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I. INTRODUCTION

The coupled-bunch beam breakup (bbu) problem in a
periodic linac excited by the resonance wake is well un-
derstood [1–3]. However, there are no systematic studies
for the corresponding problem excited by the resistive
wall impedance. This study of the resistive wall bbu
problem is necessitated by the recently proposed PERL
project [4]. For PERL, the light source consists of twelve
undulators, each twelve meters long, totally 144 meters.
The beam is shielded from the environment by circular
copper pipes of a very small radius b=2.5 mm. The pro-
posed injection cycle is twelve hours. It is crucial to know
if the PERL beam can survive the bbu. We present our
theoretical results for the resistive-wall coupled-bunch
beam breakup problem in this paper. Some of the re-
sults obtained here has been briefly reported in Ref. [5].

The paper is organized as follows: In Sec. II, we set
up the equations of motion and then solve the related
eigenvalue problem. Physically, the eigenfunction so ob-
tained describe the beam coherent-oscillation of an “ex-
tended problem”. In Sec. III, we give a formal solution
for the initial value problem. The solution consists of an
integral representation for the transverse position of the
M -th bunch at a longitudinal position z in terms of the
eigenfunctions obtained in the previous section [6]. The
asymptotic limit, M → ∞, of the transient solution is
then obtained in Sec. IV for two extreme cases: the No
Focusing (NF) case and the Strong Focusing (SF) case.
In Sections II ∼ V, we treat the case where only one
bunch is offset initially. While in Sections II ∼ IV, we
treat the case where every bucket of the linac is filled
by the same amount of charge, we treat in Section V
the case where the filling pattern is such that the beam
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has periodically unfilled gaps. The results of the section
V is compared to the results of the preceding sections.
The conclusion we draw from the comparison is that the
asymptotic resistive-wall coupled-bunch bbu is a locally
averaged current problem. In Section VI we go back to
the problem where each bucket is symmetrically filled.
The difference between this section and the section IV is
that here we treat the case where initially the transverse
position of every bunch is offset by the same amount –
injection error. By comparing the results of Section VI
with those of Section IV, we observe “Screen Effects” for
the injection error case.

II. EQUATION OF MOTION AND THE
EIGENVALUE PROBLEM

An electron bunch train consisting of a series of iden-
tical point like bunches passes through a circularly cylin-
drical pipe of radius b and conductivity σ. The entrance
to the pipe is located at z = 0, and the M -th bunch,
M = 0, 1, 2..., moves in the z direction according to
z = c t − M cτB, where τB is the bunch separation in
units of seconds. Inside the pipe, the equation of motion
for a particle in the bunch M is

Ô yM ≡ y′′M(z) + k2
yyM(z) =

M−1∑
N=0

S(M −N)yN(z) , (1)

where the prime “′” stands for d/dz. The right hand side
of Eq. (1) represents the effects of the wake force , and
for the resistive wall wake [7]

S(M) = a/
√
M , (2)

with

a = 4
IB
IA

1
b3
δskin , (3)

where IB = eNB/τB, eNB = bunch charge, IA ≡
4 π εo mc3γ/e = γ IAlfvèn, IAlfvèn ≈ 17, 000 Amp, γ=the
relativistic energy factor, and δskin =

√
2/µoσωB = the
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skin depth corresponding to the bunch frequency fB =
ωB/2π = 1/τB. We ignore the effects of the wake force
of a bunch on itself; as a consequence, the upper limit of
the sum in Eq. (1) is M − 1 instead of M . The thickness
of the beam pipe is assumed to be ∞ for convenience.
Also notice that the bunch N is in front of the bunch M
if M > N .
In writing the above equations, we assumed the linac to

be uniformly filled. For such a case, the locally averaged
current Iaverage = IB. For the case of non-uniform filling,
an example of that will be discussed in Section V, the
equation (1) has to be modified.
The right hand side of Eq. (1) is a convolution sum,

therefore, it can be diagonalized by a Fourier transform.
Define

F (θ) =
∞∑

M=1

1√
M

eiM θ , (4)

and

ξ(θ, z) =
∞∑

M=0

yM(z)eiM θ , (5)

then

yM(z) =
1
2π

∫ π

−π

dθ e−iMθξ(θ, z) , (6)

and

ξ′′(θ, z) + k2
yξ(θ, z) = aF (θ)ξ(θ, z) . (7)

