036 0.23 0.48 1.00 2.45

10−3 0.0012 0.023 0.048 0.097 0.25

2D

10−1 2.05 3.82 3.59 NA NA

10−2 2.25 5.27 6.46 7.47 8.22

10−3 2.27 5.41 6.67 8.08 9.78

Meson β(MeV)

K0 1125.86

B0
d 478.01

B0
s 67.4346

D0 1124.23

Table 1: Left: Representative values of the sum Fρ(ρα) for one and two extra di-
mensions. Right: Multiplicative β factors for mass splittings of the neutral mesons;
1/R ≥ β

√

V 4Fρ(ρα).

mixed chiralities) will insure that in any mass splitting observable many mixing angles and

fermion separations will enter. It then becomes non-trivial to reduce ∆mK by adjusting

mixings alone. However, it is still possible to reduce the Kaon and D0 constraints by noticing

that the new terms contain fewer diagonal elements. Hence, if the weak and mass eigenbases

are not too badly misaligned, i.e. the V i have large diagonal elements and smaller off-

diagonal elements, then the strongest constraints may be relaxed somewhat. To get a better

sense of what is typically possible, we again run Monte Carlo simulations. From these we

learn that a typical suppression factor is 10−1 for the factors multiplying β in Eq. (16), 10−2

is not uncommon, and 10−4 is obtainable, but rare, even for the fairly large value αmax = 15.

This is illustrated in Fig. 7.

All of these considerations together show that once the parameter space is thoroughly

explored, it is possible to evade the large constraints from meson mixing for natural regions

of the parameters.
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Figure 7: Histogram of values of the factor H =
√

∑

V 4F (x, y) summed over the appropriate
fermion positions and V matrix elements.

4 Rare Decays

We also consider processes involving only a single flavor-changing vertex. The best examples

of this type which receive contributions from KK gluon exchange are rare B decays, such

as B → ψKS and B → φKS. The most interesting aspects of these decays are, of course,

their associated CP-violating asymmetries. However, since we have no control of the phases

present in split fermion models, we can’t address the new contributions to CP-violating

observables in a model independent fashion. However, there are tree-level strong coupling

contributions to these decays, so we can expect significant contributions to the branching

fractions in split fermion models.

The effective Lagrangian for a process with a single flavor change is exactly analogous

to (8), with the appropriate choice of elements in the matrices Uu,d
L,R. However, it turns out

that one such element is diagonal, and thus the sum depends on the absolute position of the
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Figure 8: KK sum for processes involving a single flavor changing vertex as a function of one of the
fermion positions, corresponding to the case where one of the fermions is localized at the orbifold
fixed point. The position of the third (flavor conserved) fermion, z, is varied in steps of one unit,
with z = 0 the top curve and z = 20 to the bottom. The sum is done for a single extra dimension
of size 20 units.

fermions. For instance, the analog of Eq. (11) is

F ′(x, y, z) =

∞
∑

n=1

cos(nπz)(cos(nπx) − cos(nπy))

n2

= −π
2

4

(

|z + x| + |z − x| − |z + y| − |z − y| + πx2 − πy2

)

. (18)

where z corresponds to the location of the quark at the flavor conserving vertex. This

additional complication turns out to be minor, as the actual magnitude of the sum is similar

to that in the previous case and does not vary much over the parameter space, as can be

seen from Fig. 8. Therefore, we continue to use our generic method of analysis.

We consider the decay amplitude

A(B → φKS) =
2

3
g2

sR
2
∑

i,j=L,R

F ′(xbi
, xsi

, xsj
)〈φKS|(s̄iγ

µbi)(s̄jγµsj)|B0〉 (19)
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The relevant matrix elements are [32]

〈φKS|(s̄Lγ
µbL)(s̄LγµsL)|B0〉 =

1

3
H

〈φKS|(s̄L,iγ
µbL,j)(s̄L,jγµsL,i)|B0〉 =

1

3
H (20)

〈φKS|(s̄Lγ
µbL)(s̄RγµsR)|B0〉 =

1

4
H

〈φKS|(s̄L,iγ
µbL,j)(s̄R,jγµsR,i)|B0〉 =

1

12
H.

Here, i, j are color indices, displayed explicitly in the non-singlet terms which now contribute.

