THE GEOMETRY AND OPTICS OF SYNCHROTRON RADIATION*

A. P. Sabersky
Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

Abstract

The geometrical-optical properties of synchrotron radiation coming from a curving, relativistic electron beam do not fit into any usual category of light or radiation source. The center of the apparent source of radiation depends on the position of the observer with respect to the orbit, and the source has an axial extent which is a function of the sizes of the beam and the observation aperture. The beam image formed by focusing the synchrotron light is subject to distortions and depth of field errors. These errors are calculated, and, in some cases, methods of correction are given. The limits put on resolution by geometrical effects are given. Beam orbit changes cause errors in the angular acceptance of observation systems: these effects can also be corrected. The dimensions of the diffuse shadows cast by rays from the finite-sized source impinging on edges are calculated.

(Submitted to Particle Accelerators.)

[^0]
INTRODUCTION

In high energy electron accelerators and storage rings, synchrotron radiation gives the machine designer many problems, and solves a few. This paper gives derivations of the properties of synchrotron light interesting to those who use synchrotron light to study electron beams in extent and intensity, and those who use the synchrotron light itself as a tool.

Geometric Properties

We concern ourselves with the problem of an observer at a point struck by synchrotron radiation. What point on the electron orbit illuminates the observation point, and how is the location of the emission point to be defined?

We first represent the electron beam as a single line and the emitted radiation as rays tangent to a curved orbit. We deal only with orbits in uniform magnetic fields and field-free spaces throughout. The observation point is in a field-free region adjacent to a sharply bounded bending field, in the plane of the bend. The geometry of the problem is shown in Fig. 1. In Appendix A, we derive equations for the emission distance ℓ and the angle with respect to the local straight trajectory, 2δ.

$$
\begin{aligned}
& \delta=\tan ^{-1}\left[\frac{-\ell_{0}-\left(\ell_{0}^{2}+\mathrm{d}(2 \mathrm{R}+\mathrm{d})\right)^{1 / 2}}{2 \mathrm{R}+\mathrm{d}}\right] \approx \frac{-\ell_{0}-\left[\ell_{0}^{2}+2 \mathrm{dR}\right]^{1 / 2}}{2 \mathrm{R}} \quad \begin{array}{l}
\text { for small } \delta \\
\text { and } \mathrm{R}>\mathrm{d}
\end{array} \\
& \ell=\frac{\mathrm{d}}{\sin 2 \delta}+\mathrm{R} \tan \delta \approx \frac{\mathrm{~d}}{2 \delta}+\mathrm{R} \delta
\end{aligned}
$$

where the independent variables are
$R=$ the radius of bend
$\ell_{0}=$ the distance from the end of the curved orbit to a perpendicular from the observation point
$d=$ the perpendicular distance from the observation point to the straight trajectory.

If one is using these equations in the design of synchrotron radiation shields or other systems it is very convenient to plot sets of solutions on a graph for reference.

When the orbit of the electron beam moves radially, the emission point moves also. We look at the case in which the orbit moves perpendicular to itself at the original emission point. For $\cos 2 \delta \approx 1$, the changes in orbit position can be expressed as changes in d.

The change in emission distance, ℓ, with d is given by

$$
\frac{\partial \ell}{\partial \mathrm{d}}=\frac{\mathrm{R}\left(\ell_{0}+\mathrm{k}^{1 / 2}-\mathrm{d} \cdot \mathrm{R} \cdot \mathrm{k}^{-1 / 2}\right)}{\left(\ell_{0}+\mathrm{k}^{1 / 2}\right)^{2}}-\mathrm{R} \cdot \mathrm{k}^{-1 / 2} \quad \mathrm{k}=\ell_{0}^{2}+2 \mathrm{dR}
$$

This quantity defines the slope of a line of emission points with respect to the original observation axis (Fig. 2). If $\partial^{2} \ell / \partial d^{2} \ll \partial \ell / \partial d$ in the region of interest, $\partial l / \partial \mathrm{d}$ can be considered a constant. $\partial \delta / \partial \mathrm{d}$ can be treated similarly. For the full emission angle, $\gamma=2 \delta$

$$
\frac{\partial y}{\partial \mathrm{~d}}=\left(\ell_{0}^{2}+2 \mathrm{dR}\right)^{-1 / 2}
$$

$$
\tan 2 \delta \cong \gamma
$$

Since ℓ changes with d, the horizontal angular acceptance of an aperture at the observation point also changes with orbit displacements. The fractional
change in aperture angle, $\alpha=s / \ell$ (Fig. 12), for a displacement Δd is:

$$
\frac{\Delta \alpha}{\alpha}=-\frac{\Delta \mathrm{d} \partial \ell}{\ell \partial \mathrm{~d}} \quad \Delta \mathrm{~d} \frac{\partial \ell}{\partial \mathrm{~d}} \ll \ell
$$

This effect may be troublesome in photometric work. A method of correction is given in Appendix B.

