RADIATIVE CORRECTIONS TO DEEP-INELASTIC NEUTRINO-NUCLEON SCATTERING*

J. Kiskis
Stanfbrd Linear Accelerator Center Stanford University, Stanford, California 94305

Abstract

A simple parton model is used to estimate the radiative corrections to neutrino induced inclusive processes. An application of the resulting expressions to $\nu_{\mu} \mathrm{P} \rightarrow \mu^{-}+\mathrm{X}$ at $\mathrm{E}_{\nu}^{\mathrm{LAB}}=100 \mathrm{GeV}$ shows that the muon spectrum is distorted by as much as 10% in some regions.

(Submitted to Phys. Rev.)

[^0]
I. INTRODUCTION

The results from deep-inelastic, inclusive neutrino-nucleon scattering experiments which are in progress or planned for the near future will be an important input for current theoretical work. The effects of radiative corrections must be considered in interpreting these experimental results.

Unfortunately, it is impossible to calculate the radiative corrections to an inclusive process which is controlled by unspecified dynamics. There are two reasons for this. First, the long wavelength photons are sensitive to changes in the large scale distribution of electric charges and currents. This information is not available unless the general features of the hadronic final state are specified. Second, the short wavelength photons are sensitive to details of the current distribution in the interaction region. Again, this information is not available in the absence of a theory for the basic interaction. Thus, in order to estimate radiative corrections we need a model which specifies the electromagnetic currents in some detail. We will use the parton model. ${ }^{1}$

In this model, the nucleon target is to be viewed as a collection of weakly bound, relatively light point particles. The neutrino is assumed to have a weak interaction with one of these target partons. In the deep-inelastic region, this parton gets a large acceleration and the leptonic system suffers a large reaction. The other partons are assumed to receive accelerations much smaller than that of the leptonic system or the struck parton.

Classical intuition suggests that the charges which are accelerated the most will make the major contribution to the radiative correction. Thus, we will consider only contributions where the photon is attached to the struck parton or the outgoing muon, and we will sum over the partons incoherently, as usual.

This is analogous to the usual practice of calculating radiative corrections by considering only the proton in the target which is struck and then summing incoherently over the protons in the target. This restriction of the number of Feynman graphs is gauge invariant so long as we ignore the interactions between the partons.

For the purposes of this calculation, we will assume further that the final state interactions which "dress" the outgoing parton give a jet of outgoing physical particles which have the same charge and essentially the same momentum as the parton. The very long wavelength photons will not be sensitive to the difference between a single particle and a jet of particles with the same charge and with small average momentum transverse to the jet direction. ${ }^{2}$ The short wavelength photons, which see better, are coupled most strongly to the region of the primary violent interaction of the bare particles rather than to the relatively smooth current distributions of the final state. This primary interaction to which the high energy photons are most sensitive is taken to be a pointlike Fermi interaction between the leptons and the parton.

This model is very crude. We stress that the results which it gives should be considered semi-quantitatively at most. The approximations of the model are probably reasonable only for the very long and the very short wavelength photons. However, it is these regions of the integration over photon momentum which are most important. Thus, we expect to reproduce the gross features of the radiative corrections correctly. The situation is somewhat simpler in electroproduction. There it is possible to separate out the radiative corrections to the electron line in a gauge invariant way. The problem of radiative corrections to the photon-parton interaction in electroproduction has not been faced.

In Section II, we calculate the basic cross sections. Sections III, IV, and V calculate the contributions from the self-energy, vertex, and bremsstrahlung graphs, respectively. In Section VI, these results are combined and numerical results for $\nu \mathrm{p} \rightarrow \mu^{-}$anything and $\bar{\nu} \mathrm{p} \rightarrow \mu^{+}$anything at $\mathrm{E}_{\nu}=100 \mathrm{GeV}$ are given. When considered as a function of muon energy at fixed lab angle, the cross section is typically decreased by about 10% at large muon energies and increased by about 10% at small muon energies by the radiative corrections.

II. BASIC CROSS SECTION

The calculation will be carried out in the following way: First, we assume that the partons are quarks and gluons. The gluons are assumed to have no weak or electromagnetic interactions. The small size of $\sin ^{2} \theta_{\text {Cabibbo }}$ will allow us to neglect the λ and $\bar{\lambda}$ quarks. Thus, we are interested in the $\sigma(\nu p)$, $\sigma(\nu \mathrm{n}), \sigma(\nu \overline{\mathrm{p}}), \sigma(\nu \overline{\mathrm{n}}), \sigma(\bar{\nu} \mathrm{p}), \sigma(\bar{\nu} \mathrm{n}), \sigma(\bar{\nu} \overline{\mathrm{p}}), \sigma(\bar{\nu} \overline{\mathrm{n}})$ neutrino-quark cross sections. Charge conservation and the spectrum of quark charges give

$$
\sigma(\nu \mathrm{p})=\sigma(\nu \overline{\mathrm{n}})=\sigma(\bar{\nu} \mathrm{n})=\sigma(\bar{\nu} \overline{\mathrm{p}})=0
$$

We will assume CP invariance and get

$$
\sigma(\nu \mathrm{n})=\sigma(\bar{\nu} \overline{\mathrm{n}})
$$

and

$$
\sigma(\nu \overline{\mathrm{p}})=\sigma(\bar{\nu} \mathrm{p})
$$

for the spin averaged cross sections. Note that these relations hold even with a final state photon whose polarization has been summed over. Thus, we need only calculate two cross sections

$$
\sigma_{\mathrm{I}}=\sigma(\nu \mathrm{n})
$$

and

$$
\sigma_{\text {II }}=\sigma(\nu \overline{\mathrm{p}})
$$

We will describe the calculation of case I only. Case II is very similar and we quote only the final results.

After calculating the cross sections, we let the parton momentum p_{1} go to ${ } P_{1}$ where P_{1} is the target nucleon momentum, multiply each of the cross sections by the parton distribution function $F(x)$ appropriate to that kind of parton, integrate over x , and sum over parton types. (In electroproduction,

$$
\nu \mathrm{W}_{2}(\mathrm{x})=\mathrm{x} \sum_{\substack{\text { parton } \\ \text { types }}} \mathrm{f}_{\mathrm{i}} \mathrm{~F}_{\mathrm{i}}(\mathrm{x}),
$$

f_{i} being the charge of a parton of type i.)

We consider the scattering of a muon neutrino ν_{μ} of momentum k_{1} off an n quark of momentum p_{1} mass m_{1} and charge $f e=1 / 3 e$. The final state has a μ^{-}of momentum k_{2} mass m_{μ} and charge e, and a p quark of momentum p_{2} mass m_{2} and charge $f^{\prime} e=(f-1) e=-2 / 3 e$. Photons, real or virtual, have momentum k. The graphs which contribute are shown in Fig. 1. The graphs of Fig. 1a contribute a cross section ${ }^{3}$

$$
k_{20} \frac{d \Sigma}{d^{3} k_{2}}=\int_{0}^{1} d x F(x) k_{20} \frac{d \sigma_{E}}{d^{3} k_{2}}
$$

with the quark cross section

$$
\begin{gathered}
\mathrm{k}_{20} \frac{\mathrm{~d} \sigma}{\mathrm{~d}^{3} \mathrm{k}_{2}}=\frac{1}{2 \pi^{2}} \delta\left[\left(\mathrm{k}_{1}+\mathrm{p}_{1}-\mathrm{k}_{2}\right)^{2}-\mathrm{m}_{2}^{2}\right] \theta\left(\mathrm{k}_{10}+\mathrm{p}_{10}-\mathrm{k}_{20}\right) \frac{\mathrm{m}^{4} \mathrm{M}}{\mathrm{k}_{1} \cdot \mathrm{p}_{1}} \\
\mathrm{~m}^{4} \equiv \mathrm{~m}_{\nu} \mathrm{m}_{\mu} \mathrm{m}_{1} \mathrm{~m}_{2}
\end{gathered}
$$

$M \equiv$ absolute square of the matrix element for the first three sets of graphs averaged over initial spins, summed over final spins, and evaluated at $\mathrm{p}_{2}=\Delta \equiv \mathrm{k}_{1}+\mathrm{p}_{1}-\mathrm{k}_{2}$. This contains a m_{ν}^{-1} which cancels the m_{ν} in m^{4} after which we take $\mathrm{m}_{\nu} \rightarrow 0$.

The bremsstrahlung graphs of Fig. 1b contribute a cross section

$$
\mathrm{k}_{20} \frac{\mathrm{~d} \Sigma_{\mathrm{IE}}}{\mathrm{~d}^{3} \mathrm{k}_{2}}=\int_{0}^{1} \mathrm{dx} \mathrm{~F}(\mathrm{x}) \mathrm{k}_{20} \frac{\mathrm{~d} \sigma_{\mathrm{IE}}}{\mathrm{~d}^{3} \mathrm{k}_{2}},
$$

with

$$
\mathrm{k}_{20} \frac{\mathrm{~d} \sigma_{\mathrm{IE}}}{\mathrm{~d}^{3} \mathrm{k}_{2}}=\frac{1}{(2 \pi)^{5}} \int \frac{\mathrm{~d}^{3} \mathrm{k}}{\mathrm{k}_{0}} \delta\left[(\Delta-\mathrm{k})^{2}-\mathrm{m}_{2}^{2}\right] \theta\left(\Delta_{0}-\mathrm{k}_{0}\right) \frac{\mathrm{m}^{4} \mathrm{~N}}{\mathrm{k}_{1} \cdot \mathrm{p}_{1}}
$$

and $\mathrm{N} \equiv$ absolute square of the matrix element for the bremsstrahlung processes appropriately summed and averaged over spins and evaluated at $p_{2}=\Delta-k$.

