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ABSTRACT 

A simple parton model is used to estimate the radiative corrections 

to neutrino induced inclusive processes. An application of the resulting 

LAB 
expressions to vclP - p-e X at Ev = 100 GeV shows that the muon spec- 

trum is distorted by as much as 10% in some regions. 
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I. INTRODUCTION 

The results from deep-inelastic, inclusive neutrino-nucleon scattering 

experiments which are in progress or planned for the near future will be an 

important input for current theoretical work. The effects of radiative correc- 

tions must be considered in interpreting these experimental results. 

Unfortunately, it is impossible to calculate the radiative corrections to 

an inclusive process which is controlled by unspecified dynamics. There are 

two reasons for this. First, the long wavelength photons are sensitive to 

changes in the large scale distribution of electric charges and currents. This 

information is not available unless the general features of the hadronic final 

state are specified. Second, the short wavelength photons are sensitive to 

details of the current distribution in the interaction region. Again, this infor- 

mation is not available in the absence of a theory for the basic interaction. 

Thus, in order to estimate radiative corrections we need a model which 

specifies the electromagnetic currents in some detail. We will use the parton 

model. 1 

In this model, the nucleon target is to be viewed as a collection of weakly 

bound,relatively light point particles. The neutrino is assumed to have a weak 

interaction with one of these target partons. In the deep-inelastic region, this 

parton gets a large acceleration and the leptonic system suffers a large reaction. 

The other partons are assumed to receive accelerations much smaller than that 

of the leptonic system or the struck parton. 

Classical intuition suggests that the charges which are accelerated the 

most will make the major contribution to the radiative correction. Thus, we 

will consider only contributions where the photon is attached to the struck 

parton or the outgoing muon, and we will sum over the partons incoherently, 

as usual. 
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This is analogous to the usual practice of calculating radiative corrections 

by considering only the proton in the target which is struck and then summing 

incoherently over the protons in the target. This restriction of the number of 

Feynman graphs is gauge invariant so long as we ignore the interacti.ons 

between the partons. 

For the purposes o$ this calculation, we will assume further that the final 

state interactions which “dress” the outgoing parton give a jet of outgoing 

physical particles which have the same charge and essentially the same mo- 

mentum as the parton. The very long wavelength photons will not be sensitive 

to the difference between a single particle and a jet of particles with the same 

charge and with small average momentum transverse to the jet direction. 2 

The short wavelength photons, which see better, are coupled most strongly 

to the region of the primary violent interaction of the bare particles rather than 

to the relatively smooth current distributions of the final state. This primary 

interaction to which the high energy photons are most sensitive is taken to be 

a pointlike Fermi interaction between the leptons and the parton. 

This model is very crude. We stress that the results which it gives should 

be considered semi-quantitatively at most. The approximations of the model 

are probably reasonable only for the very long and the very short wavelength 

photons. However, it is these regions of the integration over photon momentum 

which are most important. Thus, we expect to reproduce the gross features 

of the radiative corrections correctly. The situation is somewhat simpler in 

electroproduction. There it is possible to separate out the radiative corrections 

to the electron line in a gauge invariant way. The problem of radiative correc- 

tions to the photon-parton interaction in electroproduction has not been faced. 
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In Section II, we calculate the basic cross sections. Sections III, IV, and 

V calculate the contributions from the self-energy, vertex, and bremsstrahlung 

graphs, respectively. In Section VI, these results are combined and numerical 

results for vp - ~1~ anything and Vp - 4 anything at EV = 100 GeV are given. 

When considered as a function of muon energy at fixed lab angle, the cross 

section is typically decreased by about 10% at large muon energies and increased 

by about 10% at small muon energies by the radiative corrections. 
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II. BASIC CROSS SECTION 

The calculation will be carried out in the following way: First,we assume 

that the partons are quarks and gluons. The gluons are assumed to have no 

weak or electromagnetic interactions. The small size of sin 2 BCabibbo will 

allow us to neglect the A and x quarks. Thus, we are interested in the o(up), 

o(vn), @(vi), cr(vii), a(;~),, a(;@, a(@), @@ii) neutrino-quark cross sections. 

Charge conservation and the spectrum of quark charges give 

a(vp) = c~(zGi) = a(cn) = c(cp) = 0 

We will assume CP invariance and get 

o(vn) = o(Vii) 

and 

u<up> = c$p) 

for the spin averaged cross sections. Note that these relations hold even with 

a final state photon whose polarization has been summed over. Thus, we need 

only calculate two cross sections 

and 

a1 = a(vn) 

?I = o<up, . 