The last equation is an eigenvalue equation, with the
parameter θ playing the role of distinguishing different
eigenvalues. For the coherent mode θ, we see from Eq.
(5) that the parameter θ is the phase difference of the ad-
jacent bunches in this mode. Recall that in a storage ring,
a symmetric coupling bunch mode n is characterized by
the Courant-Sessler phase factor exp(i 2 π n/h) [8], where
h is the number of the bunches in the ring. We can think
of the phase exp(iθ) as the limit of the Courant-Sessler
factor as both n and h → ∞ while n/h = θ remains
finite. The eigenvalue for the mode θ is, from Eq. (7),

kc(θ) =
√
k2

y − aF (θ) , (8)

and the corresponding eigenvetors are

cos[kc(θ)z], or sin[kc(θ)z] (9)

The function F (θ) can be written as [9]

F (θ) =

√
iπ

θ
+

∞∑
n=0

ζRiemann

(
1
2
− n

)
(iθ)n

n!

≈
√
iπ

θ
− 1.460− 0.208 i θ+O(θ2) , (10)

where ζRiemann(x) is the Riemann’s Zeta function. The
function F (θ) has a branch point at θ = 0, therefore,

through Eq. (7), ξ(θ, z) also has a singular point at the
same position. Since Eq. (6) is the inverse of Eq. (5)
and we look for yM with M > 0, causality requires this
singularity to lie below the contour of Eq. (6) on the θ
plane. In order to explain this point more clearly, let us
introduce

ζ ≡ eiθ . (11)

In term of this variable, Eqs. (4) ∼ (7) become

F (ζ) =
∞∑

M=1

1√
M

ζM , (12)

ξ(ζ, z) =
∞∑

M=0

yM(z)ζM , (13)

yM(z) =
1
2πi

∮
dζ ζ−(M+1)ξ(ζ, z) , (14)

and

ξ′′(ζ, z) + k2
yξ(ζ, z) = aF (ζ)ξ(ζ, z) . (15)

When expressing a function of θ, for example the func-
tion F (θ), in terms of ζ, we write F (ζ) = F (θ) above
instead of creating a new symbol; this should not intro-
duce any unnecessary confusion. We adopt this conven-
tion throughout this paper. The singularity of F (θ) at
θ = 0, corresponds to a singularity of F (ζ) at ζ = 1. The
singular part of F (ζ) is

F (ζ) ∼=
√

π

1− ζ
for ζ → 1 . (16)

Equation (13) is a power series expansion of the func-
tion ξ in the variable ζ. The radius of the convergence
circle of this series is 1, since the closest singularity of ξ
is at ζ = 1, i.e., at θ = 0. From the residue theorem, Eq.
(14) is clearly the inverse of Eq. (13) provided that the
integration contour lies inside of the convergence circle,
and the contour encircle the origin ζ = 0 counterclock-
wise. It is convenient to take the contour to be the unit
circle and the singularity to be located at ζ = 1+ ε with
a small and positive ε. On the ζ-plane, we make a cut on
the real axis from ζ = 1 + ε to ζ = ∞, and make all the
following calculation on the first sheet of the Riemann
surface. Expressed in the θ variable in Eq. (6), the sin-
gularity is at θ = − i log(1 + ε), i.e., below the contour
of Eq. (6). The cut on the θ-plane is at the lower-half of
the imaginary axis, i.e., θ from −iε to −i∞.
We solve in the next section the transient bbu problem

by relating it to the coherent solutions given by Eqs. (8)
and (9).
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III. INITIAL VALUE PROBLEM