With these preliminaries out of the way, we proceed with the purpose of this section which is to calculate M_{0}, the contribution to M from the graph of Fig. 2.

$$
\mathscr{M}_{0}=\frac{\mathrm{G}}{\sqrt{2}} \overline{\mathrm{u}}\left(\mathrm{p}_{2}\right) \gamma_{\lambda}\left(1-\gamma_{5}\right) \mathrm{u}\left(\mathrm{p}_{1}\right) \overline{\mathrm{u}}\left(\mathrm{k}_{2}\right) \gamma^{\lambda}\left(1-\gamma_{5}\right) \mathrm{u}\left(\mathrm{k}_{1}\right)
$$

We square this, sum over initial and final state spins, and divide by 2 for the average over quark spins. (There is no dividing by 2 for the neutrino since only one spin state contributes.) The result is

$$
\mathrm{M}_{0}=\frac{\mathrm{G}^{2}}{2} \frac{1}{\mathrm{~m}^{4}} 8 \mathrm{k}_{1} \cdot \mathrm{p}_{1} \mathrm{k}_{2} \cdot \mathrm{p}_{2}
$$

III. SELF-ENERGY CORRECTIONS

In this section we consider the contribution from the graphs of Fig. 3. The contribution which they make to M will be $2 \operatorname{Re} \mathscr{M}_{0}^{*}\left(\mathscr{M}_{1}+\mathscr{M}_{2}+\mathscr{M}_{3}\right)$. We get \mathscr{M}_{1} from \mathscr{M}_{0} by the replacement

$$
\mathrm{u}\left(\mathrm{p}_{1}\right) \rightarrow \frac{p_{1}+\mathrm{m}_{1}}{\mathrm{p}_{1}^{2}-\mathrm{m}_{1}^{2}}\left[\mathrm{f}^{2} \Sigma\left(\mathrm{p}_{1}\right)-\delta \mathrm{m}_{1}\right] \mathrm{u}\left(\mathrm{p}_{1}\right)
$$

with

$$
\Sigma(p) \equiv-\frac{i \alpha}{4 \pi^{3}} \int d^{4} k \frac{\gamma^{\mu}(p-k k+m) \gamma_{\mu}}{k^{2}\left[(p-k)^{2}-m^{2}\right]}
$$

$\Sigma(p)$ is calculated by the regularization procedure

$$
\begin{aligned}
\Sigma(p) & =\frac{-i \alpha}{4 \pi^{3}} \int d^{4} k \frac{\gamma^{\mu}(\not p-\not k+m) \gamma \mu}{k^{2}\left[(p-k)^{2}-m^{2}\right]} \\
& \rightarrow \lim _{\substack{\Lambda \rightarrow \infty \\
\lambda \rightarrow 0}}\left[\frac{-i \alpha}{4 \pi^{3}} \int d^{4} k \frac{\gamma^{\mu}(\not p-k+m) \gamma_{\mu}}{\left(k^{2}-\lambda^{2}\right)\left[(p-k)^{2}-m^{2}\right]}-\frac{-i \alpha}{4 \pi^{3}} \int d^{4} k \frac{\gamma^{\mu}(\not p-k+m) \gamma_{\mu}}{\left(k^{2}-\Lambda^{2}\right)\left[(p-k)^{2}-m^{2}\right]}\right]
\end{aligned}
$$

The calculation must be carried out for $p^{2} \neq m^{2}$. Only after $\Sigma(p)$ is inserted between the spinor and the propagator do we take $p^{2}=m^{2}$. As is usual we write

$$
\Sigma(p)=A+B(\not p-m)+C(p-m)^{2}
$$

A and B are numbers independent of p, C is a 4×4 matrix finite at $\Lambda \rightarrow \infty$ and $p^{2} \rightarrow m^{2}$. Thus, between a propagator $1 / \not p-m$ and a spinor $u(p)$, the C term will not contribute. A standard calculation gives

$$
\begin{aligned}
& \mathrm{A}=\frac{\alpha}{\pi} \frac{3 \mathrm{~m}}{2}\left[\ln \frac{\Lambda}{\mathrm{~m}}+\frac{1}{4}\right] \\
& \mathrm{B}=-\frac{\alpha}{2 \pi}\left[\frac{9}{4}+\ln \frac{\Lambda}{\mathrm{m}}+\ln \frac{\lambda^{2}}{\mathrm{~m}^{2}}\right]
\end{aligned}
$$

The contribution from A is cancelled by taking $\delta \mathrm{m}=\mathrm{A}$.

The contribution from the B term appears as $B(p p-m)^{-1}(p p-m) u(p)$ which is undefined. This is resolved, as usual, by identifying the wave function renormalization in this order and taking $B(\not p-m)^{-1}(p-m) u(p)=1 / 2 B u(p)$. Thus, the contribution to M from the self-energy graphs is

$$
\begin{gathered}
-\frac{\alpha}{\pi}\left[\mathrm{f}^{2}\left(\frac{9}{8}+\frac{1}{2} \ln \frac{\Lambda}{\mathrm{~m}_{1}}+\ln \frac{\lambda}{\mathrm{m}_{1}}\right)+\mathrm{f}^{2}\left(\frac{9}{8}+\frac{1}{2} \ln \frac{\Lambda}{\mathrm{~m}_{2}}+\ln \frac{\lambda}{\mathrm{m}_{2}}\right)\right. \\
\left.+\left(\frac{9}{8}+\frac{1}{2} \ln \frac{\Lambda}{\mathrm{~m}_{\mu}}+\ln \frac{\lambda}{\mathrm{m}_{\mu}}\right)\right] \mathrm{M}_{0} .
\end{gathered}
$$

IV. VERTEX CORRECTIONS

In this section, we consider the graphs of Fig. 4. These contribute to M in the combination

$$
2 \operatorname{Re} \mathscr{M}_{0}^{*}\left(\mathscr{M}_{4}+\mathscr{M}_{5}+\mathscr{M}_{6}\right)
$$

We will sketch the treatment of $\mathscr{M}_{5} ; \mathscr{M}_{4}$ and \mathscr{M}_{6} are very similar.

$$
\begin{aligned}
\mathscr{M}_{5}= & \frac{G}{\sqrt{2}} \frac{-\mathrm{i} \alpha \mathrm{f}^{\prime}}{4 \pi^{3}} \int \mathrm{~d}^{4} \mathrm{k} \frac{1}{\mathrm{k}^{2}} \frac{1}{\left(\mathrm{p}_{2}-\mathrm{k}\right)^{2}-\mathrm{m}_{2}^{2}} \frac{1}{\left(\mathrm{k}_{2}+\mathrm{k}\right)^{2}-\mathrm{m}_{\mu}^{2}} \\
& \times \bar{u}\left(\mathrm{p}_{2}\right) \gamma^{\mu}\left(\varphi_{2}-\mathrm{k}^{k}+\mathrm{m}_{2}\right) \gamma_{\lambda}\left(1-\gamma_{5}\right) \mathrm{u}\left(\mathrm{p}_{1}\right) \times \overline{\mathrm{u}}\left(\mathrm{k}_{2}\right) \gamma_{\mu}\left(\mathrm{k}_{2}+\mathrm{k}+\mathrm{m}_{\mu}\right) \gamma^{\lambda}\left(1-\gamma_{5}\right) \mathrm{u}\left(\mathrm{k}_{1}\right)
\end{aligned}
$$

Its contribution to M is

$$
\mathrm{M}_{5}=\operatorname{Re} \frac{-\mathrm{i} \alpha \mathrm{f}^{\prime}}{4 \pi^{3}} \int \mathrm{~d}^{4} \mathrm{k} \frac{1}{\mathrm{k}^{2}} \frac{1}{\left(\mathrm{p}_{2}-\mathrm{k}\right)^{2}-\mathrm{m}_{2}^{2}} \frac{1}{\left(\mathrm{k}_{2}+\mathrm{k}\right)^{2}-\mathrm{m}_{\mu}^{2}} \mathrm{~T}_{5}
$$

with

$$
\begin{aligned}
\mathrm{T}_{5} \equiv & \frac{\mathrm{G}^{2}}{2} \frac{1}{\mathrm{~m}^{4}} \frac{1}{4} \operatorname{Tr}\left[\gamma_{\nu}\left(1-\gamma_{5}\right)\left(ф_{2}+\mathrm{m}_{2}\right) \gamma^{\mu}\left(\not_{2}-\mathrm{k}+\mathrm{m}_{2}\right) \gamma_{\lambda}\left(1-\gamma_{5}\right)\left(\phi_{1}+\mathrm{m}_{1}\right)\right] \\
& \times \frac{1}{4} \operatorname{Tr}\left[\gamma^{\nu}\left(1-\gamma_{5}\right)\left(k_{2}+\mathrm{m}_{\mu}\right) \gamma_{\mu}\left(k_{2}+k+\mathrm{m}_{\mu}\right) \gamma^{\lambda}\left(1-\gamma_{5}\right) k_{1}\right] .
\end{aligned}
$$

M_{5} contains both infrared and ultraviolet divergences. We regulate by taking

$$
\frac{1}{\mathrm{k}^{2}} \rightarrow \lim _{\substack{\Lambda \rightarrow \infty \\ \lambda \rightarrow 0}}\left(\frac{1}{\mathrm{k}^{2}-\lambda^{2}}-\frac{1}{\mathrm{k}^{2}-\Lambda^{2}}\right)
$$

as before. The use of Feynman parameters gives

$$
\begin{aligned}
\mathrm{M}_{5}= & \operatorname{Re} \frac{-\mathrm{i} \alpha \mathrm{f}^{\prime}}{4 \pi^{3}} \int_{0}^{1} \int_{0}^{1} \mathrm{dz}_{1} \mathrm{dz}_{2} \delta\left(1-\mathrm{z}_{1}-\mathrm{z}_{2}\right) \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \mathrm{dx}_{1} \mathrm{dx}_{2} \mathrm{dx}_{3} \delta\left(1-\mathrm{x}_{1}-\mathrm{x}_{2}-\mathrm{x}_{3}\right) \\
& \times \int \mathrm{d}^{4} \mathrm{k} \frac{\mathrm{~T}_{5}^{\prime}}{\left[\mathrm{k}^{2}-\mathrm{D}_{5}^{2}-\mathrm{x}_{1} \lambda^{2}+\mathrm{i} \epsilon\right]^{3}}-(\lambda \rightarrow \Lambda)
\end{aligned}
$$

with

$$
\begin{aligned}
& \mathrm{D}_{5} \equiv\left(\mathrm{x}_{2}+\mathrm{x}_{3}\right) \mathrm{C}_{5} \\
& \mathrm{C}_{5} \equiv\left(\mathrm{z}_{1} \mathrm{p}_{2}-\mathrm{z}_{2} \mathrm{k}_{2}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
T_{5}^{:} \equiv & 8 \mathrm{k}_{2} \cdot \mathrm{p}_{2} \mathrm{M}_{0}-8 \mathrm{k}^{2} \mathrm{M}_{0}-8 \mathrm{D}_{5}^{2} \mathrm{M}_{0} \\
& +\frac{32}{\mathrm{~m}^{4}} \mathrm{k}_{1} \cdot \mathrm{p}_{1}\left[\mathrm{~m}_{\mu}^{2} \mathrm{D}_{5} \cdot \mathrm{p}_{2}-\mathrm{m}_{2}^{2} \mathrm{D}_{5} \cdot \mathrm{k}_{2}+2 \mathrm{D}_{5} \cdot \mathrm{p}_{2} \mathrm{k}_{2} \cdot \mathrm{p}_{2}-2 \mathrm{D}_{5} \cdot \mathrm{k}_{2} \mathrm{k}_{2} \cdot \mathrm{p}_{2}\right] \\
\equiv & \mathrm{A}+\mathrm{k}^{2} \mathrm{~B}
\end{aligned}
$$