We will describe the calculation of case I only. Case II is very similar and we 

quote only the final results. 

After calculating the cross sections, we let the parton momentum pI go to 

xP1 where PI is the target nucleon momentum, multiply each of the cross sec- 

tions by the parton distribution function F(x) appropriate to that kind of parton, 

integrate over x, and sum over parton types. (In electroproduction, 

VW,(X) = x c 
par ton 

fiFi(X) ) 

types 

fi being the charge of a parton of type i. ) 
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an 

has 

We consider the scattering of a muon neutrino ZJ 
EC 

of momentum kl off 

n quark of momentum p1 mass m,, and charge fe = 1/3e. The final state 

a p- of momentum k2 mass rnp and charge e, and a p quark of momentum 

p2 mass m2 and charge f’e = (f-l)e = - 2/3 e. Photons, real or virtual, have 

momentum k. The graphs which contribute are shown in Fig. 1. The graphs 

of Fig. la contribute a cross section3 

1 
&E 

dx F(x) k20 -tj- 
d k2 

with the quark cross section 

k - = -!- 6 doE 

2o d3k2 27~~ 

4 
m = mvmPmlm2 ’ 

M = absolute square of the matrix element for the first three sets of graphs 

averaged over initial spins, summed over final spins, and evaluated at 

p2 = A E kl+pl-k2. -1 This contains a mV which cancels the mV in m4 after 

which we take mV - 0. 

The bremsstrahlung graphs of Fig. lb contribute a cross section 

k (=IE 
1 dGIE = 

/ 2o d3k2 o 
ck F(x) k20 3 t 

d k2 

with 

k d”IE - = -&- /$ 6 [(A-k)2 - -3 o(AO-ko)@l 
2o d3k2 

, 

and N- absolute square of the matrix element for the bremsstrahlung processes 

appropriately summed and averaged over spins and evaluated at p2 = A-k. 
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With these preliminaries out of the way, we proceed with the purpose of 

this section which is to calculate MO, the contribution to M from the graph of 

Fig. 2. 

&y. = G - 
& 

u&3,) ~~(1-y~) NP,) $k,) Y%-v5) utkl) 

We square this, sum over initial and final state spins, and divide by 2 for 

the average over quark spins. (There is no dividing by 2 for the ncutrino since 

only one spin state contributes. ) The result is 

G2 MO= +8kl.p1k2*p2 . 
m4 
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III. SELF-ENERGY CORRECTIONS 

In this section we consider the contribution from the graphs of Fig. 3. The 

contribution which they make to M 

d&1 from A0 by the replacement 

h+m, 
UtP,) - ‘21 J. 

P, -m$ 

will be 2 Re A;( &!I+ &12+ &f3). We get 

- 6m 1 MP,) 1 I 

. 

I 1. 

with 

E(p) is calculated by the regularization procedure 

The calculation must be carried out for p2 # m2. Only after Z(p) is inserted 

between the spinor and the propagator do we take p2 = m2. As is usual we write 

C(p) =A+B($-m) + C($-m)2 . 

A and B are numbers independent of p. C is a 4x4 matrix finite at A -too and 

p2 d m2. Thus, between a propagator l/p-m and a spinor u(p), the C term 

will not contribute. A standard calculation gives 

The contribution from A is cancelled by taking dm = A. 
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The contribution from the B term appears as B M-m)-‘Q&m) u(p) which 

is undefined. This is resolved, as usual, by identifying the wave function re- 

norm.alization in this order and taking B ($-m)-‘Q&m) u(p) = l/2 B u(p). Thus, 

the contribution to M from the self-energy graphs is 
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IV. VERTEX CORRECTIONS 

In this section, we consider the graphs of Fig. 4. 

in the combination 

These contribute to M 

We wiII sketch the treatment of =A?5; AL4 and Jd6 are very similar. 

dti=G -ia!f’ 1 1 -- 
5 J2 47r3 

d4k1 
2 
k @2-k)2-mt (k2+k) “-rni 

x U(p,) rc” ti2-lffm2) Y.Jl-y5) u@,) X Q2) yc1(Jf2+V+mp) rhV-r5) u(kl) 