One can carry out the bbu calculations in terms of ei-
ther the ζ or the θ variable. We choose to use the variable
ζ here. (The paper [5] is carried out in the variable θ.)
We show in this section that the transient solution to

the equation of motion (1) is

yM(z) = yM0 cos(kyz) + y′M0 sin(kyz) /ky

+
1
2πi

M−1∑
N=0

yN0

∮
dζ ζ−(M−N+1) cos[kc(ζ)z]

+
1
2πi

M−1∑
N=0

y′N0

∮
dζ ζ−(M−N+1) sin[kc(ζ)z]

kc(ζ)
,

(17)

where yM0 and y′M0 are, respectively, the initial values
(values at z = 0) of yM(z) and y′M(z).
First, we find the transient solution of Eq. (7). This

equation yields

ξ̃(ζ, s) =
s ξ(ζ, 0) + ξ′(ζ, 0)
s2 + k2

y − aF (ζ)
, (18)

where

ξ̃(ζ, s) ≡
∫ ∞

0

dz ξ(ζ, z) e−sz. (19)

After carrying out the inverse Laplace transform of (19),
using (18), we obtain

ξ(ζ, z) = ξ(ζ, 0) cos[kc(ζ)z] + ξ′(ζ, 0)
sin[kc(ζ)z]
kc(ζ)

. (20)

In order to obtain (17), we substitute the above result
(20) into (14) and then use ξ(ζ, 0) =

∑∞
M=0 yM,0ζ

M and
ξ′(ζ, 0) =

∑∞
M=0 y

′
M,0ζ

M . The result is (17). We shall
apply the solution (17) to some specific cases in the next
section.

IV. INITIAL SINGLE BUNCH OFFSET

We study in this section the equation (17) for the
case where only the first bunch, i.e. M = 0, is ini-
tially offset transversely from the center of the chamber,
yM0 = y00δM,0, and y′M0 = 0, ∀M . In this case, Eq. (17)
becomes, for M 
= 0,

yM(z) =
1
2πi

y00

∮
dζζ−(M+1) cos[kc(ζ)z]

≡ y00

4π

[
η
(+)
M (z) + η

(−)
M (z)

]
, (21)

where

η
(±)
M (z) ≡ 1

i

∮
dζ exp

{
Ψ(±)

M (ζ)
}
, (22)

with

Ψ(±)
M (ζ) = ±ikc(ζ)z − (M + 1) log(ζ) . (23)

We wish to find the asymptotic behavior of yM as given
by Eq. (21) as M → ∞; we shall use the well known
saddle point method for this purpose.
The asymptotic behavior of the integral (21) is de-

termined by the behavior of cos[kc(ζ)z] near ζ = 1,
or θ = 0, where the phase difference between adjacent
bunches approaches zero. In other words, the saddle
point ζsaddle → 1, or equivalently, θsaddle → 0 in the
limit of M → ∞. The behavior of cos[kc(ζ)z] near ζ = 1
is, from Eq. (8), controlled by the behavior of F (ζ) in
the same neighborhood, where F (ζ) is given in Eq. (16).
We shall use the approximation for F (ζ) in Eq. (16)
throughout the rest of this paper. Combining the last
expression with Eqs. (8), (15) and (16), we have

kc(ζ) =
√
k2

y − a
√
π/(1− ζ) , (24)

and

ξ′′(ζ, z) + k2
yξ(ζ, z) = a

√
π

1− ζ
ξ(ζ, z) . (25)

The last equation together with the equation(14) make
up the basis for the remainder of this section.
We shall carry out below the asymptotic analysis of

the following two cases:
First Case: This is the case where either ky = 0, orM is
so large that the a