After doing the k integration,

$$
\begin{aligned}
\mathrm{M}_{5}= & -\frac{\alpha}{\pi} \operatorname{Re} \frac{\mathrm{f}^{\prime}}{4} \int_{0}^{1} \int_{0}^{1} \mathrm{dz}_{1} \mathrm{~d} z_{2} \delta\left(1-\mathrm{z}_{1}-\mathrm{z}_{2}\right) \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \mathrm{dx}_{1} \mathrm{dx}_{2} \mathrm{dx}{ }_{3} \delta\left(1-\mathrm{x}_{1}-\mathrm{x}_{2}-\mathrm{x}_{3}\right) \\
& \times\left[\frac{\mathrm{A}}{\left(1-\mathrm{x}_{1}\right)^{2} \mathrm{C}_{5}^{2}+\mathrm{x}_{1} \lambda^{2}-\mathrm{i} \epsilon}-2 \mathrm{~B} \ln \left|\frac{\left(1-\mathrm{x}_{1}\right)^{2} \mathrm{C}_{5}^{2}+\mathrm{x}_{1} \Lambda^{2}-\mathrm{i} \epsilon}{\left(1-\mathrm{x}_{1}\right)^{2} \mathrm{C}_{5}^{2}+\mathrm{x}_{1} \lambda^{2}-\mathrm{i} \epsilon}\right|\right]
\end{aligned}
$$

We now carry out the x_{2} and x_{3} integrals and change variables to $x \equiv 1-x_{1}$. A can be separated as $A=A_{0}+x A_{1}+x^{2} A_{2}$. The result is

$$
\begin{aligned}
\mathrm{M}_{5}= & -\frac{\alpha}{\pi} \frac{\mathrm{f}^{\prime}}{4} \operatorname{Re} \int_{0}^{1} \int_{0}^{1} \mathrm{dz}_{1} \mathrm{dz}_{2} \delta\left(1-\mathrm{z}_{1}-\mathrm{z}_{2}\right)\left[\frac{\mathrm{A}_{1}+\frac{1}{2} \mathrm{~A}_{2}}{\mathrm{C}_{5}^{2}-\mathrm{i} \epsilon}-\frac{1}{2} \mathrm{~A}_{0} \frac{1}{\mathrm{C}_{5}^{2}-\mathrm{i} \epsilon} \ln \frac{\lambda^{2}}{\mathrm{C}_{5}^{2}-\mathrm{i} \epsilon}\right. \\
& \left.-\mathrm{B}\left(\ln \frac{\Lambda^{2}}{\mathrm{~m}_{2} \mathrm{~m}_{\mu}}-\frac{1}{2}\right)+\mathrm{B} \ln \left|\frac{\mathrm{C}_{5}^{2}-\mathrm{i} \epsilon}{\mathrm{~m}_{2} \mathrm{~m}_{\mu}}\right|\right] .
\end{aligned}
$$

At this point, we take advantage of the fact that we are interested in a kinematic region in which $k_{A} \cdot k_{B} \gg m_{A} m_{B}$ with k_{A} and k_{B} typical momenta. Thus, we drop terms with masses and identify

$$
B=-8 M_{0}
$$

$$
\begin{gathered}
A_{0}=8 k_{2} \cdot p_{2} M_{0} \\
A_{1}+\frac{1}{2} A_{2} \cong-8\left(z_{1}+z_{2}\right) k_{2} \cdot p_{2} M_{0}-4 C_{5}^{2} M_{0}
\end{gathered}
$$

and

$$
\frac{\mathrm{A}_{1}+\frac{1}{2} \mathrm{~A}_{2}}{\mathrm{C}_{5}^{2}}=\frac{-8\left(\mathrm{z}_{1}+\mathrm{z}_{2}\right) \mathrm{k}_{2} \cdot \mathrm{p}_{2} \mathrm{M}_{0}}{\mathrm{C}_{5}^{2}}-4 \mathrm{M}_{0}
$$

After integration the first term goes like $\mathrm{M}_{0} \ln \mathrm{k}_{2} \cdot \mathrm{p}_{2} / \mathrm{m}_{2} \mathrm{~m}_{\mu}$ while the second is, of course, just $\sim M_{0}$. We will make the approximation of dropping terms which are of order one relative to terms of order $\ln k_{A} \cdot k_{B} / m_{A} m_{B}$.

The result is

$$
\begin{aligned}
\mathrm{M}_{5}=- & \frac{\alpha}{\pi} \mathrm{f}^{\prime} \operatorname{Re} \int_{0}^{1} \int_{0}^{1} \mathrm{dz}_{1} \mathrm{dz} z_{2} \delta\left(1-\mathrm{z}_{1}-\mathrm{z}_{2}\right) \mathrm{M}_{0} \\
& \times\left[2 \ln \frac{\Lambda^{2}}{\mathrm{~m}_{\mu} \mathrm{m}_{2}}-2 \ln \left|\frac{\mathrm{C}_{5}^{2}-\mathrm{i} \epsilon}{\mathrm{~m}_{\mu} \mathrm{m}_{2}}\right|-\frac{\mathrm{k}_{2} \cdot \mathrm{p}_{2}}{\mathrm{C}_{5}^{2}-\mathrm{i} \epsilon} \ln \frac{\lambda^{2}}{\mathrm{C}_{5}^{2}-\mathrm{i} \epsilon}-\frac{2 \mathrm{k}_{2} \cdot \mathrm{p}_{2}}{\mathrm{C}_{5}^{2}-\mathrm{i} \epsilon}\right]
\end{aligned}
$$

These integrals must be evaluated with great care. The correct procedure has been given by Yennie, Frautschi, and Suura. ${ }^{4}$ The result is

$$
\mathrm{M}_{5}=-\frac{\alpha}{\pi} \mathrm{f}^{\prime}\left[2 \ln \frac{\Lambda^{2}}{\mathrm{~m}_{\mu} \mathrm{m}_{2}}+\int_{0}^{1} \int_{0}^{1} \mathrm{dz}_{1} \mathrm{dz}_{2} \delta\left(1-\mathrm{z}_{1}-\mathrm{z}_{2}\right) \frac{\mathrm{k}_{2} \cdot \mathrm{p}_{2}}{\overline{\mathrm{C}}_{5}^{2}} \ln \frac{\bar{\lambda}^{2}}{\overline{\mathrm{C}}_{5}^{2}}\right] \mathrm{M}_{0}
$$

with $\overline{\mathrm{C}}_{5} \equiv \mathrm{z}_{1} \mathrm{p}_{2}+\mathrm{z}_{2} \mathrm{k}_{2}$. Similarly,

$$
\begin{aligned}
& \mathrm{M}_{4}=-\frac{\alpha}{\pi} \mathrm{ff} \cdot\left[-\frac{1}{2} \ln \frac{\Lambda^{2}}{\mathrm{~m}_{1} \mathrm{~m}_{2}}-\frac{3}{2} \ln \frac{\mathrm{p}_{1} \cdot \mathrm{p}_{2}}{\mathrm{~m}_{1} \mathrm{~m}_{2}}-\int_{0}^{1} \int_{0}^{1} \mathrm{dz} 1_{1} \mathrm{dz}_{2} \delta\left(1-\mathrm{z}_{1}-\mathrm{z}_{2}\right) \frac{\mathrm{p}_{1} \cdot \mathrm{p}_{2}}{\mathrm{C}_{4}^{2}} \ln \frac{\lambda^{2}}{\mathrm{C}_{4}^{2}}\right] \mathrm{M}_{0} \\
& \mathrm{M}_{6}=-\frac{\alpha}{\pi} \mathrm{f}\left[-\frac{1}{2} \ln \frac{\Lambda^{2}}{\mathrm{~m}_{\mu} \mathrm{m}_{1}}-\frac{3}{2} \ln \frac{\mathrm{k}_{2} \cdot \mathrm{p}_{1}}{\mathrm{~m}_{\mu} \mathrm{m}_{2}}-\int_{0}^{1} \int_{0}^{1} \mathrm{dz}_{1} \mathrm{dz}_{2} \delta\left(1-\mathrm{z}_{1}-\mathrm{z}_{2}\right) \frac{\mathrm{k}_{2} \cdot \mathrm{p}_{1}}{\mathrm{C}_{6}^{2}} \ln \frac{\lambda^{2}}{\mathrm{C}_{6}^{2}}\right] \mathrm{M}_{0}
\end{aligned}
$$

Terms of order $\frac{\alpha}{\pi} \cdot 1 \cdot \mathrm{M}_{0}$ have been dropped.

V. BREMSSTRAHLUNG CONTRIBUTION

In this section we consider the contribution from the graphs of Fig. 5.

$$
\begin{aligned}
& \mathscr{N}_{1}=\frac{\mathrm{G}}{\sqrt{2}} \frac{\mathrm{ef}}{\left(\mathrm{p}_{1}-\mathrm{k}\right)^{2}-\mathrm{m}_{1}^{2}} \overline{\mathrm{u}}\left(\mathrm{p}_{2}\right) \gamma_{\lambda}\left(1-\gamma_{5}\right)\left(2 \epsilon \cdot \mathrm{p}_{1}-\mathrm{kk} \in\right) \mathrm{u}\left(\mathrm{p}_{1}\right) \overline{\mathrm{u}}\left(\mathrm{k}_{2}\right) \gamma^{\lambda}\left(1-\gamma_{5}\right) \mathrm{u}\left(\mathrm{k}_{1}\right) \\
& \mathscr{N}_{2}=\frac{\mathrm{G}}{\sqrt{2}} \frac{\mathrm{ef}^{\prime}}{\left(\mathrm{p}_{2}+\mathrm{k}\right)^{2}-\mathrm{m}_{2}^{2}} \overline{\mathrm{u}}\left(\mathrm{p}_{2}\right)\left(2 \epsilon \cdot \mathrm{p}_{2}+\epsilon \mathrm{k}\right) \gamma_{\lambda}\left(1-\gamma_{5}\right) \mathrm{u}\left(\mathrm{p}_{1}\right) \overline{\mathrm{u}}\left(\mathrm{k}_{2}\right) \gamma^{\lambda}\left(1-\gamma_{5}\right) \mathrm{u}\left(\mathrm{k}_{1}\right) \\
& \mathscr{N}_{3}=\frac{\mathrm{G}}{\sqrt{2}} \frac{\mathrm{e}}{\left(\mathrm{k}_{2}+\mathrm{k}\right)^{2}-\mathrm{m}_{\mu}^{2}} \overline{\mathrm{u}}\left(\mathrm{p}_{2}\right) \gamma_{\lambda}\left(1-\gamma_{5}\right) \mathrm{u}\left(\mathrm{p}_{1}\right) \overline{\mathrm{u}}\left(\mathrm{k}_{2}\right)\left(2 \epsilon \cdot \mathrm{k}_{2}+\notin(k) \gamma^{\lambda}\left(1-\gamma_{5}\right) \mathrm{u}\left(\mathrm{k}_{1}\right)\right.
\end{aligned}
$$

At $\epsilon=\mathrm{k}, \mathscr{N}_{1}+\mathscr{N}_{2}+\mathscr{N}_{3}=0$ demonstrating the gauge invariance of the graphs.
Squaring this amplitude, summing and averaging properly over all spins
gives

$$
\begin{aligned}
& m^{4} N=-2 \pi \alpha\left[\frac{f^{2} U_{1}}{\left(k^{2}-2 k \cdot p_{1}\right)^{2}}+\frac{f^{2} U_{2}}{\left(k^{2}+2 k \cdot p_{2}\right)^{2}}+\frac{U_{3}}{\left(k^{2}+2 k \cdot k_{2}\right)^{2}}\right. \\
& \left.+\frac{2 f f^{\prime} U_{4}}{\left(k^{2}-2 k \cdot p_{1}\right)\left(k^{2}+2 k \cdot p_{2}\right)}+\frac{2 f U_{5}}{\left(k^{2}-2 k \cdot p_{1}\right)\left(k^{2}+2 k \cdot k_{2}\right)}+\frac{2 f^{\prime} U_{6}}{\left(k^{2}+2 k \cdot p_{2}\right)\left(k^{2}+2 k \cdot k_{2}\right)}\right] .
\end{aligned}
$$

This is to be evaluated at $\mathrm{k}^{2}=\lambda^{2}$ and $\mathrm{p}_{2}=\Delta-\mathrm{k}$. In the denominators, the dot products are of order λ when k_{0} is of order λ. Thus, since $k^{2}=\lambda^{2}$, we can drop the k^{2} in the denominators and also in the U'S.