Its contribution to M is 

M5=Re %!$! 
/ 

d4k 1 1 1 
k2 (p2-k)2-mi (k2+k)2-m2 

T 
4n 5 

P 

with 

T 5 = g & $ Tr [yu (1-Y5) ti2+m2) Y%,-li+m,) Yh(l-Y5)til+mljl 
m 

x i Tr (W5)(It2+mJ r,(K,+g+m,) rAU_r,) ti, 1 . 
M5 contains both infrared and ultraviolet divergences. We regulate by taking 

1 1 1 

7 
--- 
k2-A2 k2-A’) 

h-0 

as before. The use of Feynman parameters gives 

1 
dzldz2 6(1-z1-z2) dxldx2dx3 6 (1-x1-x2-x3) 

X d4k TkI 
[ - 
k2 D2-x A2*ie 3 - @--- *) 

5 1 1 
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with 

D5 - (x2+x3) C5 , 

c5 = (Z1P2 - z2k2) > 

and 

T&. G 8k2*p2 MO - 8k2M0 - 8D;Mo 

2 
-m2D5-k2 + 2D5.p2k2.p2 - 

=A+k2B . 

After doing the k integration, 

--f&f 
1 1 

M5 = SJ 0 0 
dzldz2 6(1-zl-z2) dxldx2dx3 6(1-x1-x2-x3) 

A 
X 

Ci + xlh2-ie 
- 2B In 

(1-xl)2 Ci+xlh2-ie 

(l-~l)~ Ct + xlh2-ie 

We now carry out the x2 and x3 integrals an Id change variables to xrl-xl. A can 

be separated as A=AO+ xAl+x2A2. The result is 

At this point, we take advantage of the fact that we are interested in a kinematic 

region in which kA. kg >> mAmB with kA and kg typical momenta. Thus, we 

drop terms with masses and identify 

B= -8M0 , 
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A6 = 8 1~2.~2 MO , 

A1 + iA2 P -8(zl+z2) k2.p2 MO - 4C; MO , 

and 

Al I- $42 -8(zl+a2)k2*~2M6 
-4MO* 

After integration the first term goes like MOJn k2.p2/m2mP while the second 

is, of course, just - MO. We will make the approximation of dropping terms 

which are of order one relative to terms of order J?n kA. kg/mAmg . 

The result is 

M5 = - z ft Re dzldz2 6(1-~1-22) MO 

2 Qn 
k2’p2 ~ A2 _P -- 
Cg-ie Ci-ie 

These integrals must be evaluated with great care. The correct procedure 

has been given by Yennie, Frautschi, and Suura. 
4 The result is 

M5 = 

with C5 = zlp2+z2k2. Similarly , 

Terms of order t * l-MO have been dropped. 
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V, BREMSSTRAIILUNG CONTRIBUTION 

In this section we consider the contribution from the graphs of Fig. 5. 

,H3 = -s- 
$2 (k2+ky2-m2 

U(p,) Y~(~-Y~) u(P,) c(k,) (2~ -k2+M rhW,) W,) 
I-L 

At e=k, Ji+u”J2+ &3 = 0 demonstrating the gauge invariance of the graphs. 

Squaring this amplitude, summing and averaging properly over all spins 

gives 

4 m N=-2m + u3 

tk2+2k*k2)2 

+ 
2ff’ u4 2f u5 2f’ U6 

(k2-2k.p,)(k2+2k.p,) + (k2-2k.p,)(k2+2k. k3f (k2+2k+p2)(k2+2k.k2) 
1 

* 
l. L I L 

This is to be evaluated at k2=h2 and p2=A-k. In the denominators, 

products are of order h when k. is of order A. Thus , since k2=h2 9 

the dot 

we can 

drop the k2 in the denominators and also in the U’s. 

The result is 

m4N = -27~ -f- 
ff2U2 

-I- u3 2ff’ u4 2f u5 2f’ U6 

4(k. A)2 “&k2t2 
- &plk. A - 4kapIk.k2 + 4k*Ak*k2 

I 
. 
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with (from now on MO=M 1 -A) 
0 P2- 

2 - UI = 8mlM0 + UI 

U2 = 8miM0 + n, U5 = 8k2*plM0 + u, 

U4 = 8A*plM0 + g, 

U3 = 8mEMo + u, U6 = 8A*k2M0 t- us . 

The u have at least one power of k and thus give infrared finite contributions. 