√
π/(1− ζ) term dominate over k2

y in
Eq. (24). As a consequence, we can use the approximate
expression

kc(ζ) = a1i(1− ζ)−1/4 (26)

where a1 =
√
a
√
π. This case will be referred to as the

no focusing case. Clearly, in order for this approximation
to be valid, the condition |a1(1− ζNF)−1/4| 
 ky, has to
be satisfied, where ζNF is the saddle point.
Second Case: This is the case where M is so large that
Eq. (16) is valid, and yet k2

y in Eq. (24) dominates over
the a

√
π/(1− ζ) term. As a consequence,

kc(ζ) ∼= ky − 2a2(1− ζ)−1/2 , (27)

where a2 = a
√
π/(4ky). We shall refer to this case as the

strong focusing case. The condition for the validity of
this approximation is ky 
 |a1(1 − ζSF)−1/4|, where ζSF

is the saddle point.
The remainder of this section is devoted to detailed

treatment of these two cases.

A. No Focusing (NF) case

We wish to carry out the saddle point analysis to the
integrals (21) and (22) with

Ψ(±)
M (ζ) = (M + 1)[∓4α1(1− ζ)−1/4 − log(ζ)] , (28)
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Ψ̇(±)
M (ζ) = (M + 1)[±α1(1− ζ)−5/4 − 1/ζ] , (29)

and

Ψ̈(±)
M (ζ) = (M + 1)[∓(5/4)α1(1− ζ)−9/4 + 1/ζ2] , (30)

where “·” stands for d/dζ, and α1 ≡ a1z/[4(M+1)]. The
function Ψ(±)

M (ζ) has branch points at ζ = 0 and ζ = 1.
Let us draw cuts in the ζ plane from ζ = −∞ to 0, and
from ζ = 1 to ∞. The integral (21) is performed on the
first sheet of Ψ(±)

M (ζ) which is defined to be the sheet
where Ψ(±)

M (ζ) = real for 0 < ζ < 1.
The saddle point ζNF satisfies Ψ̇(±)

M (ζNF) = 0, or

(1− ζNF)5/4 = ±α1ζNF . (31)

This equation can not be solved algebraically. However
noting that α1 = O(1/M) is small in the limit ofM → ∞,
we solve the equation by perturbation. In terms of the
variable ζ̃ ≡ 1− ζ, Eq. (31) becomes, to the lowest order
in α1

ζ̃
5/4
NF = ∓α1 . (32)

Taking the fourth power of this equation, we have

ζ̃5
NF = α4

1 , (33)

yielding the solutions

ζ̃NF = α
4/5
1 (1, e±i2π/5, e±i4π/5) . (34)

The condition (33) is a necessary but not a sufficient
condition for saddle points, (for example, we took the
fourth power of Eq. (32) in order to obtain Eq. (33), we
might in doing so have introduced spurious solutions.)
Each of the solutions (34) has yet to be verified to be
a relevant saddle point. It is straightforward to verify
that ζ(−)

NF = 1−α
4/5
1 is the only saddle point of η(−), and

ζ
(+)
NF = 1−α

4/5
1 e±i4π/5 are the only saddle points of η(+)

we have to consider.
The saddle point contribution to η(±) satisfies

η
(±)
M ∝ exp

[
Ψ(±)

(
ζ
(±)
NF

)]
. (35)

Routine calculation gives the following results for the ex-
ponents:

Ψ(−)
M

(
ζ
(−)
NF

)
= 5(M + 1)α4/5

1 , (36)

and

Ψ(+)
M

(
ζ
(+)
NF

)
= 5(M + 1)α4/5

1 exp(±i4π/5) . (37)

Notice that the real part of Ψ(+) above is negative; there-
fore, η(+)

M → 0 in the limit of M → ∞. We shall ignore
the η(+)

M term in Eq (21).

