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ABSTRACT 

The geometrical-optical properties of synchrotron radiation coming from 

a curving, relativistic electron beam do not fit into any usual category of light 

or radiation source, The center of the apparent source of radiation depends 

on the position of the observer with respect to the orbit, and the source has an 

axial extent which is a function of the sizes of the beam and the observation 

aperture. The beam image formed by focusing the synchrotron light is subject 

to distortions and depth of field errors. These errors are calculated, and, in 

some cases, methods of correction are given. The limits put on resolution by 

geometrical effects are given. Beam orbit changes cause errors in the angular 

acceptance of observation systems: these effects can also be corrected. The 

dimensions of the diffuse shadows cast by rays from the finite-sized source 

impinging on edges are calculated. 

(Submitted to Particle Accelerators, ) 
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INTRODUCTION 

In high energy electron accelerators and storage rings, synchrotron radiation 

gives the machine designer many problems, and solves a few. This paper gives 

derivations of the properties of synchrotron light interesting to those who use 

synchrotron light to study electron beams in extent and intensity, and those who 

use the synchrotron light itself as a tool. 

Geometric Properties 

We concern ourselves with the problem of an observer at a point struck by 

synchrotron radiation. What point on the electron orbit illuminates the observ- 

ation point, and how is the location of the emission point to be defined? 

We first represent the electron beam as a single line and the emitted 

radiation as rays tangent to a curved orbit. We deal only with orbits in uniform 

magnetic fields and field-free spaces throughout. The observation point is in 

a field-free region adjacent to a sharply bounded bending field, in the plane of 

the bend. The geometry of the problem is shown in Fig. 1. In Appendix A, we 

derive equations for the emission distance P and the angle with respect to the 

local straight trajectory, 26. 

2 l/2 

6 = tan -1 -Q. -(Q. + d(2R +d)) 

1 

~ -Lo -[Q;+ 2dR]1’2 
for small 6 

2R+d 2R 
and R>>d 

Q=d + R tan 6 z d 
sin 26 -+ RS 26 

where the independent variables are 

R = the radius of bend 

PO = the distance from the end of the curved orbit to a perpendicular from 

the observation point 

d = the perpendicular distance from the observation point to the straight 

trajectory D 
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If one is using these equations in the design of synchrotron radiation shields 

or other systems it is very convenient to plot sets of solutions on a graph for 

reference. 

When the orbit of the electron beam moves radially, the emission point 

moves also. We look at the case in which the orbit moves perpendicular to 

itself at the original emission point. For cos 26 M 1, the changes in orbit 

position can be expressed as changes in d. 

The change in emission distance, Q, with d is given by 

8Q - R ‘0 + k ( 
l/2 

- d*R-k-1’2) _ R.k-1/2 
k =Q 2 

ad- l/2 2 0 +2dR 

( Q. + k ) 

This quantity defines the slope of a line of emission points with respect 

to the original observation axis (Fig. 2). If d2Q/dd2 << 8Q/ad in the region of 

interest, dQ/dd can be considered a constant. &Y/dd can be treated similarly. 

For the full emission angle, y = 26 

-$- = (Q; + 2dR) -l/2 tan 26 “= y 

Since Q changes with d, the horizontal angular acceptance of an aperture at 

the observation point also changes with orbit displacements. The fractional 
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change in aperture angle, Q! = s/Q (Fig. 12), for a displacement Ad is: 

Ao! z2 - Ad 8Q 
(Y Q 3d 

This effect may be troublesome in photometric work. A method of correction 

is given in Appendix B. 

Beam Image : Horizontal Component 

A curved particle beam emitting a collimated cone of light tangent 

to its curvature is an unusual object for optical observation. We use the phase- 

space techniques commonly applied to charged particle optics’ for analysis 0 

We assume that defining apertures are rectangular, so that the ray optics can 

be treated separately in the horizontal and vertical planes. 

Following the geometrical analysis of the previous section, we first treat 

a line beam emitting a single ray tangent to its curvature. We leave out the de- 

pendence of angle on time and assume that our observation system looks at all rays 

for all time. The optical axis is the ray passing through the center of the ob- 

servation aperture (Fig. 3). The tangent point, T, is the point x = 0, z = 0, 

and angles are referred to the z axis, as shown. For example, we look at two 

points on opposite sides of T, Tl and T2 at an angle 6 (Fig. 4). The tangent 

at Tl is projected forward to the z = 0 line, and the tangent at T2 is projected 

backwards. All tangents are similarly projected to z = 0. For small t3, the 

trace of the tangents on the x - 0 plane at z = 0 is expressed by (see Fig. 5) : 

x=+ R8 2 

It is desirable to work at z = 0 because a linear transformation of this 

trace to another z results in a very complex function. 
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When a beam of electrons with a finite size, &x0, and zero 

divergence is centered on the line beam of the previous section, the rays it emits 

fill an area whose boundaries are parallel to the original central ray line (Fig. 6). 

This area will be referred to as the source area. 

Visible synchrotron light has a divergence angle in the horizontal plane, 

typically milliradians for ultrarelativistic electrons. The particle beam also 

has a finite divergence. * The total light divergence angle, 8 tot, is usually 

given as the quadratic sum of these two divergences. The total divergence has 

no effect on the intensity distribution in the source area if 

&Re2 
tot << x 0 o 

We treat only this case. 