The common factor is

H = 2(εφ · pB)fφm
2
φF+(m2

φ). (21)

There are an additional four matrix elements obtained by taking (L ↔ R). We use the

values fφ = 233 MeV [33], F+(m2
φ) = 0.38 [34], and mφ = 1020 MeV [35].

For the branching fraction we obtain (ignoring the O(1) differences among matrix

elements)

B(B → φKS) =
1

ΓB

1

16πmB

1

4
f 2

φm
4
φF

2
+(m2

φ)

(

∞
∑

n=1

Ud†
L(ss)U

d
L(bs)

n2

)2

(22)

≈ 2.7 × 10−5

(

V 4

0.22

)2(
R

1 TeV−1

)4
(

∑

i,j=L,R

F ′(xbi
, xsi

, xsj
)

)2

,

and similarly

B(B → ψKS) ≈ 1.7 × 10−3

(

V 4

0.22

)2(
R

1 TeV−1

)4
(

∑

i,j=L,R

F ′(xbi
, xsi

, xcj
)

)2

. (23)

Demanding that this not be larger than the observed rate gives the approximate constraints

1/R ≥ 1.3 TeV from B → φKS and 1/R ≥ 1.2 TeV from B → ψKS. These are not
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competitive with those from meson oscillation, but provide a good consistency check. It

is interesting to note that if a way can be found to reduce the constraints from the Kaon

sector to the few TeV scale without disturbing the b-quark couplings (say by arranging

the mixing angles), then this contribution to B → ψKS, φKS is of the same order as that

of the Standard Model, and any new phases in this scenario will indeed contribute to the

CP-violating observables with equal effects in each decay mode.

We have also estimated the contribution to anomalous top quark production at LEP.

Using the parameterization in [36] we find an effective anomalous flavor-changing vector

coupling vZ given by

vZeff =
(√

2 + 2 sin θWQ
)

M2
WR

2
∑

i,j=L,R

∞
∑

n=1

Uu
i(tu)U

l
j(ee)

n2
(24)

≈ 3.8 × 10−3

(

R

1 TeV−1

)2
∑

i,j=L,R

(

V 4

0.22

)

(

∑

i,j=L,R

F ′(xui
, xti , xej

)

)

(25)

The current constraint from LEP data is vZ ≤ 0.75 [37], so this observable does not signifi-

cantly constrain the model.

5 Conclusions

Models where the Standard Model fermions are localized at specific points along a compact

extra dimension offer an attractive means for constructing the fermion mass hierarchy and

suppressing dangerous operators such as proton decay. In these scenarios, the fermions obtain

narrow Gaussian wavefunctions in the additional dimension with a width much smaller than

the compactification scale. The fermion Yukawa couplings are then generated by the overlap

of the localized wavefunctions for the left- and right-handed fermions. Lighter fermions are

thus more widely separated than heavier ones.
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The gauge fields are free to propagate throughout the bulk in these scenarios and

their KK excitations develop tree-level flavor changing interactions which are proportional

to the overlap of their wavefunctions with those of the localized fermions. Gluons, as well

as the electroweak gauge bosons, then mediate flavor changing neutral current processes at

dangerous levels. Previously, it was thought that the only way to avoid stringent bounds

on the size of the compact dimensions was to minimize the separation of the fermion fields,

thus endangering the scenario’s natural explanation of the fermion hierarchy.

In this paper, we have reinvestigated these new FCNC interactions and have per-

formed a general, systematic, model independent analysis. Our results hold for any such

model of the fermion hierarchy with specific fermion geographies. We have employed a model

parameterization which contains only three parameters: the size of the extra dimension R,

the scaled width of the localized fermion ρ = σ/R, and the fermion separation distance

expressed in units of the width, ∆x = ασ. We performed a simple Monte Carlo analysis and

determined that the fermion mass hierarchy can be reproduced in our parameterization for

natural values of the parameters.