The result is

$$
m^{4} N=-2 \pi \alpha\left[\frac{f^{2} \mathrm{U}_{1}}{4\left(\mathrm{k} \cdot \mathrm{p}_{1}\right)^{2}}+\frac{\mathrm{f}^{\prime}{ }^{2} \mathrm{U}_{2}}{4(\mathrm{k} \cdot \Delta)^{2}}+\frac{\mathrm{U}_{3}}{4\left(\mathrm{k} \cdot \mathrm{k}_{2}\right)^{2}}-\frac{2 \mathrm{ff}^{\prime} \mathrm{U}_{4}}{4 \mathrm{k} \cdot \mathrm{p}_{1} \mathrm{k} \cdot \Delta}-\frac{2 \mathrm{f} \mathrm{U}_{5}}{4 \mathrm{k} \cdot \mathrm{p}_{1} \mathrm{k} \cdot \mathrm{k}_{2}}+\frac{2 \mathrm{f}^{\prime} \mathrm{U}_{6}}{4 \mathrm{k} \cdot \Delta \mathrm{k} \cdot \mathrm{k}_{2}}\right]
$$

with (from now on $M_{0}=\left.M_{0}\right|_{p_{2}}=\Delta$)

$$
\begin{array}{ll}
\mathrm{U}_{1}=8 \mathrm{~m}_{1}^{2} \mathrm{M}_{0}+\overline{\mathrm{U}}_{1} & \mathrm{U}_{4}=8 \Delta \cdot \mathrm{p}_{1} \mathrm{M}_{0}+\overline{\mathrm{U}}_{4} \\
\mathrm{U}_{2}=8 \mathrm{~m}_{2}^{2} \mathrm{M}_{0}+\overline{\mathrm{U}}_{2} & \mathrm{U}_{5}=8 \mathrm{k}_{2} \cdot \mathrm{p}_{1} \mathrm{M}_{0}+\overline{\mathrm{U}}_{5} \\
\mathrm{U}_{3}=8 \mathrm{~m}_{\mu}^{2} \mathrm{M}_{0}+\overline{\mathrm{U}}_{3} & \mathrm{U}_{6}=8 \Delta \cdot \mathrm{k}_{2} \mathrm{M}_{0}+\overline{\mathrm{U}}_{6} .
\end{array}
$$

The \bar{U} have at least one power of k and thus give infrared finite contributions. Complete expressions will be quoted in Section VI. This identification of the infrared divergent and infrared finite parts suggests that we write

$$
\mathrm{k}_{20} \frac{\mathrm{~d} \sigma_{I E}}{\mathrm{~d}^{3} \mathrm{k}_{2}}=\mathrm{k}_{20} \frac{\mathrm{~d} \sigma_{I E}^{\mathrm{IR}}}{\mathrm{~d}^{3} \mathrm{k}_{2}}+\mathrm{k}_{20} \frac{\mathrm{~d} \sigma_{I E}^{\mathrm{F}}}{\mathrm{~d}^{3} \mathrm{k}_{2}}
$$

where $\sigma^{\text {IR }}$ is computed with

$$
\begin{aligned}
\mathrm{m}^{4} \mathrm{~N}=\mathrm{m}^{4} \mathrm{~N}^{\mathrm{IR}} \equiv & -4 \pi \alpha \mathrm{M}_{0}\left[\frac{\mathrm{f}^{2} \mathrm{~m}_{1}^{2}}{\left(\mathrm{k} \cdot \mathrm{p}_{1}\right)^{2}}+\frac{\mathrm{f}^{2} \mathrm{~m}_{2}^{2}}{(\mathrm{k} \cdot \Delta)^{2}}+\frac{\mathrm{m}_{\mu}^{2}}{\left(\mathrm{k} \cdot \mathrm{k}_{2}\right)^{2}}-\frac{2 \mathrm{f} \cdot \Delta \cdot \mathrm{p}_{1}}{\mathrm{k} \cdot \Delta \mathrm{k} \cdot \mathrm{p}_{1}}\right. \\
& \left.-\frac{2 \mathrm{f} \mathrm{k}_{2} \cdot \mathrm{p}_{1}}{\mathrm{k} \cdot \mathrm{k}_{2} \mathrm{k} \cdot \mathrm{p}_{1}}+\frac{2 \mathrm{f}^{\prime} \Delta \cdot \mathrm{k}_{2}}{\mathrm{k} \cdot \Delta \mathrm{k} \cdot \mathrm{k}_{2}}\right]
\end{aligned}
$$

and σ^{F} is computed using the \bar{U} 's.
Now we must extract the infrared divergence from

$$
\left.\mathrm{k}_{20} \frac{\mathrm{~d} \Sigma_{\mathrm{IE}}^{\mathrm{IR}}}{\mathrm{~d}^{3} \mathrm{k}_{2}} \equiv \int_{0}^{1} \mathrm{dxF} \mathrm{~F}\right) \mathrm{k}_{20} \frac{\mathrm{~d} \sigma_{\mathrm{IE}}^{\mathrm{IR}}}{\mathrm{~d}^{3} \mathrm{k}_{2}}
$$

where $\mathrm{k}_{20} \mathrm{~d} \sigma_{\mathrm{IE}}^{\mathrm{IR}} / \mathrm{d}^{3} \mathrm{k}_{2}$ is now evaluated with $\mathrm{p}_{1}=\mathrm{xP}_{1}, \mathrm{~m}_{1}=\mathrm{xM}_{\mathrm{H}}$, and M_{H} is the mass of the nucleon.

$$
\mathrm{k}_{20} \frac{\mathrm{~d} \Sigma_{\mathrm{IE}}^{\mathrm{IR}}}{\mathrm{~d}^{3} \mathrm{k}_{2}}=\int_{0}^{1} \mathrm{dxF}(\mathrm{x}) \frac{1}{(2 \pi)^{5}} \int \frac{\mathrm{~d}^{3} \mathrm{k}}{\mathrm{k}_{0}} \delta\left[(\Delta-\mathrm{k})^{2}-\mathrm{m}_{2}^{2}\right] \theta\left(\Delta_{0}-\mathrm{k}_{0}\right) \frac{\mathrm{m}^{4} \mathrm{~N}^{\mathrm{IR}}}{\mathrm{k}_{1} \cdot \mathrm{p}_{1}}
$$

where $k_{0}=+\sqrt{|\overrightarrow{\mathrm{k}}|^{2}+\lambda^{2}}$. We begin by splitting up the $\int \mathrm{d}|\overrightarrow{\mathrm{k}}|$

$$
\int \frac{d^{3} \mathrm{k}}{\mathrm{k}_{0}}=\int \frac{\mathrm{d}|\overrightarrow{\mathrm{k}}| \mathrm{d} \Omega \hat{\mathrm{k}}^{|\overrightarrow{\mathrm{k}}|^{2}}}{\mathrm{k}_{0}}=\left[\int_{\lambda}^{\epsilon} \mathrm{d}|\overrightarrow{\mathrm{k}}|+\int_{\epsilon}^{\infty} \mathrm{d} \mid \overrightarrow{\mathrm{k} \mid}\right] \int \mathrm{d} \Omega \hat{k} \frac{|\overrightarrow{\mathrm{k}}|^{2}}{\mathrm{k}_{0}}
$$

with $\lambda \ll \epsilon$ but $\epsilon \rightarrow 0$ after $\lambda \rightarrow 0$. Thus, in the second integral, we take $\lambda=0$ with no problem. Then, $\mathrm{k}_{20} \mathrm{~d} \Sigma_{\mathrm{IE}}^{\mathrm{IR}} / \mathrm{d}^{3} \mathrm{k}_{2}=\mathrm{I}_{1}+\mathrm{I}_{2}$ with

$$
\begin{gathered}
\mathrm{I}_{1}=\int_{0}^{1} \mathrm{dxF} \mathrm{~F}(\mathrm{x}) \frac{1}{(2 \pi)^{5}} \int_{\mid \overrightarrow{\mathrm{k} \mid<\epsilon}} \frac{\mathrm{d}^{3} \mathrm{k}}{\mathrm{k}_{0}} \delta\left[(\Delta-\mathrm{k})^{2}-\mathrm{m}_{2}^{2}\right] \theta\left(\Delta_{0}-\mathrm{k}_{0}\right) \frac{\mathrm{m}^{4} \mathrm{~N}^{\mathrm{R}}}{\mathrm{k}_{1} \cdot \mathrm{p}_{1}} \\
\mathrm{k}^{2}=\lambda^{2} \\
\mathrm{I}_{2}=\int_{0}^{1} \mathrm{dxF}(\mathrm{x}) \frac{1}{(2 \pi)^{5}} \int_{\substack{|\overrightarrow{\mathrm{k}}|>\epsilon \\
\mathrm{k}^{2}=0}} \frac{\mathrm{~d}^{3} \mathrm{k}}{\mathrm{k}_{0}} \delta\left[(\Delta-\mathrm{k})^{2}-\mathrm{m}_{2}^{2}\right] \theta\left(\Delta_{0}-\mathrm{k}_{0}\right) \frac{\mathrm{m}^{4} \mathrm{~N}^{\mathrm{IR}}}{\mathrm{k}_{1} \cdot \mathrm{p}_{1}}
\end{gathered}
$$

I_{1} is evaluated by using the δ-function to do the x integration. We can then set $\mathrm{k}=0$ except in the denominators of N^{IR}, parameterize these denominators, and carry out the $\int_{|\vec{k}|<\epsilon} d^{3} k$.