Complete expressions will be quoted in Section VI. This identification of the 

infrared divergent and infrared finite parts suggests that we write 

IR F 

k d”IE *IE d”rE --= 
2o d3k k20 -&- + k20 d3k 

2 2 2 

where (T IR is computed with 

m4N = m4NIR 5 -~TCY M 
ff2m2 m2 

+.-2+A- 
2f f’A.pI 

4. A)2 (k.k2)2 k*Ak*Pl 

2f k2-p1 2f’ Ask2 

- k-k2 k-p1 + k.Ak.k2 
1 

’ 

and oF is computed using the n’s. 

Now we must extract the infrared divergence from 

IR 
FEZ 

J 

1 
IR 

daIE 
k 

2o d3k2 0 
CIX F(x) k20 --g-- 

d k2 

where k20 dcr:$d3k2 is now evaluated with pI=xPI, ml=xMH, and MR is the 

mass of the nucleon. 

&R 
-EL 

J 
1 

k 
2o d3k2 0 

&+c F(x) s I$) S[tA-W2 --iI 0 Go-k,) $Jz 
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whereko=+ j-=5? Ikl +h. We begin by splitting up the /d I z I 

withA<< E but e-+Oafterh- 0. Thus, in the second integral, we take h=O 

,IR 3 with no problem. Then, k20 cLIE/d k2 = 11+12with 

, 
1 

11 = dx F(x) 1 m 
m5 

-mi] 6 (A 4P 
0 -k ) 0 kl.pl 

k2=@ 

I2 = s 1 dx F(x) 1 1 0 (A -k ) m4NIR 

cw5 
0 0 kl’pl ’ 0 

k2=0 

I1 is evaluated by using the &function to do the x integration. We can then set 

k=O except in the denominators of N IR , parameterize these denominators, and 

carry out the /If;, <E d3k . 
&A2 

s 

1 
= d-p2% 1 

0 (27r)5 (A2-rni) 

since k2 m4NIR 0 /kl.pl is independent of kg. The evaluation of I2 is begun with 

a further split: I2 = IBA + IZB where 

k2 m4NIR 0 
kl’pl I / A0 

a0 
x=x E 

-I- 
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1 
dx1 

1 

(2~)~ A2-mi J 
k2 m4NIR 

dsll? ‘kl.pl 

n, 

x=x f i *o 6 

A2-mi 
-kg . 

E 2(A”& a’i i 
+ 

x+ is the positive root of A2-mz=O. (Recall A depends on x through pl=xq.) 

In IzA, we can take l =O, do the /dko and get 

0 ( A2-rni) 

(2nj5 (A2-mz) J dS$ 
k2 m4NIR 0 

k2 m4NIR 0 

kl’pl kl’pl ’ 1 x=x + 

which is an invariant (although not manifestly so as written). IZB is evaluated 

by parameterizing the denominators in N IR and carrying out the /da and ldko. 

The calculation is best done in the rest frame of the resulting parameterized 

4 vector. 

Even with this simplification, the calculation is rather messy. However, 

in combining IBB with II the dependence on E cancels out, as it must, and the 

result is covariant. 

Considerable simplification results from dropping terms of order one 

relative to logs. The parametric integrals are handled using the techniques of 

Ref. 4. We also drop terms which go like l/q* PI as they are small in the deep 

inelastic region. The result is 
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1 1 
B = f2 Qn -A- -I- f12 Qn A+jp-- A 

“1 m2 JJ “cl 0 0 dzldz26(1-z1-z2) Asp1 A2 
ffl _- 

.2 h-z 
c4 c4 

2q. p1 
2 

MH + an (l-x+) + In -+Qn-- 1 mlm2 

2A.k2 a* p1 
+ Qn(l-x+) + Qn - + Qn - 

m2mCl 1 m2m/.l I- 
Qn 

2A.Pl 

m2ml 

2q. Pl 
-2QnT “lrn2 m2 

MH 

-2Qn(l-x+)+QnT+2Qnr 

MH H 

2A*k2 2A*P1 a- Pl -m m 
Qn +Qn-- 

“zrny, “2”l 
2!h--y- 

MH 

+Qn + - 2 Qn (l-x+) 

MH 

m2 +2Qng- 
Aok2 
---b-l 

H 
+ Iln A.pl 

2 A’k2 “1 ; 1 

“CL 
zh Asp1 1 

2A*k2 24.Pl 
9n~-2h-3-- 2.eI-l (l-x+) + Qn 

2 CL lVIH 
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B and C are both to be considered evaluated at x=x+ . 
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VI. RESULTS 

In this section we will combine our results from the previous sections. 