We then evaluated the KK gluon tree-level flavor changing contributions to neutral

meson oscillations. We found that the sum over the KK states is exponentially damped

for higher KK gauge states as the KK states can then resolve the finite size of the fermion

wavefunction. This allows us to perform the KK sum in a scenario with more than one extra

dimension. We then evaluated the constraints from Kaon mixing in the case of one extra

dimension and confirmed previous results that 1/R >∼ 100’s TeV for larger values of ρ unless

the separation was very small. However, the constraint shrinks to 1/R >∼ few TeV for smaller

values of ρ, even for widely separated fermions, at the expense of introducing a new hierarchy

between the compactification and fermion localization scales. The constraints from Bd and

Bs mixing were found to be much less restrictive. We also performed the evaluation for the
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case of two or more additional dimensions and found that the FCNC constraints were much

more difficult to evade.

We next studied the dependence of our constraints on the fermion mass mixing matri-

ces, and found that with a realignment of the matrix elements our bounds could be reduced

further by factors of 10-100.

In addition, we examined the rare meson decays Bd → ψKS, φKS, as well as single

top-quark production in e+e− collisions, and found weaker limits of the size of the extra

dimension of order TeV−1. We note that the KK gluon contributions to these rare decays

are significant enough to generate interesting effects in the related CP violation observables.

In summary, we have shown that once the parameter space is systematically explored,

it is possible to evade the stringent bounds from FCNC in split fermion models for natural

values of the parameters and without the introduction of any additional hierarchies. Lastly,

we note that the introduction of brane localized kinetic terms are known to significantly

reduce the couplings of gauge KK states [38, 39] and may help to even further reduce the

constraints from FCNC in these scenarios.
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6 Appendix

Here we present a cute way to perform the sum over KK modes analytically in one dimension,

and see that the sum is exactly linearly proportional to the separation.[40] The functions
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that we need are

F (x, y) ≡
∞
∑

n=1

(cos(nπx) − cos(nπy))2

n2
, (26)

and

G(x1, x2, y1, y2) ≡
∞
∑

n=1

(cos(nπx1) − cos(nπy1))(cos(nπx2) − cos(nπy2))

n2
. (27)

We can do both of these by evaluating

f(x) ≡
∞
∑

n=1

cos(nx)

n2
. (28)

So that

F (x, y) =
1

2
(f(2πx) + f(2πy) +

π2

3
− 2f(πx+ πy) − 2f(πx− πy)) (29)

G(x1, x2, y1, y2) =

[

f(πx1 + πx2) + f(πx1 − πx2) + f(πy1 + πy2) + f(πy1 − πy2)

− f(πx1 + πy2) − f(πx1 − πy2) − f(πy1 + πx2) − f(πy1 − πx2)

]

(30)

Writing the cos(nx) as two exponentials and combining the sums we have

f(x) =
1

2

∑

n 6=0

einx

n2
. (31)

The function f is then the solution of the differential equation

f ′′(x) = −1

2

∑

n 6=0

einx = −1

2

∞
∑

n=−∞

einx +
1

2
(32)

= −1

2

(

2π
∞
∑

k=−∞

δ(x− 2πk) − 1

)

. (33)
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This is solved by

H(x) = −1

2

(

π|x| − x2

2
− π2

3

)

, (34)

where H is defined on the interval [−π, π] and is 2π-periodic for other values (this takes care

of the sum over delta functions). We then have

f(x) = H(x) + αx+ β. (35)

Looking at the original function we see that we must have
∫ π

−π
f = 0 which gives β = 0.

Also, since f is an even function α = 0.

We can then use Eq. (35) in (29) and (30) and use the physical condition that all

arguments are positive to get the final result

F (x, y) =
π2

2
|x− y|, (36)

and

G(x1, x2, y1, y2) = −π
2

4

(

|x1 − x2| + |y1 − y2| − |x1 − y2| − |y1 − y2|
)

. (37)
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