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Abstract

Polarization of both electron and positron beams at a future linear collider (LC)

allows for the measurement of transverse polarization asymmetries. These asymmetries

have been shown to be particularly sensitive to graviton or other spin-2, s−channel

exchanges in the process e+e− → f f̄ (f �= e) which allows for a doubling of the usual

search reach. A question then arises as to whether other e+e− processes also show

comparable sensitivity. Here we extend our previous analysis to the set of final states

e+e−,W+W−, 2γ and 2Z as well as to the Møller scattering process e−e− → e−e−.

We demonstrate that these reactions yield transverse polarization asymmetries which

are somewhat less sensitive to graviton exchange than are those obtained in our earlier

analysis for e+e− → f f̄ .
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1 Introduction

The existence of new physics (NP) beyond the Standard Model (SM) at or near the TeV

scale is anticipated on rather general grounds. Future colliders, the LHC and/or a Linear

Collider (LC), may be above threshold for the production of new particle states, such as

SUSY, in which case the NP will be observed directly. In such a scenario the detailed

analysis of the NP will be relatively straightforward though it may take some time and the

combined data from both colliders to accomplish. Alternatively, experiments may uncover

new reactions with small rates which are forbidden in the SM, thus pointing at NP; it may be

very difficult in such cases to access the details of the underlying theory without observing the

direct production of the new particles inducing these processes. The appearance of NP may,

however, be even more subtle than either of these scenarios. We can imagine that collider

data begin to show small deviations from the SM predictions for various observables, e.g.,

cross sections and asymmetries, which grow with increasing energy. A set of such observations

signals the existence of NP beyond the collider’s kinematic reach which is manifesting itself

in the form of higher dimensional operators, i.e., generalized contact interactions. In the

more complete theory at higher energies these operators arise from the exchanges of new

particles, which are too massive to be directly produced at the collider. These particles may

occur with different spins and in various channels depending upon the particular theory.

The literature contains a rather long list of potential NP scenarios of this type that lead to

contact interactions once the heavy fields are integrated out: a Z ′ [1, 2], scalar or vector

leptoquarks[1, 3], R-parity violating sneutrino(ν̃) exchange[4], scalar or vector bileptons[5],

graviton Kaluza-Klein(KK) towers[6, 7] in extra dimensional models[8, 9], gauge boson KK

towers[10, 7], and even string excitations[11]. It is this type of observation of NP that we

will discuss in this paper.

It is clear that it is important to develop techniques that will help in distinguishing
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among the many possible sources of contact interactions. In a previous paper[12] we have

considered one such possibility at the LC: transverse polarization (TP) and the associated

asymmetries[13] that can be formed through its use. Provided both the e− and e+ beams can

be initially longitudinally polarized, spin rotators can then used to convert the longitudinal

polarization to transverse polarization with near to 100% efficiencies. As the reader may

recall and as we will see below, double beam polarization is necessary to generate the TP

asymmetries. While historically the possible use of TP as a tool for new physics searches

has not gotten much attention[13], our earlier analysis of TP asymmetries for the process

e+e− → f f̄ (f �= e) found them to be a unique probe for the s-channel exchange of spin-2

fields, especially when we sum over all of the accessible final states, f . Currently, we associate

such exchanges with the Kaluza-Klein graviton towers of the Arkani-Hamed, Dimopoulos and

Dvali(ADD)[8] or Randall-Sundrum(RS)[9] scenarios.

The purpose of the present paper is to extend the previous analysis to other final states

which are also accessible in e+e− collisions: e+e−, W+W−, 2γ and 2Z; for completeness we

also include the Møller scattering process e−e− → e−e−. Here we wish to explore whether

any of these final states lead to TP asymmetries which are also particularly sensitive to

spin-2/graviton exchanges. Unfortunately, we will show that this is not the case. Though

the discovery reach for each of these processes is significant, it is always somewhat less than

that found for the sum over the f f̄ final states obtained in our earlier analysis.

The organization of this paper is as follows. After our introduction, we will provide

a brief overview and review of TP and the associated asymmetries in e+e− collisions gen-

eralizing the formalism from our previous discussion of the f f̄ final states to accommodate

those that are considered here. In section 3 we analyze in turn the TP asymmetries for

each of the final states e+e−,W+W−, 2γ and 2Z as well as e−e− → e−e− in both the SM

and the ADD model. In particular we show how the SM predictions for TP asymmetries
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are modified by the presence of spin-2 graviton exchange. Subsequently, the search reaches

arising from the deviations in the TP asymmetries for the ADD model are obtained for each

of these final states. The use of these final states for uniquely identifying graviton exchange

is also analyzed. A discussion and our conclusions can be found in section 4.