Recall that the graphs of Fig. la give 

1 4 
k - dx F(x) -1, 

27r2 
6 [ A2-mi 1 f3(A ) -a 

0 kl.pl 

’ W+) m4M = 
2 2 

I kl’pl x=x * 27r MH(X+-Xj 
+ 

The contributions to M from the basic, self-energy, and vertex graphs have 

been given in Sections II, III, and IV. The bremsstrahlung graphs give 

k20 
tiIE 

d3k2 

d$R 

= k20 
IE 

d3k + k20 
2 

IR We can now make the gratifying observation that the A dependent terms in CIE 

cancel those in Z E’ Not so gratifying, however, is the fact that the A depend- 

ent terms do not cancel. Since these terms are the same in case II as we just 

obtained in case I, we can interpret them as a renormalization of G by writing 

1+2FQn$-+ 
H 

. ..) ,z ; p (l+gQn&)12 (1; . ..) 

= &1+ . ..) 

with G’ 3 G 1 + 

G’ is interpreted as the renormalized weak coupling constant to be identified 

with the observed coupling constant in a reaction such as P-decay where the A 

dependent parts of the radiative correction are the same. (This identification 

may not be justified since the model we use is not actually applicable to a low 

energy process such as P-decay.) 
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We are also troubled by the explicit appearance of m2 the quark mass. 

Its presence reflects the uncertainties and ambiguities of the parton model 

such as neglecting the transverse momenta of the partons. Deep inelastic 

ep scattering suggests that m2 -SC MH. However, we cannot put m2 = 0 because 

it appears essentially as Qn m2/MH. We take m2 = 0.3 GeV and hope for the 

best. 

Finally, we have for case I or II 

dz 
k20 & = 

GT2F(x) MO 

I 
M;(x+-x-) kl’ pI 

(A+B) +k20+ 1 
dzF (1) 

2 d k2 
x=x + 

with 

M oI = 8 Q-p1 k2*A , 

MOII = 8 Jy A k2-pl , 

AI = l 1 ’ 
dx x-x+ x+sF(xd 

-+ 

j(xs-A2) F(x)~If~Qn$+fIQnM$; -fihv] 

- [“-“+1 
1 (xu-A2) F(x) 

+ (x+u-rng) F(x+) 

U2 

M2m2 
H P 
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BI = -f; 
[ 
- $ Qn x+ + Qn (l-x+) 1 

- fi2 (l-x+) -I- Qn $- 
H 1 

QnL - 2MHv Qn x+ + Qn (l-x+) 1 8 
- fI fi 1 2 X+“H 2 Qn x+ - LQn - 2 

“2 

- 2 Qn (l-x+) + Qn 

+;Qnx+ 
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B,=-fz,[-$ Qn x+ + Qn (l-x,) 1 
(l-x+) + Qn $- 

H 1 
Qn x+ + Qn (l-x,) 1 

xM 
-%flr. s 

“2 

-2Qng- 2 Qn (l-x+) + Qn 

xM 
*-Qn*Qn?-2Qnx+ 

+ 2 Qn x+ - 2 Qn (l-x+) , 

s = Or,+q2 , 
1 v=-q*P , 

MH ’ 
u = (Pl-k2)2 

1 
$=a, f; = fI - 1 

2 
, $1 = - Tj , fiI = fnr + 1 . 
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k 
dzL l 
-= 

/ 2o d3k, 0 
dx F(x) ---&/$ 6 [W-W2 - -3 etAo-ko) el 

,2-- 
f u2 + u3 

4(k* A)2 40r-k2)2 

4 2f f’TJ4 ZfD, 2f’8, 

- 4k* p1 k* A - 4k. p1 k. k2 + 4k. A k* k2 

Lu 
Gt2 ‘I 

= - 64mf kI*pl k. k2 - 64mf k. kI k2. A + 64mT k* kl k. k2 

- 64 k. kl k.pl k2* A + 64 ke kl k-p1 k* k2 

28 
GT2 21 

= - 64 k*Ak.k, kI*pl 

2yj 
CT2 31 

= - 64m2k .p kBk2+64mi k.Akl.pl - 
CL 1 1 

64 k* k2 km A kl.pl 

2-E zz- 
Gt2 41 

32 k*k2 A-p1 kl.pl - 32 k*pl A=k2 kl*pl - 32 k*Akl.pl k2*p1 

- 32 (a’k2 - k.k2) (k-k1 A-p1 - k*pl Aok1 + ka Akl.pl) 