In order to perform the saddle point integral for η(−)
M

we need, in addition to (36), the following

Ψ̈(−)
M

(
ζ
(−)
NF

)
=

5(M + 1)

4α4/5
1

. (38)

We notice that Ψ̈(−)
M

(
ζ
(−)
NF

)
∝ α

−9/5
1 ∝ M9/5 → ∞ very

fast, asM → ∞. Such sharp dependence of the integrand
of (22) in the neighborhood of the saddle saddle point
validates the saddle point approximation.
From the above discussion, the equation

yM(z) =
y00

4π
η
(−)
M (z) ∝ exp

[
Ψ(−)

(
ζ
(−)
NF

)]
(39)

together with Eqs. (36) and (38) are all we need for the
saddle point estimate of the present bbu problem. How-
ever, before stating the results, let us have a discussion
on the growth time tNF of the mode under discussion.
The M -th bunch reaches the linac at time t = MτB.

The quantity α1 in the expression (36) can be written in
terms of M and a. If we replace M or M +1 (recall that
M 
1) in the resulting Ψ(−) by t/τB, we obtain

Ψ(−)
M

(
ζ
(−)
NF

)
=
(

t

tNF

)1/5

, (40)

where the growth time

tNF =
τB
4π

(
4
5

)5 1
z4

1
a2

, (41)

and the result of the saddle-point integral is

yM(z) =
y00

4π
η
(−)
M (z)

=
y00

5
√
2π

(
tNF

t

)9/10
τB
tNF

exp

{(
t

tNF

)1/5
}

.(42)

So far we have been dealing with the case of a uniformly
filled linac. If the filling is not uniform, (some buckets
not filled,) the above results do not hold. In Section V,
we shall treat an example of such non-uniform case. In
order to facilitate later comparison, let us write Eq. (41)
for tNF in another form. Using Eq. (3), Eq. (41) becomes

tNF =
τB
π

16
55

b6

z4

1
δ2skin

I2
A

I2
B

. (43)

For the case of uniform filling, the IB = eNB/τB above
equals the locally averaged current Iaverage. Therefore
the above equation can be expressed as

tNF =
τB
π

16
55

b6

z4

1
δ2skin

I2
A

I2
average

. (44)

We shall compare later the above expressions (43) and
(44) with the corresponding result for a non-uniformly
filled beam.
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B. Strong Focusing (SF) case

The treatment of this case is similar to the NF case.
The exponent of the integrand of the integral (22) is, for
this case,

Ψ(±)
M (ζ) = ±ikyz

∓ i2a2z(1− ζ)−1/2 − (M + 1) log(ζ) . (45)

This function has branch points at ζ = 0 and ζ = 1. We
cut the complex ζ plane from ζ = −∞ to 0, and from
ζ = 1 to ∞. The first two derivatives of Ψ(±)

M (ζ) are

Ψ̇(±)
M (ζ) = ∓ia2z(1− ζ)−3/2 − M + 1

ζ
, (46)

and

Ψ̈(±)
M (ζ) = ∓i3

2
a2z(1− ζ)−5/2 +

M + 1
ζ2

. (47)

The saddle point condition Ψ̇(±)
M (ζSF) = 0 leads to

(1− ζSF)3/2 = ∓iα2ζSF , (48)

with α2 ≡ a2z/(M + 1). Since α2 → 0, as M → ∞,
we could again find the saddle points by a perturbation
method. The result is, to the leading order of α2,

ζSF =
(
1− α

2/3
2 eiπ/3, 1 + α

2/3
2 , 1− α

2/3
2 e−iπ/3

)
, (49)

where we write the solutions of Eq. (48) as elements of
a 1× 3 row matrix.
The equation (49) is a necessary but not a sufficient

condition for the saddle points. Simple algebraic calcu-
lations shows that the first element of the matrix (49) is
a saddle point of η(−)

M , and that the third element is a
saddle point of η(+)

M . The second element of (49) which
is > 1 and lies on the branch cut is not accessible to the
integration contour.
We need to evaluate Ψ(±)

M and Ψ̈(±)
M at the appropriate

saddle points. They are

Ψ(+)
M (ζSF,3) = +ikyz + 3(M + 1)α2/3

2 exp
{
− iπ

3

}
,

Ψ̈(+)
M (ζSF,3) =

3(M + 1)

2α2/3
2

exp
{
iπ

3

}
,

Ψ(−)
M (ζSF,1) = −ikyz + 3(M + 1)α2/3

2 exp
{
iπ

3

}
,

and

Ψ̈(−)
M (ζSF,1) =

3(M + 1)

2α2/3
2

exp
{
− iπ

3

}
.