Beam Image: Horizontal Component

A curved particle beam emitting a collimated cone of light tangent to its curvature is an unusual object for optical observation. We use the phasespace techniques commonly applied to charged particle optics ${ }^{1}$ for analysis. We assume that defining apertures are rectangular, so that the ray optics can be treated separately in the horizontal and vertical planes.

Following the geometrical analysis of the previous section, we first treat a line beam emitting a single ray tangent to its curvature. We leave out the dependence of angle on time and assume that our observation system looks at all rays for all time. The optical axis is the ray passing through the center of the observation aperture (Fig。3). The tangent point, T, is the point $x=0, z=0$, and angles are referred to the z axis, as shown. For example, we look at two points on opposite sides of T, T1 and T2 at an angle δ (Fig. 4). The tangent at T 1 is projected forward to the $\mathrm{z}=0$ line, and the tangent at T 2 is projected backwards. All tangents are similarly projected to $\mathrm{z}=0$. For small θ, the trace of the tangents on the $x-\theta$ plane at $z=0$ is expressed by (see Fig. 5):

$$
\mathrm{x}=\frac{1}{2} \mathrm{R} \theta^{2}
$$

It is desirable to work at $\mathrm{z}=0$ because a linear transformation of this trace to another z results in a very complex function.

When a beam of electrons with a finite size, $\pm x_{0}$, and zero divergence is centered on the line beam of the previous section, the rays it emits fill an area whose boundaries are parallel to the original central ray line (Fig. 6). This area will be referred to as the source area.

Visible synchrotron light has a divergence angle in the horizontal plane, typically milliradians for ultrarelativistic electrons. The particle beam also has a finite divergence.* The total light divergence angle, $\theta_{\text {tot, }}$, is usually given as the quadratic sum of these two divergences. The total divergence has no effect on the intensity distribution in the source area if

$$
\frac{1}{2} \mathrm{R} \theta_{\text {tot }}^{2} \ll \mathrm{x}_{0}
$$

We treat only this case.
A restricting aperture forms a pair of lines parallel to θ axis in phase space. The aperture edges can be transformed backwards or forwards along the optical axis to any other point, where they will also appear as a pair of parallel straight lines. We define an aperture \pm a wide, symmetrical about the optical axis. The equations of the edges are, for the +a and -a edges, respectively,
$\mathrm{x}-\mathrm{a}=0$
$\mathrm{x}+\mathrm{a}=0$ 。
Transformed backwards a distance ℓ along the Z axis, the equations of the edges are

$$
\begin{aligned}
& \theta+(x-a) / l=0 \\
& \theta+(a-x) / l=0
\end{aligned}
$$

The two edges of the observation aperture, transformed back to the emission point, are superimposed on the source area (Fig. 7). In this case, the aperture

[^1]size ($\pm \mathrm{a}$), is smaller than the beam size ($\pm \mathrm{x}$).
We can now define exactly the boundaries of the source area seen through the aperture, and we need to know how accurately this source represents the horizontal beam cross-section. A typical optical observation device, such as a television camera or photographic film, looks at the intensity distribution in one plane perpendicular to the optical axis. All information about angular distribution or x, θ correlation is lost in this process. What we see is the projection of the distribution in (x, θ) onto the x axis.

If the beam were an ordinary self-luminous object, the boundaries of the light source area would be straight, parallel to the θ axis and symmetrical about $\mathrm{x}=0$.

However, looking at Fig. 7 as an example, we can see errors due to curvature and asymmetry of the source area boundaries. The magnitude of the error is approximately equal to the difference between x_{0} and the projections of the four intersection points onto the x axis. An approximation to the total
error, $\Delta \mathrm{x}_{0}$, is given by

$$
\Delta x_{0}=R\left(\frac{x_{0}+a}{\ell}\right)^{2}
$$

If $\Delta x_{0} \ll x_{0}$, we may forget about the distortions. Note that as the quantity a becomes very small, Δx_{0} does not go to zero。

If the distortions are a problem, they can be partially compensated with second-order optics (Appendix C) or improved by increasing ℓ.