$$
\begin{aligned}
\mathrm{I}_{2} & =\int_{0}^{1} \mathrm{dx} \frac{\mathrm{~F}(\mathrm{x})}{(2 \pi)^{5}} \frac{1}{\left(\Delta^{2}-\mathrm{m}_{2}^{2}\right)} \int \mathrm{d} \Omega \hat{\mathrm{k}} \int_{\epsilon}^{\Delta_{0}} \mathrm{dk}_{0} \delta\left(\frac{\Delta^{2}-\mathrm{m}_{2}^{2}}{2\left(\Delta^{\mathrm{o}}-\hat{\mathrm{k}} \cdot \Delta\right)}-\mathrm{k}_{0}\right) \frac{\mathrm{k}_{0}^{2} \mathrm{~m}^{4} \mathrm{~N}^{\mathrm{IR}}}{\mathrm{k}_{1} \cdot \mathrm{p}_{1}} \\
& =\int_{0}^{1} \mathrm{dx} \frac{\mathrm{~F}(\mathrm{x})}{(2 \pi)^{5}} \frac{1}{\left(\Delta^{2}-\mathrm{m}_{2}^{2}\right)} \int \mathrm{d} \Omega_{\hat{\mathrm{k}}} \frac{\mathrm{k}_{0}^{2} \mathrm{~m}^{4} \mathrm{~N}^{\mathrm{IR}}}{\mathrm{k}_{1} \cdot \mathrm{p}_{1}} \int_{\epsilon}^{\Delta^{\mathrm{o}}} \mathrm{dk}_{0} \delta\left(\frac{\Delta^{2}-\mathrm{m}_{2}^{2}}{2\left(\Delta^{\mathrm{o}-\hat{\mathrm{k}} \cdot \Delta)}\right.}-\mathrm{k}_{0}\right)
\end{aligned}
$$

since $k_{0}^{2} m^{4} N^{I R} / k_{1} \cdot p_{1}$ is independent of k_{0}. The evaluation of I_{2} is begun with a further split: $\mathrm{I}_{2}=\mathrm{I}_{2 \mathrm{~A}}+\mathrm{I}_{2 \mathrm{~B}}$ where

$$
\begin{aligned}
\mathrm{I}_{2 \mathrm{~A}}= & \int_{0}^{1} \mathrm{dx} \frac{1}{(2 \pi)^{5}} \frac{1}{\Delta^{2}-\mathrm{m}_{2}^{2}} \int \mathrm{~d} \Omega \hat{k}\left[\frac{\mathrm{k}_{0}^{2} \mathrm{~m}^{4} \mathrm{~N}^{-\mathrm{IR}}}{\mathrm{k}_{1} \cdot \mathrm{p}_{1}}-\left.\frac{\mathrm{k}_{0}^{2} \mathrm{~m}^{4} \mathrm{~N}^{\mathrm{IR}}}{\mathrm{k}_{1} \cdot \mathrm{p}_{1}}\right|_{\mathrm{x}=\mathrm{x}_{+}}\right] \int_{\epsilon}^{\Delta^{\mathrm{o}} d \mathrm{k}_{0}} \\
& \times{ }_{\delta}\left(\frac{\Delta^{2}-\mathrm{m}_{2}^{2}}{2\left(\Delta^{\mathrm{o}}-\hat{\mathrm{k}} \cdot \overrightarrow{\Delta)}\right.}-\mathrm{k}_{0}\right),
\end{aligned}
$$

$$
\mathrm{I}_{2 \mathrm{~B}}=\left.\int_{0}^{1} \mathrm{dx} \frac{1}{(2 \pi)^{5}} \frac{1}{\Delta^{2}-\mathrm{m}_{2}^{2}} \int \mathrm{~d} \Omega_{\hat{\mathrm{k}}} \frac{\mathrm{k}_{0}^{2} \mathrm{~m}^{4} \mathrm{~N}^{\mathrm{IR}}}{\mathrm{k}_{1} \cdot \mathrm{p}_{1}}\right|_{\mathrm{x}=\mathrm{x}_{+}} \int_{\epsilon}^{\Delta_{0}} \mathrm{dk}_{0} \delta\left(\frac{\Delta^{2}-\mathrm{m}_{2}^{2}}{2\left(\Delta^{0}-\hat{\mathrm{k}} \cdot \vec{\Delta}\right)}-\mathrm{k}_{0}\right)
$$

x_{+}is the positive root of $\Delta^{2}-m_{2}^{2}=0$. (Recall Δ depends on x through $p_{1}=x P_{1}$.)
In $I_{2 A}$, we can take $\epsilon=0$, do the $\int \mathrm{dk}_{0}$ and get

$$
I_{2 A}=\int_{0}^{1} d x \frac{\theta\left(\Delta^{2}-m_{2}^{2}\right)}{(2 \pi)^{5}\left(\Delta^{2}-m_{2}^{2}\right)} \int d \Omega \hat{k}\left[\frac{k_{0}^{2} m^{4} N^{I R}}{k_{1} \cdot p_{1}}-\left.\frac{k_{0}^{2} m^{4} N^{I R}}{k_{1} \cdot p_{1}}\right|_{x=x_{+}}\right]
$$

which is an invariant (although not manifestly so as written). $I_{2 B}$ is evaluated by parameterizing the denominators in $N^{I R}$ and carrying out the $\int \mathrm{d} \Omega$ and $\int \mathrm{dk}_{0}$. The calculation is best done in the rest frame of the resulting parameterized 4 vector.

Even with this simplification, the calculation is rather messy. However, in combining $I_{2 B}$ with I_{1} the dependence on ϵ cancels out, as it must, and the result is covariant.

Considerable simplification results from dropping terms of order one relative to logs. The parametric integrals are handled using the techniques of Ref. 4. We also drop terms which go like $1 / q \cdot P_{1}$ as they are small in the deep inelastic region. The result is

$$
\begin{aligned}
& k_{20} \frac{d \Sigma_{I E}^{I R}}{d^{3} k_{2}}=\left.\frac{\alpha}{\pi} \frac{F\left(x_{+}\right) M_{0}}{2 \pi^{2} M_{H}^{2}\left(x_{+}-x_{-}\right) k_{1} \cdot p_{1}}\right|_{x=x_{+}}(A+B+C) \\
A= & \int_{x_{+}}^{1} d x \frac{1}{x-x_{+}}\left[\left.\frac{M_{0} F(x)}{k_{1} \cdot p_{1}}\right|_{x=x_{+}}\right]^{-1}\left\{\frac { M _ { 0 } F (x) } { k _ { 1 } \cdot p _ { 1 } } \left[f f \cdot \ln \frac{\left(\Delta \cdot p_{1}\right)^{2}}{m_{1}^{2} \Delta^{2}}+f \ln \frac{\left(k_{2} \cdot p_{1}\right)^{2}}{m_{1}^{2} m_{\mu}^{2}}\right.\right. \\
& \left.\left.-f^{\prime} \ln \frac{\left(\Delta \cdot k_{2}\right)^{2}}{m_{\mu}^{2} \Delta^{2}}\right]-\left(x \rightarrow x_{+}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& B=f^{2} \ln \frac{\lambda}{m_{1}}+f^{2} \ln \frac{\lambda}{\mathrm{~m}_{2}}+\ln \frac{\lambda}{\mathrm{m}_{\mu}}-\int_{0}^{1} \int_{0}^{1} \mathrm{dz}_{1} \mathrm{dz} z_{2} \delta\left(1-\mathrm{z}_{1}-\mathrm{z}{ }_{2}\right)\left[\mathrm{ff} \frac{\Delta \cdot \mathrm{p}_{1}}{\mathrm{C}_{4}^{2}} \ln \frac{\lambda^{2}}{\mathrm{C}_{4}^{2}}\right. \\
& \left.+\mathrm{f} \frac{\mathrm{k}_{2} \cdot \mathrm{p}_{1}}{\mathrm{C}_{6}^{2}} \ln \frac{\lambda^{2}}{\mathrm{C}_{6}^{2}}-\mathrm{f}^{\mathrm{t}} \frac{\Delta \cdot \mathrm{k}_{2}}{\overline{\mathrm{C}}_{5}^{2}} \ln \frac{\lambda^{2}}{\overline{\mathrm{C}}_{5}^{2}}\right] \\
& C=-f^{2}\left[-\ln \frac{2 \Delta \cdot \mathrm{p}_{1}}{\mathrm{~m}_{1} \mathrm{~m}_{2}}+\ln \left(1-\mathrm{x}_{+}\right)+\ln \frac{2 \mathrm{q} \cdot \mathrm{P}_{1}}{\mathrm{M}_{\mathrm{H}}^{2}}+\ln \frac{\mathrm{M}_{\mathrm{H}}^{2}}{\mathrm{~m}_{1} \mathrm{~m}_{2}}\right] \\
& -\mathbf{f}^{2}\left[\ln \left(1-\mathrm{x}_{+}\right)+\ln \frac{2 \mathrm{q} \cdot \mathrm{P}_{1}}{\mathrm{M}_{\mathrm{H}}^{2}}+\ln \frac{\mathrm{M}_{\mathrm{H}}^{2}}{\mathrm{~m}_{2}^{2}}\right] \\
& -\left[-\ln \frac{2 \Delta \cdot \mathrm{k}_{2}}{\mathrm{~m}_{2} \mathrm{~m}_{\mu}}+\ln \left(1-\mathrm{x}_{+}\right)+\ln \frac{2 \mathrm{q} \cdot \mathrm{P}_{1}}{\mathrm{M}_{\mathrm{H}}^{2}}+\ln \frac{\mathrm{M}_{\mathrm{H}}^{2}}{\mathrm{~m}_{2} \mathrm{~m}_{\mu}}\right] \\
& -\mathrm{ff}^{\prime}\left[\ln \frac{2 \Delta \cdot \mathrm{p}_{1}}{\mathrm{~m}_{2} \mathrm{~m}_{1}}\left\{\frac{3}{2} \ln \frac{2 \Delta \cdot \mathrm{p}_{1}}{\mathrm{~m}_{2} \mathrm{~m}_{1}}-2 \ln \frac{2 \mathrm{q} \cdot \mathrm{P}_{1}}{\mathrm{M}_{\mathrm{H}}^{2}}-2 \ln \left(1-\mathrm{x}_{+}\right)+\ln \frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{M}_{\mathrm{H}}^{2}}+2 \ln \frac{\mathrm{~m}_{2}}{\mathrm{M}_{\mathrm{H}}}\right\}\right. \\
& \left.-\frac{1}{2} \ln ^{2} \frac{m_{2}}{m_{1}}\right] \\
& -\mathrm{f}\left[\operatorname { l n } \frac { 2 \mathrm { k } _ { 2 } \cdot \mathrm { p } _ { 1 } } { \mathrm { m } _ { \mu } \mathrm { m } _ { 1 } } \left\{\ln \frac{2 \Delta \cdot \mathrm{k}_{2}}{\mathrm{~m}_{2} \mathrm{~m}_{\mu}}+\ln \frac{2 \Delta \cdot \mathrm{p}_{1}}{\mathrm{~m}_{2} \mathrm{~m}_{1}}-2 \ln \frac{2 \mathrm{q} \cdot \mathrm{P}_{1}}{\mathrm{M}_{\mathrm{H}}^{2}}+\ln \frac{\mathrm{m}_{1} \mathrm{~m}_{\mu}}{\mathrm{M}_{\mathrm{H}}^{2}}-2 \ln \left(1-\mathrm{x}_{+}\right)\right.\right. \\
& \left.\left.+2 \ln \frac{\mathrm{~m}_{2}}{\mathrm{M}_{\mathrm{H}}}\right\}+\ln \frac{\Delta \cdot \mathrm{k}_{2}}{\Delta \cdot \mathrm{p}_{1}} \ln \frac{\mathrm{~m}_{1}}{\mathrm{~m}_{\mu}}+\frac{1}{2} \ln ^{2} \frac{\Delta \cdot \mathrm{k}_{2}}{\Delta \cdot \mathrm{p}_{1}}\right] \\
& +\mathrm{f}^{\prime}\left[\ln \frac{2 \Delta \cdot \mathrm{k}_{2}}{\mathrm{~m}_{2} \mathrm{~m}_{\mu}}\left\{\frac{3}{2} \ln \frac{2 \Delta \cdot \mathrm{k}_{2}}{\mathrm{~m}_{2} \mathrm{~m}_{\mu}}-2 \ln \frac{2 \mathrm{q} \cdot \mathrm{P}_{1}}{\mathrm{M}_{\mathrm{H}}^{2}}-2 \ln \left(1-\mathrm{x}_{+}\right)+\ln \frac{\mathrm{m}_{\mu} \mathrm{m}_{2}}{\mathrm{M}_{\mathrm{N}}^{2}}+2 \ln \frac{\mathrm{~m}_{2}}{\mathrm{M}_{\mathrm{H}}}\right\}\right. \\
& \left.-\frac{1}{2} \ln ^{2} \frac{m_{2}}{m_{\mu}}\right] \text {. }
\end{aligned}
$$