2 Transverse Polarization Asymmetries: Background

Much of the formalism regarding TP and the associated asymmetries can be found in our

earlier work[12]. Here we will provide only a quick overview and the necessary background

required to follow the analysis we present below.

Consider the set of processes e+e− → XX̄ with the both electron and positron beams

polarized. Taking the initial e± beammomenta along the∓z−axis we denote the longitudinal
and transverse polarizations of the e−(e+) by their cartesian components Px,y,z(P̄x,y,z). For

the moment we allow these two polarization vectors to be arbitrarily oriented. To proceed, we

will follow a modified version of the notation used by Hikasa[13] and denote the corresponding

helicity amplitudes for this process by T h′h̄′
hh̄ where h(h̄) represent the ± helicity of the initial

e−(e+) and h′(h̄′) is the corresponding helicity of X(X̄). Considering the cases of interest,

X = f, e, γ,W, Z, we find that many of the products of these amplitudes cancel when summed

over final helicities even when graviton exchange is included. For example, in the case of

fermion pairs in the final state, we obtain

∑
ij

T ∗ ij
+− T ij

±± = 0

∑
ij

T ∗ ij
±± T ij

−+ = 0

∑
ij

T ∗ ij
++ T ij

−− = 0 . (1)
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Similar equalities hold for the case of gauge bosons in the final state and, due to crossing

symmetry, for the Møller scattering process e−e− → e−e−. When these conditions hold,

terms in the spin-averaged matrix element proportional to either Px,y, P̄x,y individually or

the products PzP̄x,y and Px,yP̄z are all seen to vanish. In this case the spin-averaged matrix

element for this class of processes can be symbolically written as

|M̄|2 =
1

4

[
(|T+−|2 + |T−+|2 + |T++|2 + |T−−|2) + Pz(|T+−|2 − |T−+|2 + |T++|2 − |T−−|2)

+ P̄z(|T+−|2 − |T−+|2 − |T++|2 + |T−−|2)

+ PzP̄z(|T+−|2 + |T−+|2 − |T++|2 − |T−−|2)

+ 2(PxP̄x − PyP̄y) Re(T
∗
+−T−+) cos 2φ+ 2(PxP̄y + PyP̄x) Im(T

∗
+−T−+) sin 2φ

]
, (2)

where φ is the azimuthal angle and the implied summations over the final state helicities

in each product of amplitudes, ij, are suppressed. As in the work of Hikasa[13], the helic-

ity amplitudes in the expression above are now defined with the angle φ set to zero. Note

that the T±± amplitudes only appear quadratically. We observe from this expression the

important fact that the φ-dependent pieces are only accessible if both beams are simulta-

neously transversely polarized. Thus we are reminded that to have azimuthal transverse

polarization asymmetries at a LC we must begin with both beams longitudinally polarized

and employ spin rotators; this differs from the case of the usual left-right (longitudinal) po-

larization asymmetry, ALR, which requires only single e
− beam polarization, i.e., the term

above linear in Pz.

In what follows we will for simplicity assume in our analysis that we are in an energy

regime where the effects of the finite width of the Z can be neglected; in addition we will

assume that we can also safely neglect (as is usual) the small imaginary contributions to the

amplitudes arising from graviton exchange[14] in the ADD model so that the ‘Im’ terms
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in the expression above can be dropped. In forming the TP asymmetries we will limit

ourselves to the case where the beams are purely transversely polarized with the directions

of polarization vectors being back-to-back. We can define φ to be the angle between the e±

polarization directions and the plane of the momenta of the outgoing XX̄ particles in the

final state.