2 - -U =-64k.k2kl’p1k2*p1+32k*Akl.p1k2’p1-32k.k2a’p1kl*p1 
Gf2 51 

+ 32 k-p1 A-k2 kI*pl - 32 (a’k2 -k*k2) (k~kIk2~p1-k~p~kI.k2+k~k2kI*p1) 

2 - --$JsI = - 64 k-k2 A-k2 kl’pl - 32mi k* A kl.pl + 32 kI*p1(2k* A A-k2 -k.k2mi) 
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2.u 
GT2 HI 

= - 64mf k*kl k2=pI - 64mT k* k2 A*kI 4 64mi k-k2 k* kl 

-64 k.k2 k.pI A*kI + 64 k.k2 k-p1 k.kI 

2-u 
G’2 211 = - 64 k-k1 k*Ak2.pl 

2E 
Gt2 3n 

= - 64mi k*kI k2*pI + 64$ k-p1 A*kl - 64mi k* pI k-k1 

- 64 k-k2 k*pl kl.Ac 64 k*k2 k-p1 k-k1 

2-E 
Gf2 4= 

= - 32 k* kI AspI k2*pI - 32 k*pI A. kI k2pl - 32 k. A kl. pI k2*pl 

- 32 (AskI-k.kl) (k.Ak;pl-kpl A-k2+k.k2 A*pl) 

2-D 
G’2 5= 

= 64k~k.Ik2.plk2.p.l+64k.k2k~plA*k,-64k~klk~k2k~pl 

- 32 (A.kI -k.kl) (2k*plk2*pl-mf k*k2-2k-k2k2.pI+mt k.pl) 

-2-B 
G,2 611 = 32 k-k1 A’k2 k2*pl -I- 32 k.k2 A*kl kg-p1 -I- 32 k.Akl.k2 kZ’pl 

- 32 (&kl-k*kl) (k.pIA*k2-k’k2A.p1+ k*Ak2*pl) 

At this point it should be noted that the corrections which arise from the brems- 

strahlung graphs depend upon the form of the parton distribution function F(x). 

The result is particularly sensitive to the small x region. 

To get the radiative corrections to an actual cross section such as VP, we 

must use the cross section (case I or II) and an F(x) appropriate for each kind 

of quark (p, n, p, n ) and then sum over quarks in the target. 

As an example, we have worked out VP and VP at Ev = 100 GeV in the 

lab. We have used distribution functions from Kuti and Weisskop f? and have 

done the integrations for A and .ZfE numerically. Kuti and Weisskopf 
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give 

1 (l-x)7/2 F(IjinP)=F(ninP)=F~inN)=F(ninN)=~ x 

F(pinP)=F(ninN)=z x 

Typical results can be seen in Figs. 6 and 7. 

These curves show features typical of radiative corrections in other 

6 processes, which is not surprising since it is primarily a classical effect. 

At fixed lab angle and fixed incident neutrino energy, the spectrum of the 

muons is decreased by about 10% at the high end and increased by about 10% 

at the low end. We note again that the approximations of the calculation 

are valid only in the scaling region with all momenta dot products much 

bigger than the corresponding masses. 
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FIGURE CAPTIONS 

1. Graphs contributing to bin - ,u-p with radiative corrections. 

2. Feynman graph for the uncorrected process vCln -+ p-p . 

3. The self -energy graphs. 

4. The vertex graphs. 

5. The bremsstrahlung graphs. 

6. ‘lot Of ccorrected-Uuncorrected)louncorrected for various lab angIes ( 
and energies of the outgoing muon in the reaction v~P - p-X at an incident 

neutrino energy of 100 GeV in the lab. (ucorrected is k20 dZ/d3k2 of 

7. Plot of ( (J correctedBauncorrecte civ %ncorrected for various lab angles 

and energies of the outgoing muon in the reaction GpP - 4X at an incident 

neutrino energy of 100 GeV in the lab. ~~~~~~~~~~ is k20 dZ/d3k2 of 

Eq. (l)-) 
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