The treatment so far has been geometrical, and one must include diffraction effects when dealing with small horizontal apertures.

Shadow Effects

If the observation point is an edge, such as a protection collimator, the synchrotron radiation casts a shadow whose edge is tangential to the beam orbit (Fig. 8). The distribution of electrons in a real beam causes a penumbra to extend beyond the straight shadow edge cast by a line beam. The angular power distribution in the penumbra is related to the radial power distribution in the beam, exactly as the shadow angle is related to radial orbit displacements. The power distribution in a penumbra radially outward from an edge is determined by the beam power distribution radially inside the beam center line. For a radial beam current distribution $\mathrm{P}(\mathrm{r})$ the angular penumbral power distribution is

$$
\mathrm{P}(\text { angular })=\mathrm{P}(\mathrm{r}) \frac{\partial \gamma}{\partial \mathrm{d}}
$$

For a Gaussian beam current distribution with standard deviation width x , the total power in the penumbra is

$$
\mathrm{P}(\text { penumbra })=1.25 \mathrm{P}_{\theta} \frac{\partial \gamma}{\partial \mathrm{d}}
$$

where P_{θ} is the power per radian in the synchrotron radiation.

Beam Image -- Vertical

In this section we derive the vertical resolution of an ideal optical system used to observe the electron beam by its emitted light. Since the emission properties of the beam determine the ultimate resolution limit, rather than the properties of the optical system, we shall always refer to the resolution in object space.

An electron beam emitting synchrotron radiation is a self collimated luminous object. The angular divergence of the light in the vertical plane is a function of the bending radius and the energy of the electron beam. A useful, precise tabulation of synchrotron light properties can be found in Reference 2. The ultimate vertical resolution in the image is determined by the vertical angular divergence of the light, ϕ

$$
\delta y_{1} \approx \frac{\lambda}{\phi}
$$

neglecting polarization effects.

$$
\begin{aligned}
\delta y & =\text { resolution } \\
\lambda & =\text { light wavelength } \\
\phi & =\text { angular width } .
\end{aligned}
$$

The electron beam has a finite divergence, and this should be properly added to the light divergence angle, for resolution and depth of field calculations; however, the beam divergence is usually small compared to the light divergence angle, and will be ignored.

For a beam with horizontal size x_{0}, each edge of the horizontal aperture defines a line which is a boundary of the horizontal emission area (Fig. 9). The other two edges have the curvature of the orbit. The angle subtended by an aperture of size a is

$$
\theta=\mathrm{a} \frac{\partial \theta}{\partial \mathrm{~d}}
$$

Thus, the length of arc forming the curved boundary is

$$
\mathrm{C}=\mathrm{R} \cdot \mathrm{a} \cdot \frac{\partial \theta}{\partial \mathrm{~d}}
$$

Treating the emission area as a parallelogram, the effective z extent of the horizontal emission area can be expressed, for small θ, as

$$
\delta z=x_{0} \frac{\partial \ell}{\partial \mathrm{~d}}+\mathrm{R} \cdot \mathrm{a} \cdot \frac{\partial \theta}{\partial \mathrm{~d}}
$$

The depth field of error is

$$
\delta \mathbf{y}_{2}=\delta z \cdot \phi
$$

If all distributions of angle and intensity are Gaussian, the vertical resolution is given by

$$
\delta \mathrm{y}=\left[\left(\delta \mathrm{y}_{1}\right)^{2}+\left(\delta \mathrm{y}_{2}\right)^{2}\right]^{1 / 2}
$$

For a more exact formulation of the depth-of-field problem, one must consider the effect of the sharp edges of the emission area due to the aperture edges differently from the "soft" edges due to the beam-intensity distribution.

It is interesting that the vertical resolution depends on horizontal beam size and horizontal aperture.

It is possible to reduce the effect due to the beam horizontal size by placing a horizontal image stop in the image plane of the optical instrument (Fig. 10). The restricted image can be re-focused or the stop may be put slightly upstream of the image plane.

If the image is to be scanned with a slit, the slit may be tilted with respect to the optical axis so that it is parallel to the image of the line of emission points.

Acknowledgements

I wish to thank F . Bulos and H . Wiedemann for reading the manuscript.