B and C are both to be considered evaluated at $x=x_{+}$.

$$
\begin{gathered}
x_{ \pm}=-\frac{q \cdot P_{1}}{M_{H}^{2}} \pm \sqrt{\left(\frac{q \cdot P_{1}}{M_{H}^{2}}\right)^{2}-\frac{q^{2}-m_{2}^{2}}{M_{H}^{2}}} \\
\lim _{B J} x_{+}=\frac{-q^{2}}{2 q \cdot P_{1}} .
\end{gathered}
$$

In this section we will combine our results from the previous sections. Recall that the graphs of Fig. 1a give

$$
\begin{aligned}
\mathrm{k}_{20} \frac{\mathrm{~d} \Sigma_{\mathrm{E}}}{\mathrm{~d}^{3} \mathrm{k}_{2}} & =\int_{0}^{1} \mathrm{dx} \mathrm{~F}(\mathrm{x}) \frac{1}{2 \pi^{2}} \delta\left[\Delta^{2}-\mathrm{m}_{2}^{2}\right] \theta\left(\Delta_{0}\right) \frac{\mathrm{m}^{4} \mathrm{M}}{\mathrm{k}_{1} \cdot \mathrm{p}_{1}} \\
& =\left.\frac{\mathrm{F}\left(\mathrm{x}_{+}\right)}{2 \pi^{2} \mathrm{M}_{\mathrm{H}}^{2}\left(\mathrm{x}_{+}-\mathrm{x}_{-}\right)} \frac{\mathrm{m}^{4} \mathrm{M}}{\mathrm{k}_{1} \cdot \mathrm{p}_{1}}\right|_{\mathrm{x}=\mathrm{x}_{+}}
\end{aligned}
$$

The contributions to M from the basic, self-energy, and vertex graphs have been given in Sections II, III, and IV. The bremsstrahlung graphs give

$$
\mathrm{k}_{20} \frac{\mathrm{~d} \Sigma_{I E}}{\mathrm{~d}^{3} \mathrm{k}_{2}}=\mathrm{k}_{20} \frac{\mathrm{~d} \Sigma_{I E}^{\mathrm{IR}}}{\mathrm{~d}^{3} \mathrm{k}_{2}}+\mathrm{k}_{20} \frac{\mathrm{~d} \mathrm{\Sigma} \mathrm{IE}_{\mathrm{IE}}^{\mathrm{F}}}{\mathrm{~d}^{3} \mathrm{k}_{2}}
$$

We can now make the gratifying observation that the λ dependent terms in $\Sigma_{I E}^{\mathrm{IR}}$ cancel those in Σ_{E}. Not so gratifying, however, is the fact that the Λ dependent terms do not cancel. Since these terms are the same in case II as we just obtained in case I, we can interpret them as a renormalization of G by writing

$$
\begin{aligned}
\frac{\mathrm{G}^{2}}{2}\left(1+2 \frac{\alpha}{\pi} \ln \frac{\Lambda}{\mathrm{M}_{\mathrm{H}}}+\ldots\right) & \cong \frac{1}{2}\left[\mathrm{G}\left(1+\frac{\alpha}{\pi} \ln \frac{\Lambda}{\mathrm{M}_{\mathrm{H}}}\right)\right]^{2}(1+\ldots) \\
& =\frac{\mathrm{G}^{\prime}}{2}(1+\ldots)
\end{aligned}
$$

with $\mathrm{G}^{\prime} \equiv \mathrm{G}\left(1+\frac{\alpha}{\pi} \ln \frac{\Lambda}{\mathrm{M}_{\mathrm{H}}}\right)$.
G^{1} is interpreted as the renormalized weak coupling constant to be identified with the observed coupling constant in a reaction such as β-decay where the Λ dependent parts of the radiative correction are the same. (This identification may not be justified since the model we use is not actually applicable to a low energy process such as β-decay.)

We are also troubled by the explicit appearance of m_{2} the quark mass. Its presence reflects the uncertainties and ambiguities of the parton model such as neglecting the transverse momenta of the partons. Deep inelastic ep scattering suggests that $\mathrm{m}_{2} \ll \mathrm{M}_{\mathrm{H}}$. However, we cannot put $\mathrm{m}_{2}=0$ because it appears essentially as $\ln \mathrm{m}_{2} / \mathrm{M}_{\mathrm{H}}$. We take $\mathrm{m}_{2}=0.3 \mathrm{GeV}$ and hope for the best.

Finally, we have for case I or II

$$
\begin{equation*}
\mathrm{k}_{20} \frac{\mathrm{~d} \mathrm{\Sigma}}{\mathrm{~d}^{3} \mathrm{k}_{2}}=\left[\frac{\mathrm{Gt}^{2} \mathrm{~F}(\mathrm{x}) \mathrm{M}_{0}}{4 \pi^{2} \mathrm{M}_{\mathrm{H}}^{2}\left(\mathrm{x}_{+}-\mathrm{x}_{-}\right) \mathrm{k}_{1} \cdot \mathrm{p}_{1}}\right]_{\mathrm{x}=\mathrm{x}_{+}}\left[1+\frac{\alpha}{\pi}(\mathrm{A}+\mathrm{B})\right]+\mathrm{k}_{20} \frac{\mathrm{~d} \Sigma_{\mathrm{IE}}^{\mathrm{F}}}{\mathrm{~d}^{3} \mathrm{k}_{2}} \tag{1}
\end{equation*}
$$

with

$$
\begin{aligned}
& \mathrm{M}_{0 \mathrm{I}}=8 \mathrm{k}_{1} \cdot \mathrm{p}_{1} \mathrm{k}_{2} \cdot \Delta, \\
& \mathrm{M}_{0 \mathrm{II}}=8 \mathrm{k}_{1} \cdot \Delta \mathrm{k}_{2} \cdot \mathrm{p}_{1} \quad \text {, } \\
& A_{I}=\int_{x_{+}}^{1} d x \frac{1}{x-x_{+}} \frac{1}{x_{+} s F\left(x_{+}\right)}\left\{\left(x s-\Delta^{2}\right) F(x)\left[f_{I} f_{I}^{\prime} \ln \frac{\nu^{2}}{\Delta^{2}}+f_{I} \ln \frac{u^{2}}{M_{H}^{2} m_{\mu}^{2}}-f_{I}^{\prime} \ln \frac{\left(x s-\Delta^{2}\right)^{2}}{m_{\mu}^{2} \Delta^{2}}\right]\right. \\
& A_{I I}=\int_{x_{+}}^{1} d x \frac{1}{x-x_{+}} \frac{1}{\left(x_{+} u-m_{2}^{2}\right) F\left(x_{+}\right)}\left\{(x u - \Delta ^ { 2 }) F (x) \left[f I^{f} I I \ln \frac{\nu^{2}}{\Delta^{2}}-f^{\prime} \ln \frac{u^{2}}{M_{H}^{2} m_{\mu}^{2}}\right.\right. \\
& \left.\left.+\mathrm{f}_{\mathrm{II}}^{\mathrm{l}} \ln \frac{\left(\mathrm{xs}-\Delta^{2}\right)^{2}}{\mathrm{~m}_{\mu}^{2} \Delta^{2}}\right]-\left[\mathrm{x} \rightarrow \mathrm{x}_{+}\right]\right\},
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{B}_{\mathrm{I}}= & -\mathrm{f}_{\mathrm{I}}^{2}\left[-\frac{3}{2} \ln \mathrm{x}_{+}+\ln \left(1-\mathrm{x}_{+}\right)\right] \\
& -\mathrm{f}_{\mathrm{I}}^{2}\left[\ln \left(1-\mathrm{x}_{+}\right)+\ln \frac{2 \nu}{\mathrm{M}_{\mathrm{H}}}\right] \\
& -\left[-\ln \frac{\mathrm{s}}{2 \mathrm{M}_{\mathrm{H}}^{\nu}}-\ln \mathrm{x}_{+}+\ln \left(1-\mathrm{x}_{+}\right)\right] \\
& -\mathrm{f}_{\mathrm{I}} \mathrm{f}_{\mathrm{I}}\left\{\frac{1}{2} \ln \mathrm{x}_{+}-\frac{1}{2} \ln ^{2} \frac{\mathrm{x}_{+} \mathrm{M}_{\mathrm{H}}}{\mathrm{~m}_{2}}\right. \\
& \left.+\ln \frac{2 \nu}{\mathrm{~m}_{2}}\left[-\frac{1}{2} \ln \frac{2 \nu}{\mathrm{~m}_{2}}+\ln \mathrm{x}_{+}-2 \ln \left(1-\mathrm{x}_{+}\right)+\ln \frac{\mathrm{m}_{2}}{\mathrm{M}_{\mathrm{H}}}-\frac{3}{2}\right]\right\} \\
& -\mathrm{f}_{\mathrm{I}}\left\{-\ln \frac{\mathrm{x}_{+} \mathrm{s}}{\mathrm{~m}_{2} \mathrm{~m}_{\mu}}\left[\frac{3}{2} \ln \frac{\mathrm{x}_{+} \mathrm{s}}{\mathrm{~m}_{2} \mathrm{~m}_{\mu}}-2 \ln \frac{2 \nu}{\mathrm{M}_{\mathrm{H}}}-2 \ln \left(1-\mathrm{x}_{+}\right)+\ln \frac{\mathrm{m}_{\mu} \mathrm{m}_{2}}{\mathrm{M}_{\mathrm{H}}^{2}}+2 \ln \frac{\mathrm{~m}_{2}}{\mathrm{M}_{\mathrm{H}}}\right]\right\} \\
& -\mathrm{f}_{\mathrm{I}}\left\{\frac{1}{2} \ln { }^{2} \frac{\mathrm{~s}}{2 \mathrm{M}_{\mathrm{H}}{ }^{\nu}}+\ln \frac{\mathrm{s}}{2 \mathrm{M}_{\mathrm{H}}^{\nu}} \ln \frac{\mathrm{x}_{+} \mathrm{M}_{\mathrm{H}}}{\mathrm{~m}_{\mu}}+\frac{1}{2} \ln \mathrm{x}_{+}\right. \\
& \left.+\ln \frac{-u}{\mathrm{~m}_{\mu} \mathrm{M}_{\mathrm{H}}}\left[\ln \frac{\mathrm{~s}}{2 \mathrm{M}_{\mathrm{H}}{ }^{\nu}}+2 \ln \mathrm{x}_{+}-2 \ln \left(1-\mathrm{x}_{+}\right)-\frac{3}{2}\right]\right\},
\end{aligned}
$$