Given the squared matrix element we can now form as before the differential azimuthal

asymmetry distribution which we symbolically define by

1

N

dA

dz
=

[∫
+

dσ
dzdφ

− ∫
−

dσ
dzdφ∫

dσ

]
, (3)

where
∫
± are integrations over regions where cos 2φ takes on ± values; integration over the

full ranges of z and φ occurs in the denominator, except for possible acceptance cuts or

cuts employed to remove QED t− and u− channel poles. (Here, z = cos θ, is the usual

scattering angle.) Note that the presence or absence of the ‘Im’ terms proportional to sin 2φ

do not influence the value of this asymmetry since they cancel in both the numerator and

denominator. It is important to recall that we expect this differential asymmetry to take

on rather small numerical values since it is normalized to the total cross section and not

to the differential cross section at the same value of z as is usually done. This isolates the

important angular behavior in the numerator of the TP asymmetry where it can be much

more easily studied. In the case of e+e− → f f̄ (f �= e), we found that this asymmetry was

proportional to 1 − z2 in the SM as well as in most of the SM extensions discussed above.

Only in the case of spin-2/graviton exchange was there a significant distortion of the angular

dependence of this asymmetry thus leading to a unique signature for this special kind of NP.
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3 Analysis

In order to begin our analysis we need the full set of helicity amplitudes for the above

processes including the contributions from spin-2 graviton exchange. These can be found in

the literature, e.g., [16, 13] and through the use of crossing symmetry. In the ADD scenario,

which we will concentrate on in what follows, the relative contribution of the spin-2 graviton

to these amplitudes always appears with a suppression factor, fg; employing the convention

of Hewett[6], this is given by

fg =
λs2

4παM4
H

. (4)

where MH represents the cutoff scale in the Kaluza-Klein (KK) graviton tower sum and

λ = ±1. This factor clearly shows the dimension-8 origin of the gravitational ∼ TµνT
µν

interaction induced in the ADD model after summing over the KK tower. In the RS model,

to which our analysis is easily generalized, the corresponding expression can be obtained

through the replacement

λ

M4
H

→ −1
8Λ2

π

∑
n

1

s−m2
n + imnΓn

. (5)

where Λπ is of order a few TeV and mn(Γn) are the masses(widths) of the TeV scale graviton

KK excitations.

With the amplitudes in hand we can directly proceed to calculate the azimuthal

polarization asymmetries. For numerical purposes we will assume that Pe− = 80% and

Pe+ = 60% as in our previous analysis. We remind the reader that by combining the data

for the various f f̄ final states, f = µ, τ, c, b, t, search reaches, i.e., 95% CL bounds, as large

as MH ∼ 20
√
s were obtained in our earlier work using only the TP asymmetry in the fits.

Similarly, the identification (ID) reach, the value of MH for which a 5σ signal for spin-2
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exchange is observed, was found to be MH ∼ 10
√
s. These values are roughly a factor of 2

greater than those obtained from more conventional analyses[17]. It is to these values that

we must compare the results we obtain below.

Let us begin the present analysis by considering the case of Bhabha scattering, i.e.,

e+e− → e+e−. Extracting the overall electromagnetic coupling factors the helicity ampli-

tudes are given by

T +−
+− = −(1 + z)

[
1 +

s

t
+ g2

R(
s

(s−M2
Z)
+

s

(t−M2
Z)
)
]
+ fg

[
2
u

s
+
3

4
(1 +

t

s
)
]

T −+
−+ = −(1 + z)

[
1 +

s

t
+ g2

L(
s

(s−M2
Z)
+

s

(t−M2
Z)
)
]
+ fg

[
2
u

s
+
3

4
(1 +

t

s
)
]

T −+
+− = T +−

−+ = −(1− z)
[
1 + gRgL

s

(s−M2
Z)

]
− fg

(3
4
+
t

s

)

T ++
++ = T −−

−− = −
[s
t
+ gRgL

s

(t−M2
Z)

]
− fg

(
1 +

3

4

t

s

)
, (6)

where z = cos θ, t(u) = −s(1 ∓ z)/2, gL = (−1/2 + s2
w)/(swcw) and gR = sw/cw with

s2
w = sin

2 θw 
 0.23 being the conventional weak mixing angle. We observe that, unlike the

case of the f f̄ final state, there are non-annihilation channel amplitudes present, i.e., T±±,

corresponding to the t− channel diagrams. Note that the conditions of Eq.(1) hold for this

set of amplitudes. Note further that the spin-2 exchange merely augments the amplitudes

which are already present in the SM (though with different cos θ dependencies), i.e., no new

helicity amplitudes are generated by spin-2 over those already due to spin-1.