APPENDIX A

SYNCHROTRON LIGHT GEOMETRY

Referring to Figure 11,

$$
\begin{aligned}
\ell_{0} & =\overline{\mathrm{AB}} \\
\ell & =\overline{\mathrm{EC}} \\
\mathrm{~d} & =\overline{\mathrm{CB}} \\
\mathrm{~m} & =\overline{\mathrm{EF}}=\overline{\mathrm{FA}} \\
\mathrm{~m} & =\mathrm{R} \tan \delta \\
\overline{\mathrm{FB}} & =\ell_{0}+\mathrm{m} \\
\mathrm{~d} & =\overline{\mathrm{FB}} \tan 2 \delta \\
\mathrm{~d} & =\left(\ell_{0}+\mathrm{R} \tan \delta\right) \tan 2 \delta
\end{aligned}
$$

let $\mathrm{x}=\tan \delta$

$$
\begin{aligned}
& \tan 2 x=\frac{2 x}{1-x^{2}} \\
& \frac{2 x}{1-x^{2}}\left(\ell_{0}+R x\right)=d
\end{aligned}
$$

finally

$$
\begin{aligned}
& \tan \delta=\frac{-\ell_{0}-\left[\ell_{0}^{2}+\mathrm{d}(2 \mathrm{R}+\mathrm{d})\right]^{1 / 2}}{2 \mathrm{R}+\mathrm{d}} \\
& \ell_{1}=\frac{\mathrm{d}}{\sin 2 \delta}+\mathrm{R} \tan \delta
\end{aligned}
$$

APPENDIX B

ACCEPTANCE ANGLE CORRECTION

The acceptance angle is $\alpha=\mathrm{s} / \ell$（refer to Fig。12）．The fractional change in acceptance is

$$
\Delta \alpha / \alpha=\frac{\Delta \mathrm{d}}{\ell} \cdot \frac{\partial \ell}{\partial \mathrm{~d}}
$$

for

$$
\Delta l=\Delta \mathrm{d}(\partial \ell / \partial \mathrm{d}) \ll \ell .
$$

We shall use the proportionality between Δl and $\Delta \gamma$ to correct the acceptance change．An optical system for correction is shown schematically in Fig。13． The filter at the focal plane of the lens has a transmission profile for light

$$
T(x)=\text { power (transmitted) } / \text { power(total) } \quad 0<T \leq 1
$$

For an orbit distortion，d，the power at the aperture is

$$
P_{(d)}=P \frac{S}{\ell-d(\partial l / \partial d)}
$$

$\mathrm{P}=$ power radiated into 1 radian
The ray passes through the lens and reaches the filter at

$$
\mathrm{x}=-\mathrm{f} \theta=-\mathrm{f} \cdot \mathrm{~d} \cdot(\partial \gamma / \partial \mathrm{d})
$$

thus

$$
\mathrm{d}=-\frac{\mathrm{x}}{\mathrm{f}} \cdot \frac{\partial \mathrm{~d}}{\partial \gamma}
$$

and $P(d)$ expressed as power variation at the focal plane，$P(x)$ ，is

$$
\mathrm{P}(\mathrm{x})=\mathrm{P} \frac{\mathrm{~S}}{\ell+\frac{\mathrm{x}}{\mathrm{f}} \frac{\partial \ell}{\partial \gamma}}
$$

where x is the ray deviation at the focal plane（Fig。13）．Now，we posit a constant power passed through the system，independent of d

$$
P_{0}=P(x) \cdot T(x)
$$

P_{0} is the power transmitted when $\gamma=0$, and

$$
\begin{aligned}
& P_{0}=P \cdot T_{0} \cdot \frac{S}{l} \\
& T_{0}=T(x) \text { at } x=0 .
\end{aligned}
$$

T_{0} is arbitrary, and can be chosen for convenience. Then,

$$
\mathrm{T}(\mathrm{x})=\frac{\mathrm{P}_{0}}{\mathrm{P}_{\mathrm{x}}}=\mathrm{T}_{0}+\frac{\mathrm{T}_{0} \mathrm{x}}{\mathrm{f} \bullet \ell} \quad \frac{\partial \ell}{\partial \gamma}
$$

APPENDIX C

CORRECTION OF THE PHASE-SPACE CURVATURE

We wish to straighten the boundaries of the source area by introducing corrections into the horizontal imaging system, assuming that the horizontal and vertical optical systems are separable. At the source, the distortion in each ray is an error in x, proprotional to θ^{2} 。We need to transform the distribution of rays such that we have errors in θ, proportional x^{2}, then they can be corrected by a focussing device.