Using these results, we obtain the following asymptotic
result for the displacement of the M -th bunch:

yM(z) =
2y00

3
√
2π

(
tSF

t

)5/6
τB
tSF

exp

{(
t

tSF

)1/3
}

× cos

[√
3
(

t

tSF

)1/3

− kyz +
π

6

]
, (50)

where the growth time for this mode

tSF ≡ τB

(
2
3

)3 1
a2
2z

2
, (51)

and again t = (M + 1)τB, or MτB since M is large
The results of this section have been applied to the

parameters of PERL in Ref [5]. The conclusion of that
study is that the PERL beam as designed can not survive
the resistive wall bbu without feedback dampers.

V. BEAM WITH PERIODIC GAPS

The bunch filling pattern considered in this section is
as follows: The beam is made of repetitive identical se-
quences where each sequence consists of p adjacent filled
buckets followed by q empty buckets; there are in total
r = p+ q buckets in a sequence.

A. Equations of motion

If all the buckets are filled, then

Ô yM ≡
(
d2

dz2
+ k2

y

)
yM =

M−1∑
N=1

S(M −N) yN , (52)

where, S(M) is the wake function given in Section II;
S(M) = 0 for M ≤ 0, and S(M −N) = a/

√
M −N for

M > 0. The parameter a is given by Eq. (3). Note that
we have made here a slight change of convention. We
designated the bunches as M = 1, 2, 3, ... above instead
of M = 0, 1, 2, ... as was done in Section II. We adopt
this new convention throughout this section.
We have to generalize the above equation to include

the case of a beam with periodic empty buckets. Let us
use the notation u = 1, 2, 3... for the sequence number,
and m = 1, 2....p for the bunch number in a sequence. It
is convenient to define, corresponding to each u a p × p
matrix S

(u) with its elements given by

S
(u)
m,n = S

(u)
m−n = S[ur + (m− n)] , (53)

where the range of u for S
(u) is u = 0, 1, 2, ....... Corre-

sponding to the above matrix, we define 1 × p column
vector

Y (u) ≡



yu,1

yu,2

...
yu,p


 (54)



6

where yu,m is the transverse displacement of the m-th
bunch in the u-th sequence.
The equation of motion for a beam with periodic gaps

can now be written in a compact form similar to Eq. (1),

ÔY (u) =
u∑

v=1

S
(u−v)Y (v) . (55)

We solve this equation in the next subsection.

B. Solutions

The m-th component of the equation of motion (55) is

Ôyu,m =
u∑

v=1

p∑
n=1

S
(u−v)
m−n yv,n . (56)

The following generalization of Eqs. (4) and (5) is con-
venient:

ξm(ζ) =
∞∑

u=1

ζuyu,m , (57)

∆m(ζ) =
∞∑

u=0

S
(u)
m ζu . (58)

Then the above three Eqs. (55) ∼ (58) lead to

Ôξm(ζ) =
p∑

n=1

∆m−n(ζ)ξn(ζ) . (59)

Once the solution of the last equation is found, the dis-
placement of the individual bunch is found by substitut-
ing the solution into the inverse of (57); namely,

yu,m =
1
2πi

∮
dζ ζ−(u+1)ξm(ζ) . (60)

The method we use to solve Eq. (59) is a generalization
of the method of Section IV. Note that for u → ∞,
the contribution to the integral (60) is dominated by the
behavior of the integrand near ζ = 1. Therefore we shall,
in analogy to what we did in Section IV, approximate
∆m by its singular part near ζ = 1. The singular part is
from [9]

∆m(ζ) ∼= a√
r

√
π

1− ζ
∀ m , (61)

and the corresponding approximation to Eq. (59) is

Ô ξm(ζ) ∼= ap√
r

√
π

1− ζ
ξm(ζ) , ∀ m . (62)

This equation together with Eq. (60) gives us the asymp-
totic behavior, u → ∞, of yu,m.