$$
\begin{aligned}
& B_{I I}=-f_{I I}^{2}\left[-\frac{3}{2} \ln x_{+}+\ln \left(1-x_{+}\right)\right] \\
& -\mathrm{f}_{\mathrm{II}}^{2}\left[\ln \left(1-\mathrm{x}_{+}\right)+\ln \frac{2 \nu}{\mathrm{M}_{\mathrm{H}}}\right] \\
& -\left[-\ln \frac{s}{2 \mathrm{M}_{H^{\nu}}}-\ln \mathrm{X}_{+}+\ln \left(1-\mathrm{x}_{+}\right)\right] \\
& - \text {f }_{\text {II }} \mathrm{f}_{\mathrm{II}}^{!}\left\{+\frac{1}{2} \ln \mathrm{x}_{+}-\frac{1}{2} \ln ^{2} \mathrm{x}_{+} \mathrm{M}_{\mathrm{H}} \mathrm{~m}_{2}\right. \\
& \left.+\ln \frac{2 \nu}{\mathrm{~m}_{2}}\left[-\frac{1}{2} \ln \frac{2 \nu}{\mathrm{~m}_{2}}+\ln \mathrm{x}_{+}-2 \ln \left(1-\mathrm{x}_{+}\right)+\ln \frac{\mathrm{m}_{2}}{\mathrm{M}_{\mathrm{H}}}-\frac{3}{2}\right]\right\} \\
& -f_{\mathrm{II}}^{\prime}\left\{\operatorname { l n } \frac { \mathrm { x } _ { + } \mathrm { s } } { \mathrm { m } _ { 2 } \mathrm { m } _ { \mu } } \left[\frac{3}{2} \ln \frac{\mathrm{x}_{+} \mathrm{s}}{\mathrm{~m}_{2} \mathrm{~m}_{\mu}}-2 \ln \frac{2 \nu}{\mathrm{M}_{\mathrm{H}}}-2 \ln \left(1-\mathrm{x}_{+}\right)+\ln \frac{\mathrm{m}_{\mu} \mathrm{m}_{2}}{\mathrm{M}_{\mathrm{H}}^{2}}\right.\right. \\
& \left.\left.+2 \ln \frac{m_{2}}{\mathrm{M}_{\mathrm{H}}}-\frac{3}{2}\right]\right\} \\
& -\mathrm{f}_{\mathrm{II}}\left\{-\frac{1}{2} \ln ^{2} \frac{\mathrm{~s}}{2 \mathrm{M}_{\mathrm{H}^{\nu}}}-\ln \frac{\mathrm{s}}{2 \mathrm{M}_{\mathrm{H}^{\nu}}} \ln \frac{\mathrm{x}_{+} \mathrm{M}_{\mathrm{H}}}{\mathrm{~m}_{\mu}}-2 \ln \mathrm{x}_{+}\right. \\
& \left.-\ln \frac{-u}{m_{\mu} M_{H}}\left[\ln \frac{s}{2 \mathrm{M}_{H^{\nu}}}+2 \ln \mathrm{x}_{+}-2 \ln \left(1-\mathrm{x}_{+}\right)\right]\right\}, \\
& \mathrm{s}=\left(\mathrm{k}_{1}+\mathrm{P}_{1}\right)^{2}, \quad v=\frac{1}{\mathrm{M}_{\mathrm{H}}} \mathrm{q} \cdot \mathrm{P}_{1}, \quad \mathrm{u}=\left(\mathrm{P}_{1}-\mathrm{k}_{2}\right)^{2} \\
& f_{I}=\frac{1}{3}, \quad f_{I}^{\prime}=f_{I}-1, \quad f_{I I}=-\frac{2}{3}, \quad f_{I I}^{\prime}=f_{I I}+1 .
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{k}_{20} \frac{\mathrm{~d} \Sigma_{\mathrm{E}}^{\mathrm{F}}}{\mathrm{~d}^{3} \mathrm{k}_{2}}=\int_{0}^{1} \mathrm{dx} \mathrm{~F}(\mathrm{x}) \frac{1}{(2 \pi)^{5}} \int \frac{\mathrm{~d}^{3} \mathrm{k}}{\mathrm{k}_{0}} \delta\left[(\Delta-\mathrm{k})^{2}-\mathrm{m}_{2}^{2}\right] \theta\left(\Delta_{0}-\mathrm{k}_{0}\right) \frac{\mathrm{m}^{4} \mathrm{~N}^{\mathrm{F}}}{\mathrm{k}_{1} \cdot \mathrm{p}_{1}} \\
& m^{4} N^{F}=-2 \pi \alpha\left[\frac{f^{2} \overline{\mathrm{U}}_{1}}{4\left(\mathrm{k} \cdot \mathrm{p}_{1}\right)^{2}}+\frac{\mathrm{f}^{2} \overline{\mathrm{U}}_{2}}{4(\mathrm{k} \cdot \Delta)^{2}}+\frac{\overline{\mathrm{U}}_{3}}{4\left(\mathrm{k} \cdot \mathrm{k}_{2}\right)^{2}}\right. \\
& \left.-\frac{2 \mathrm{ff}^{\prime} \overline{\mathrm{U}}_{4}}{4 \mathrm{k} \cdot \mathrm{p}_{1} \mathrm{k} \cdot \Delta}-\frac{2 \mathrm{f}_{5}}{4 \mathrm{k} \cdot \mathrm{p}_{1} \mathrm{k} \cdot \mathrm{k}_{2}}+\frac{2 \mathrm{f}^{\prime} \overline{\mathrm{U}}_{6}}{4 \mathrm{k} \cdot \Delta \mathrm{k} \cdot \mathrm{k}_{2}}\right] \\
& \frac{2}{\mathrm{Gt}^{2}} \overline{\mathrm{U}}_{1 \mathrm{I}}=-64 \mathrm{~m}_{1}^{2} \mathrm{k}_{1} \cdot \mathrm{p}_{1} \mathrm{k} \cdot \mathrm{k}_{2}-64 \mathrm{~m}_{1}^{2} \mathrm{k} \cdot \mathrm{k}_{1} \mathrm{k}_{2} \cdot \Delta+64 \mathrm{~m}_{1}^{2} \mathrm{k} \cdot \mathrm{k}_{1} \mathrm{k} \cdot \mathrm{k}_{2} \\
& -64 \mathrm{k} \cdot \mathrm{k}_{1} \mathrm{k} \cdot \mathrm{p}_{1} \mathrm{k}_{2} \cdot \Delta+64 \mathrm{k} \cdot \mathrm{k}_{1} \mathrm{k} \cdot \mathrm{p}_{1} \mathrm{k} \cdot \mathrm{k}_{2} \\
& \frac{2}{\mathrm{Gr}^{2}} \overline{\mathrm{U}}_{2 \mathrm{I}}=-64 \mathrm{k} \cdot \Delta \mathrm{k} \cdot \mathrm{k}_{2} \mathrm{k}_{1} \cdot \mathrm{p}_{1} \\
& \frac{2}{\mathrm{G}^{2}} \overline{\mathrm{U}}_{3 \mathrm{I}}=-64 \mathrm{~m}_{\mu}^{2} \mathrm{k}_{1} \cdot \mathrm{p}_{1} \mathrm{k} \cdot \mathrm{k}_{2}+64 \mathrm{~m}_{\mu}^{2} \mathrm{k} \cdot \Delta \mathrm{k}_{1} \cdot \mathrm{p}_{1}-64 \mathrm{k} \cdot \mathrm{k}_{2} \mathrm{k} \cdot \Delta \mathrm{k}_{1} \cdot \mathrm{p}_{1} \\
& \frac{2}{\mathrm{G}^{2}} \overline{\mathrm{U}}_{4 \mathrm{I}}=-32 \mathrm{k} \cdot \mathrm{k}_{2} \Delta \cdot \mathrm{p}_{1} \mathrm{k}_{1} \cdot \mathrm{p}_{1}-32 \mathrm{k} \cdot \mathrm{p}_{1} \Delta \cdot \mathrm{k}_{2} \mathrm{k}_{1} \cdot \mathrm{p}_{1}-32 \mathrm{k} \cdot \Delta \mathrm{k}_{1} \cdot \mathrm{p}_{1} \mathrm{k}_{2} \cdot \mathrm{p}_{1} \\
& -32\left(\Delta \cdot \mathrm{k}_{2}-\mathrm{k} \cdot \mathrm{k}_{2}\right)\left(\mathrm{k} \cdot \mathrm{k}_{1} \Delta \cdot \mathrm{p}_{1}-\mathrm{k} \cdot \mathrm{p}_{1} \Delta \cdot \mathrm{k}_{1}+\mathrm{k} \cdot \Delta \mathrm{k}_{1} \cdot \mathrm{p}_{1}\right) \\
& \frac{2}{\mathrm{G}^{2}} \overline{\mathrm{U}}_{5 \mathrm{I}}=-64 \mathrm{k} \cdot \mathrm{k}_{2} \mathrm{k}_{1} \cdot \mathrm{p}_{1} \mathrm{k}_{2} \cdot \mathrm{p}_{1}+32 \mathrm{k} \cdot \Delta \mathrm{k}_{1} \cdot \mathrm{p}_{1} \mathrm{k}_{2} \cdot \mathrm{p}_{1}-32 \mathrm{k} \cdot \mathrm{k}_{2} \Delta \cdot \mathrm{p}_{1} \mathrm{k}_{1} \cdot \mathrm{p}_{1} \\
& +32 \mathrm{k} \cdot \mathrm{p}_{1} \Delta \cdot \mathrm{k}_{2} \mathrm{k}_{1} \cdot \mathrm{p}_{1}-32\left(\Delta \cdot \mathrm{k}_{2}-\mathrm{k} \cdot \mathrm{k}_{2}\right)\left(\mathrm{k} \cdot \mathrm{k}_{1} \mathrm{k}_{2} \cdot \mathrm{p}_{1}-\mathrm{k} \cdot \mathrm{p}_{1} \mathrm{k}_{1} \cdot \mathrm{k}_{2}+\mathrm{k} \cdot \mathrm{k}_{2} \mathrm{k}_{1} \cdot \mathrm{p}_{1}\right) \\
& \frac{2}{\mathrm{Gr}^{2}} \overline{\mathrm{U}}_{6 \mathrm{I}}=-64 \mathrm{k} \cdot \mathrm{k}_{2} \Delta \cdot \mathrm{k}_{2} \mathrm{k}_{1} \cdot \mathrm{p}_{1}-32 \mathrm{~m}_{\mu}^{2} \mathrm{k} \cdot \Delta \mathrm{k}_{1} \cdot \mathrm{p}_{1}+32 \mathrm{k}_{1} \cdot \mathrm{p}_{1}\left(2 \mathrm{k} \cdot \Delta \Delta \cdot \mathrm{k}_{2}-\mathrm{k} \cdot \mathrm{k}_{2} \mathrm{~m}_{2}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2}{\mathrm{G}^{2}} \overline{\mathrm{U}}_{1 \mathrm{II}}=-64 \mathrm{~m}_{1}^{2} \mathrm{k} \cdot \mathrm{k}_{1} \mathrm{k}_{2} \cdot \mathrm{p}_{1}-64 \mathrm{~m}_{1}^{2} \mathrm{k} \cdot \mathrm{k}_{2} \Delta \cdot \mathrm{k}_{1}+64 \mathrm{~m}_{1}^{2} \mathrm{k} \cdot \mathrm{k}_{2} \mathrm{k} \cdot \mathrm{k}_{1} \\
& -64 \mathrm{k} \cdot \mathrm{k}_{2} \mathrm{k} \cdot \mathrm{p}_{1} \Delta \cdot \mathrm{k}_{1}+64 \mathrm{k} \cdot \mathrm{k}_{2} \mathrm{k} \cdot \mathrm{p}_{1} \mathrm{k} \cdot \mathrm{k}_{1} \\
& \frac{2}{\mathrm{G}^{\mathbf{t}^{2}}} \overline{\mathrm{U}}_{2 \mathrm{II}}=-64 \mathrm{k} \cdot \mathrm{k}_{1} \mathrm{k} \cdot \Delta \mathrm{k}_{2} \cdot \mathrm{p}_{1} \\
& \frac{2}{\mathrm{G}^{2}} \overline{\mathrm{U}}_{3 \text { II }}=-64 \mathrm{~m}_{\mu}^{2} \mathrm{k} \cdot \mathrm{k}_{1} \mathrm{k}_{2} \cdot \mathrm{p}_{1}+64 \mathrm{~m}_{\mu}^{2} \mathrm{k} \cdot \mathrm{p}_{1} \Delta \cdot \mathrm{k}_{1}-64 \mathrm{~m}_{\mu}^{2} \mathrm{k} \cdot \mathrm{p}_{1} \mathrm{k} \cdot \mathrm{k}_{1} \\
& -64 \mathrm{k} \cdot \mathrm{k}_{2} \mathrm{k} \cdot \mathrm{p}_{1} \mathrm{k}_{1} \cdot \Delta+64 \mathrm{k} \cdot \mathrm{k}_{2} \mathrm{k} \cdot \mathrm{p}_{1} \mathrm{k} \cdot \mathrm{k}_{1} \\
& \frac{2}{\mathrm{G}^{\prime}}{ }^{2} \overline{\mathrm{U}}_{4 \mathrm{II}}=-32 \mathrm{k} \cdot \mathrm{k}_{1} \Delta \cdot \mathrm{p}_{1} \mathrm{k}_{2} \cdot \mathrm{p}_{1}-32 \mathrm{k} \cdot \mathrm{p}_{1} \Delta \cdot \mathrm{k}_{1} \mathrm{k}_{2} \cdot \mathrm{p}_{1}-32 \mathrm{k} \cdot \Delta \mathrm{k}_{1} \cdot \mathrm{p}_{1} \mathrm{k}_{2} \cdot \mathrm{p}_{1} \\
& -32\left(\Delta \cdot \mathrm{k}_{1}-\mathrm{k} \cdot \mathrm{k}_{1}\right)\left(\mathrm{k} \cdot \Delta \mathrm{k}_{2} \cdot \mathrm{p}_{1}-\mathrm{k} \cdot \mathrm{p}_{1} \Delta \cdot \mathrm{k}_{2}+\mathrm{k} \cdot \mathrm{k}_{2} \Delta \cdot \mathrm{p}_{1}\right) \\
& \frac{2}{\mathrm{G}^{2}} \overline{\mathrm{U}}_{5 \mathrm{II}}=64 \mathrm{k} \cdot \mathrm{k}_{1} \mathrm{k}_{2} \cdot \mathrm{p}_{1} \mathrm{k}_{2} \cdot \mathrm{p}_{1}+64 \mathrm{k} \cdot \mathrm{k}_{2} \mathrm{k} \cdot \mathrm{p}_{1} \Delta \cdot \mathrm{k}_{1}-64 \mathrm{k} \cdot \mathrm{k}_{1} \mathrm{k} \cdot \mathrm{k}_{2} \mathrm{k} \cdot \mathrm{p}_{1} \\
& -32\left(\Delta \cdot \mathrm{k}_{1}-\mathrm{k} \cdot \mathrm{k}_{1}\right)\left(2 \mathrm{k} \cdot \mathrm{p}_{1} \mathrm{k}_{2} \cdot \mathrm{p}_{1}-\mathrm{m}_{1}^{2} \mathrm{k} \cdot \mathrm{k}_{2}-2 \mathrm{k} \cdot \mathrm{k}_{2} \mathrm{k}_{2} \cdot \mathrm{p}_{1}+\mathrm{m}_{\mu}^{2} \mathrm{k} \cdot \mathrm{p}_{1}\right) \\
& \frac{2}{\mathrm{G}^{\prime}}{ }^{2} \overline{\mathrm{U}}_{6 \mathrm{II}}=32 \mathrm{k} \cdot \mathrm{k}_{1} \Delta \cdot \mathrm{k}_{2} \mathrm{k}_{2} \cdot \mathrm{p}_{1}+32 \mathrm{k} \cdot \mathrm{k}_{2} \Delta \cdot \mathrm{k}_{1} \mathrm{k}_{2} \cdot \mathrm{p}_{1}+32 \mathrm{k} \cdot \Delta \mathrm{k}_{1} \cdot \mathrm{k}_{2} \mathrm{k}_{2} \cdot \mathrm{p}_{1} \\
& -32\left(\Delta \cdot \mathrm{k}_{1}-\mathrm{k} \cdot \mathrm{k}_{1}\right)\left(\mathrm{k} \cdot \mathrm{p}_{1} \Delta \cdot \mathrm{k}_{2}-\mathrm{k} \cdot \mathrm{k}_{2} \Delta \cdot \mathrm{p}_{1}+\mathrm{k} \cdot \Delta \mathrm{k}_{2} \cdot \mathrm{p}_{1}\right) .
\end{aligned}
$$