From the above amplitudes we can immediately obtain the bin-integrated TP asym-

metry using Eqs. (2) and (3); a sample result is shown in the top panel of Fig. 1 for the case

of a
√
s = 500 GeV LC assuming an integrated luminosity of 500 fb−1. In this panel the

SM prediction is compared to that obtained in the ADD model assuming MH = 3
√
s = 1.5
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Figure 1: (Top)Differential transverse polarization azimuthal asymmetry distribution for
Bhabha scattering, e+e− → e+e−, at a 500 GeV LC assuming a luminosity of 500 fb−1.
The histogram is the SM prediction while the data points are for the ADD model assuming
MH = 1.5 TeV. The errors shown are the quadratic sum of the separate statistical and
systematic errors. (Bottom)95% CL search reaches forMH as a functions of the LC integrated
luminosity arising from the transverse polarization asymmetry in e+e− → e+e−. From
bottom to top the curves correspond to center of mass energies of 0.5, 0.8, 1, 1.2 and 1.5
TeV, respectively.
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Figure 2: Same as the previous figure but now for Møller scattering, e−e− → e−e−.
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TeV. Due to the existence of the t−channel QED pole, an angular cut z ≤ 0.95 has been

applied. In the SM, for s >> M2
Z , the TP asymmetry scales[13] as ∼ −(1 + z)2, which

is a fair approximation to what we see here. For z < 0 we see that the ADD prediction

lies somewhat above the SM but drops significantly below it once large positive z values are

reached. It is clear from this figure that large search reaches are not likely in this channel, an

expectation borne out by the results shown in the lower panel. (Recall that the contribution

of the graviton exchange terms scale approximately as M−4
H .) Here we see that the 95% CL

reach in the
√
s =500 GeV case is only about 2.5 TeV or ∼ 5

√
s with similar results holding

for larger center of mass energies. Since it is likely that other forms of NP, such as a Z ′,

can also cause similar distortions in the shape of the TP asymmetry distribution, there is no

unique graviton signature in this case.

The corresponding amplitudes for Møller scattering can be obtained by crossing and

directly lead to the corresponding TP asymmetry results in this case as is shown in Fig. 2.

Here a cut of |z| ≤ 0.95 has been applied to remove the u− and t−channel QED poles. In

the central z region the TP asymmetry is predicted to be very close to the SM in the ADD

scenario differing only once |z| ≥ 0.5 or so. Following the same procedures as in the case of

Bhabha scattering we obtain the search reaches shown in the lower panel of Fig. 2. Here we

see that somewhat larger reaches are obtained, i.e., 7− 8√s, but these are still smaller than
those obtained in our earlier work. The increased reach in Møller vs. Bhabha scattering using

TP asymmetries is similar to what happens in the case of conventional contact interaction

searches employing longitudinal polarization[15]. As in the case of Bhabha scattering there

is no unique signature for graviton exchange in this process.

Let us now turn to the case of gauge boson pairs in the final state: W+W−, 2γ and 2Z.

For these cases our labor is relatively easy: all of the helicity amplitudes for these processes

in the ADD model can be obtained directly from the work of Agashe and Deshpande[16].
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Figure 3: Same as the previous figure but now for the process e+e− → W+W−.
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A quick analysis shows that the set of conditions analogous to Eq.(1) are satisfied for all of

these final states.

We consider the W+W− final state first; the helicity amplitudes for this process are

rather complicated and visually uninformative so we will not reproduce them here. A sample

TP asymmetry in this case is shown in Fig. 3. Note that the SM shape is close to 1− z2 but

deviates in detail from this in a z asymmetric manner. In the ADD case, the TP asymmetry

lies close to the SM in the backwards direction but falls significantly below it once z > −0.5
is reached. We also see that the distortion in the asymmetry due to graviton exchange is

quite significant in the case whereMH = 1.5 TeV. As one might expect from this observation

, the search reach for the ADD model in this case is somewhat larger than those obtained

for the two processes above, 
 8
√
s for a 500 GeV LC, as can be seen from the lower panel

in Fig. 3. As in the cases above there is no obviously unique signature for spin-2/graviton

exchange from this process.