We use the optical system illustrated in Fig. 14. The lens f has focal length f .

The first order transformation matrix for this system, up to f^{\prime}, is

$$
T=\left(\begin{array}{cc}
0 & \mathrm{f} \\
-1 / \mathrm{f} & 1-\ell / \mathrm{f}
\end{array}\right)
$$

We work with a single ray from the central trajectory, $\left(\mathrm{X}_{0}, \theta_{0}\right)$, $\mathrm{x}_{0}=\frac{1}{2} \mathrm{R} \theta_{0}^{2}$ 。

In front of f^{\prime} we have the ray coordinates

$$
\begin{aligned}
& \mathrm{x}=\mathrm{f} \theta_{0} \\
& \theta=\beta \theta_{0}-\frac{\mathrm{x}_{0}}{\mathrm{f}}=\beta \theta_{0}-\frac{1}{2} \frac{\mathrm{R} \theta_{0}^{2}}{\mathrm{f}} \quad \beta=1-\ell / \mathrm{f}
\end{aligned}
$$

If we were imaging a conventional point source instead of the curved central trajectory, $x \equiv 0$, and the second term would be zero. Since the second term is
second order in θ_{0}, we need a second-order lens, which is described by the simplified second-order lens matrix

$$
\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{k} & 1
\end{array}\right) \cdot\binom{\mathrm{x}_{\mathrm{i}}^{2}}{\theta_{\mathrm{i}}}=\binom{\mathrm{x}_{\mathrm{f}}}{\theta_{\mathrm{f}}}
$$

where $1 / \mathrm{k}$ is the strength of the second-order element.
At the exit of the second-order lens we have

$$
\begin{aligned}
& \mathrm{x}=\mathrm{f} \theta_{0} \\
& \theta=\beta \theta_{0}-\frac{1}{2} \frac{\mathrm{R} \theta_{0}^{2}}{\mathrm{f}}-\frac{\mathrm{f}^{2} \theta_{0}^{2}}{\mathrm{k}}
\end{aligned}
$$

In order to eliminate all second-order terms,

$$
\frac{1}{2} \frac{\mathrm{R} \theta_{0}^{2}}{\mathrm{f}}+\frac{\mathrm{f}^{2} \theta_{0}^{2}}{\mathrm{k}}=0
$$

thus

$$
k=-2 f^{3} / R
$$

A conventional (first order) thin lens transforms rays such that

$$
\theta=-\frac{x_{0}}{f}
$$

A thin second-order lens has the characteristic

$$
\theta=-\frac{\mathrm{x}_{0}^{2}}{\mathrm{k}}
$$

This lens may be realized by grinding a reflecting or refracting surface to a third-order curve $Z \propto x^{3}$ (Fig. 15)。

We look at the image in its normal position (Fig. 14).

REFERENCES

1. For example, A. P. Banford, The Transport of Charged Particle Beams (E. \& F. N. Spon, Ltd., London, 1966).
2. R. A. Mack, "Spectral and angular distributions of synchrotron radiation," Report No. CEAL-1027, Cambridge Electron Accelerator Laboratory (1966).

FIGURE CAPTIONS

1. Basic geometry of synchrotron radiation emission and observation.
2. Definition of the optical axis and line of emission points.
3. Coordinates for phase space representation of the light source.
4. Projection of tangent rays to the source plane.
5. Phase-space representation of the light source at $\mathrm{z}=0$.
6. Light source area.
7. A distant aperture transformed backwards onto the source area.
8. Shadow effects due to finite beam size.
9. Horizontal emission area of a beam observed through an aperture.
10. A system which limits depth-of-field error due to horizontal beam size.
11. Detailed geometry of synchrotron radiation emission and observation.
12. The change in acceptance angle due to horizontal orbit distortions.
13. An optical system which corrects errors in the angular acceptance of a photometric system due to horizontal orbit distortions.
14. An imaging optical system which corrects errors in the horizontal plane due to source curvature.
15. A second-order focusing element.

Fig. 1

Line of

Emission Points

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Filter
Plane

Fig. 13

Fig. 14

Fig. 15

[^0]: * Work supported by the U. S. Atomic Energy Commission.

[^1]: * We assume that the beam divergence is small enough so that its size is constant in the region of interest.