Observe the similarity of Eqs. (62) and (60) above to
the following equations we obtained earlier for the uni-
form filling case, (Eqs. (25) and (14),)

Ôξ(ζ, z) = a

√
π

1− ζ
ξ(ζ, z) , (63)

yM(z) =
1
2πi

∮
dζ ζ−(M+1)ξ(ζ, z) . (64)

The variable m appears as a passive parameter in Eqs.
(62) and (60). Also, these equations can be obtained
from Eqs. (63) and (64) by the following substitutions:

M, or (M + 1) → u , (65)
a → ap/

√
r . (66)

Therefore, we can obtain the results for Eqs. (62) and
(60) from the corresponding results for the uniform filling
case. We treat here the “No Focusing ” case correspond-
ing to the subsection IV-A. We specifically consider the
growth time tgap

NF for the beam with periodic gaps. The
“Strong Focusing ” case can be treated in a similar way.
We start from the exponent Ψ(−)

M as given by (36).
Expressing α1 in terms of a, this equation is equivalent
to

Ψ(−)
M

(
ζ
(−)
NF

)
= 5π1/5(M + 1)1/5(z/4)4/5a2/5 . (67)

Now applying the substitution rules (65) and (66) to Eq.
(67), we obtain

Ψ(−)
gap,u

(
ζ
(−)
NF

)
=
(

u

uNF

)1/5

, (68)

where

uNF =
1
4π

(
4
5

)5 1
z4

r

a2p2
(69)

is the growth time in units of sequences.
We have to translate u into time t. The bunch (u,m)

reaches the linac at t = (ur +m)τB ∼= urτB. Therefore
we should set u → t/rτB and

tgapNF = rτBuNF (70)

=
τB
4π

(
4
5

)5 1
z4

1
a2

r2

p2
(71)

=
τB
π

16
55

b6

z4

1
δ2skin

I2
A

I2
B

r2

p2
. (72)

These expressions differ from Eq. (41) or (43) by a factor
of r2/p2. However, this difference is superficial. Let us
calculate the average current of a sequence. It is clearly

Iaverage =
p

r
IB . (73)

In terms of Iaverage, the growth time becomes

tgapNF =
τB
π

16
55

b6

z4

1
δ2skin

I2
A

I2
average

. (74)

This is identical to (44). We therefore conclude that
the coupled-bunch resistive-wall bbu is a locally-averaged
current effect.
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VI. INJECTION ERROR AND SCREEN
EFFECT

In this section, we study Eq. (17) for the case where
bbu is started up by an injection error, i.e., all the
bunches are initially offset by the same amount, yM0 =
y00, and y′M0 = 0, ∀M ≥ 0. Then, Eq. (17) becomes

yM(z) = y00 cos(kyz)

− 1
2πi

y00

∮
dζζ−1(1 − ζ)−1 cos kc(ζ)z

+
1
2πi

y00

∮
dζζ−(M+1)(1− ζ)−1 cos kc(ζ)z

= y00 cos(kyz)− y00 cos(kc(0)z)

+
y00

4π

[
η
(+)
M (z) + η

(−)
M (z)

]
, (75)

where, η(±)
M (z) is given by Eq. (22) with

Ψ(±)
M (ζ) = ±ikc(ζ)z − (M +1) log(ζ)− log(1− ζ) . (76)

Compared with Eq. (23), Eq. (76) has an additional term
− log(1−ζ) on the right hand side. We shall see presently
that this term does not change the eigen solutions as
given in Secs II ∼ V, but it will change the transient
solutions. We shall also see that this term leads to an
interesting “Screen Effect”. From kc(0) = ky, Eq. (75)
becomes simplified to

yM(z) =
y00

4π

[
η
(+)
M (z) + η

(−)
M (z)

]
. (77)

Let us discuss as before two extreme cases: the No Fo-
cusing case and the Strong Focusing case.