At this point it should be noted that the corrections which arise from the bremsstrahlung graphs depend upon the form of the parton distribution function $F(x)$. The result is particularly sensitive to the small x region.

To get the radiative corrections to an actual cross section such as $\nu \mathrm{P}$, we must use the cross section (case I or II) and an F (x) appropriate for each kind of quark $(\mathrm{p}, \mathrm{n}, \overline{\mathrm{p}}, \overrightarrow{\mathrm{n}})$ and then sum over quarks in the target.

As an example, we have worked out νP and $\bar{\nu} P$ at $E_{\nu}=100 \mathrm{GeV}$ in the lab. We have used distribution functions from Kuti and Weisskopf ${ }^{5}$ and have done the integrations for A and $\Sigma_{I E}^{F}$ numerically. Kuti and Weisskopf
give

$$
\begin{aligned}
& F(\bar{p} \text { in } P)=F(\bar{n} \text { in } P)=F(\bar{p} \text { in } N)=F(\bar{n} \text { in } N)=\frac{1}{3} \frac{(1-x)^{7 / 2}}{x} \\
& F(p \text { in } P)=F(n \text { in } N)=\frac{1}{3} \frac{(1-x)^{7 / 2}}{x}+\frac{105}{48} \frac{(1-x)^{3}}{\sqrt{x}} \\
& F(n \text { in } P)=F(p \text { in } N)=\frac{1}{3} \frac{(1-x)^{7 / 2}}{x}+\frac{105}{96} \frac{(1-x)^{3}}{\sqrt{x}}
\end{aligned}
$$

Typical results can be seen in Figs. 6 and 7.
These curves show features typical of radiative corrections in other processes, ${ }^{6}$ which is not surprising since it is primarily a classical effect. At fixed lab angle and fixed incident neutrino energy, the spectrum of the muons is decreased by about 10% at the high end and increased by about 10% at the low end. We notc again that the approximations of the calculation are valid only in the scaling region with all momenta dot products much bigger than the corresponding masses.

Acknowledgements

We thank S. J. Brodsky and J. D. Bjorken for many helpful suggestions.

REFERENCES

1. R. P. Feynman, Phys. Rev. Letters 23, 1415 (1969);
J. D. Bjorken and E. Paschos, Phys. Rev. 185, 1975 (1969).
2. R. N. Cahn, Phys. Rev. Letters 29, 1481 (1972).
3. For notation see J. D. Bjorken and S. D. Drell, Relative Quantum Mechanics (McGraw-Hill, New York, 1964).
4. D. Yennie, S. Frautschi, and H. Suura, Ann. Phys. (N. Y.) 13, 379 (1961).
5. J. Kuti and V. F. Weisskopf, Phys. Rev. D 4, 3418 (1971).
6. G. Miller et al., Phys. Rev. D 5, 528 (1972).

FIGURE CAPTIONS

1. Graphs contributing to $\nu_{\mu} \mathrm{n} \rightarrow \mu^{-} \mathrm{p}$ with radiative corrections.
2. Feynman graph for the uncorrected process $\nu_{\mu} \mathrm{n} \rightarrow \mu^{-} \mathrm{p}$.
3. The self-energy graphs.
4. The vertex graphs.
5. The bremsstrahlung graphs.
6. Plot of $\left(\sigma_{\text {corrected }}{ }^{-\sigma}\right.$ uncorrected $) / \sigma_{\text {uncorrected }}$ for various lab angles and energies of the outgoing muon in the reaction $\nu_{\mu} \mathrm{P} \rightarrow \mu^{-} \mathrm{X}$ at an incident neutrino energy of 100 GeV in the lab. ($\sigma_{\text {corrected }}$ is $\mathrm{k}_{20} \mathrm{~d} \mathrm{\Sigma} / \mathrm{d}^{3} \mathrm{k}_{2}$ of Eq. (1).)
7. Plot of $\left(\sigma_{\text {corrected }}{ }^{-\sigma}\right.$ uncorrected $) / \sigma_{\text {uncorrected }}$ for various lab angles and energies of the outgoing muon in the reaction $\bar{\nu}_{\mu} \mathrm{P} \rightarrow \mu^{+} \mathrm{X}$ at an incident neutrino energy of 100 GeV in the lab. $\left(\sigma_{\text {corrected }}\right.$ is $\mathrm{k}_{20} \mathrm{~d} \mathrm{\Sigma /d}^{3} \mathrm{k}_{2}$ of Eq. (1).)

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

[^0]: *Work supported by the U. S. Atomic Energy Commission.