The next possibility we consider is the pure QED process e+e− → 2γ. In the SM the

TP asymmetry is predicted to be z-independent as is shown in Fig. 4. Here, the existence

of rather conventional sources of contact interactions, such as a Z ′ or bilepton, cannot alter

the SM predictions for this reaction. The lowest dimension operators that can contribute

here are of the form ∼ ēeFµνF
µν , which might be induced by compositeness, and ∼ TµνT

µν ,

as can be induced by compositeness or graviton exchange. Clearly a unique signature for

graviton exchange is not possible using this process. A short analysis shows that the ADD

contributions simply adds to the SM TP=constant term by a relative factor of ∼ fg(1− z2)

as can also seen in Fig.4. We can see this immediately from the helicity amplitudes for this

process which are particularly simple:

T +−
+− = −T −+

−+ = −2 (1 + z)

(1− z2)1/2

(
1− fg

ut

s2

)
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Figure 4: Same as the previous figure but now for the process e+e− → 2γ.
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T +−
−+ = −T −+

+− = −2 (1− z)

(1− z2)1/2

(
1− fg

ut

s2

)
, (7)

where an overall factor of e2 has been scaled out as before. What are the reaches for this

process? Note that as in the calculations above we will employ an angular cut, |z| ≤ 0.95,

to remove the SM poles. Fig.4 shows the search reach for the ADD model using this TP

asymmetry; it is quite respectable in comparison to the others we have found above ∼ 7
√
s

for the case of a 500 GeV LC.

For the 2Z final state we would expect the TP asymmetry to behave similarly to

the case of the 2γ final state apart from M2
Z/s corrections which are most visible near

the would-be forward and backward poles. The SM u− and t− channel poles encountered

in the 2γ final state case are thus smoothed out by the finite Z boson mass so that no

cuts are required. The helicity amplitudes for this process with the final states containing

only transversely polarized Z’s are quite similar to those for the 2γ final state except for

appropriate insertions of factors of β = (1−4M2
Z/s)

1/2. Additional amplitudes corresponding

to Z’s with longitudinal polarization are also present, however. As for the 2γ final state, we

know that deviations in the observables associated with the 2Z final state can arise from a

number of higher dimensional operators (including in this case anomalous triple gauge boson

couplings) that we cannot uniquely trace back to graviton exchange. Fig. 5 shows that the

TP asymmetry for the 2Z final state is nearly z−independent except in the very forward
and backward directions in the SM. ADD graviton exchange, as in the 2γ case, induces a

∼ 1− z2-like contribution to the asymmetry as is also shown here. Since the rate for the 2Z

and 2γ final states are similar(after cuts), as are the SM and ADD induced shapes of the

TP polarizations, we might expect comparable search reaches. These are shown for the 2Z

case in the lower panel of Fig. 5 and we see that our expectations are essentially confirmed.

For a 500 GeV LC a search reach of ∼ 7
√
s is obtained, essentially the same as for the 2γ
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Figure 5: Same as the previous figure but now for the process e+e− → 2Z.
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final state.

4 Discussion and Conclusions

Disentangling the origin of contact interaction effects will require as many tools as possible.

Transverse polarization asymmetries offer a special way to probe for NP in e+e− processes

and have been shown to be particularly sensitive to spin-2/graviton exchange for the case

of the f f̄(f �= e) set of final states. Not only does TP extend the conventional search reach

but it also provides a means to uniquely identify spin-2 exchanges. Its utility for other final

states has been, up to now, completely unknown.

In this paper we have extended our previous analysis of TP asymmetries to encompass

the processes e+e− → e+e−,W+W−, 2γ and 2Z as well as e−e− → e−e− in order to access

their sensitivity to graviton exchange within the context of the ADD model. The results of

our analysis are twofold: (i) We have found that the various processes above lead to search

reaches for the ADD cutoff scale, MH , in the range of (5− 8)
√
s for a 500 GeV LC. These

are very respectable reaches given that they are based on only a single observable and result

from only a single final state. By contrast, the usual analyses which employ the total cross

sections, angular distributions, tau polarization and the A′
LRs for the various final states f

when combined have reaches that are only ∼ 10
√
s. However, none of the final states we have

studied here have search reaches as large as that obtained from the combined f f̄ analysis.

(ii) Our earlier analysis demonstrated that essentially only graviton exchange could shift the

1− z2 shape of the TP asymmetry distribution. Though the f f̄ final states asymmetries are

uniquely modified by the presence of spin-2/graviton exchange, this is no longer true for any

of the processes we have examined here. Clearly more detailed studies are needed to verify

these results.
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Hopefully signs of new physics will be observed soon after the turn on of future

colliders.
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