A. No Focusing (NF) case

Similar to what was done in Sec. IV, we wish to carry
out the saddle point analysis to the integral (22) with the
exponent

Ψ(±)
M (ζ) = ∓a1z(1− ζ)−1/4− (M +1) log(ζ)− log(1− ζ) .

(78)
The first two derivatives of the exponent are

Ψ̇(±)
M (ζ) = ∓1

4
a1z(1− ζ)−5/4 − M + 1

ζ
+

1
1− ζ

, (79)

and

Ψ̈(±)
M (ζ) = ∓ 5

16
a1z(1−ζ)−9/4+

M + 1
ζ2

+
1

(1− ζ)2
. (80)

The saddle points are determined by Ψ̇(±)
M (ζNF) = 0,

i.e.,

0 = ∓1
4
a1z(1− ζNF)−5/4 − M + 1

ζNF
+

1
1− ζNF

, (81)

which can not be solved algebraically. However, since
the saddle points ζsaddle → 1 in the limit of M → ∞, we
could solve Eq. (81) by a perturbation method. In terms
of ζ̃ ≡ 1− ζ, Eq. (81) becomes

∓1
4
a1zζ̃

−5/4
NF ± 1

4
a1zζ̃

−1/4
NF + ζ̃−1

NF − 1 = M + 1 . (82)

Keeping the leading term in Eq. (82), we get

∓1
4
a1zζ̃

−5/4
NF = M + 1 . (83)

The last equation is identical to Eq. (32), and therefore
this yields the same first-order solution given in Eq. (34).
We select now the relevant saddle points by repeating
what we did before following Eq. (34), and then carry out
the saddle point integral corresponding to the exponent
(78). The result is

yM(z) = GNF
y00

5
√
2π

(
tNF

t

)9/10
τB
tNF

exp

{(
t

tNF

)1/5
}

,

(84)

where the growth time

tNF =
τB
4π

(
4
5

)5 1
z4

1
a2

, (85)

and

GNF ≡ 5
(

t

τB

)4/5 (
tNF

τB

)1/5

= 4
(

1
4πa2

)1/5(
M

z

)4/5

. (86)

It is very interesting to compare with the above result
(84) to the result (42) of the initial single-bunch offset
case. (1) The growth time tNF is the same for both
cases, as it should be, since tNF should depends only
on the eigen solutions. (2) The only difference between
the transient solutions is the factor GNF which is propor-
tional toM4/5 instead of toM , (recall that t ∝M .) This
is surprising: Since θsaddle

∼= 0, we would expect all the
bunches preceding the bunch M to excite this bunch by
the same amount leading to GNF ∝ M . Clearly, the pre-
ceding bunches are screening each other. (It can actually
be shown that for large but not too largeM , the function
GNF ∝ M .)

B. Strong Focusing (SF) case

Let us not go into detailed discussion of this case, since
the arguments are so similar to those of Section IV and
Section VI-A. We just list the results:
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yM(z) = GSF
2y00

3
√
2π

(
tSF

t

)5/6
τB
tSF

exp

{(
t

tSF

)1/3
}

× cos

[√
3
(

t

tSF

)1/3

− kyz − π

6

]
, (87)

where

tSF ≡ τB

(
2
3

)3 1
a2
2z

2
, (88)

and

GSF ≡ 3
2

(
t

τB

)2/3(
tSF

τB

)1/3

=

(
16k2

y

πa2

)1/3 (
M

z

)2/3

. (89)
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