A restricting aperture forms a pair of lines parallel to 6 axis in phase 

space. The aperture edges can be transformed backwards or forwards along 

the optical axis to any other point, where they will also appear as a pair of 

parallel straight lines. We define an aperture &a wide, symmetrical about the 

optical axis. The equations of the edges are, for the +a and -a edges, respectively, 

x-a = 0 

x+a = 0. 

Transformed backwards a distance Q along the Z axis, the equations of the 

edges are 

8 + (x-a)/Q = 0 

0 + (a-x)/Q = 0 

The two edges of the observation aperture, transformed back to the emission 

point, are superimposed on the source area (Fig. 7). In this case, the aperture 

* We assume that the beam divergence is small enough so that its size is con- 

stant in the region of interest. 
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size (&a), is smaller than the beam size t-+x). 

We can now define exactly the boundaries of the source area seen through the 

aperture, and we need to know how accurately this source represents the hori- 

zontal beam cross-section. A typical optical observation device, such as a 

television camera or photographic film, looks at the intensity distribution in 

one plane perpendicular to the optical axis. All information about angular dis- 

tribution or x, 6’ correlation is lost in this process, What we see is the pro- 

jection of the distribution in (x,0 ) onto the x axis. 

If the beam were an ordinary self-luminous object, the boundaries of the 

light source area would be straight, parallel to the 8 axis and symmetrical 

about x = 0. 

However, looking at Fig. 7 as an example, we can see errors due to curv- 

ature and asymmetry of the source area boundaries. The magnitude of the error 

is approximately equal to the difference between x o and the projections of the 

four intersection points onto the x axis. An approximation to the total 

error, Ax o, is given by 

2 

AxO 

IfAxoax p 0 we may forget about the distortions. Note that as the quantity a 

becomes very small, Ax0 does not go to zero. 

If the distortions are a problem, they can be partially compensated with 

second-order optics (Appendix C) or improved by increasing Q. 

The treatment so far has been geometrical, and one must include diffraction 

effects when dealing with small horizontal apertures. 
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Shadow Effects 

If the observation point is an edge, such as a protection collimator, the syn- 

chrotron radiation casts a shadow whose edge is tangential to the beam orbit (Fig. 8). 

The distribution of electrons in a real beam causes a penumbra to extend beyond 

the straight shadow edge cast by a line beam. The angular power distribution 

in the penumbra is related to the radial power distribution in the beam, exactly 

as the shadow angle is related to radial orbit displacements. The power dis- 

tribution in a penumbra radially outward from an edge is determined by the beam 

power distribution radially inside the beam center line. For a radial beam 

current distribution P(r) the angular penumbral power distribution is 

ay P(angular) = P(r) ad 

For a Gaussian beam current distribution with standard deviation width x, the 

total power in the penumbra is 

P(penumbra) = 1.25 P8-$$- 

where PO is the power per radian in the synchrotron radiation. 

Beam Image -- Vertical 

In this section we derive the vertical resolution of an ideal optical system 

used to observe the electron beam by its emitted light. Since the emission 

properties of the beam determine the ultimate resolution limit, rather than the 

properties of the optical system, we shall always refer to the resolution in 

object space. 
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An electron beam emitting synchrotron radiation is a self collimated lumi- 

nous object. The angular divergence of the light in the vertical plane is a func- 

tion of the bending radius and the energy of the electron beam. A useful, precise 

tabulation of synchrotron light properties can be found in Reference 2. The 

ultimate vertical resolution in the image is determined by the vertical angular 

divergence of the light, C#J 

neglecting polarization effects. 

6y = resolution 

h = light wavelength 

r#~ = angular width. 

The electron beam has a finite divergence, and this should be properly added 

to the light divergence angle, for resolution and depth of field calculations; how- 

ever, the beam divergence is usually small compared to the light divergence angle, 

and will be ignored. 

For a beam with horizontal size x0, each edge of the horizontal aperture 

defines a line which is a boundary of the horizontal emission area (Fig. 9). The 

other two edges have the curvature of the orbit. The angle subtended by an aper- 

ture of size a is 

Thus, the length of arc forming the curved boundary is 

Treating the emission area as a parallelogram, the effective z extent of the hori- 

zontal emission area can be expressed, for small 8, as 
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The depth field of error is 

6y2 = 6z ’ + 

If all distributions of angle and intensity are Gaussian, the vertical resolution is 

given by 

6Y = [@YlJ2 + (sy,)2]1’2 * 

For a more exact formulation of the depth-of-field problem, one must con- 

sider the effect of the sharp edges of the emission area due to the aperture edges 

differently from the “soft” edges due to the beam-intensity distribution. 

It is interesting that the vertical resolution depends on horizontal beam size 

and horizontal aperture. 

It is possible to reduce the effect due to the beam horizontal size by placing 

a horizontal image stop in the image plane of the optical instrument (Fig. 10). 

The restricted image can be re-focused or the stop may be put slightly upstream 

of 

to 

the image plane. 

If the image is to be scanned with a slit, the slit may be tilted with respect 

the optical axis so that it is parallel to the image of the line of emission points. 
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APPENDIX A 

SYNCHROTRON LIGHT GEOMETRY 

Referring to Figure 11, 

QO =AB 

Q =i%- 

d =CB 

mzm=FA 

m = R tan6 

FB= QO+m 

d = FB tan 26 

d = (Q. + R tan 6) tan 26 

let x = tan 6 

tan 2x = 2x 

1 - x2 

2X (Q 
1 -x2 

o + Rx) = d 

finally 

tan 6 = 
-Qo- [ Q; -t d(2R + d) 1’2 

I 
2R 5 d 

“1 = d 
sin 26 e R tan 6 
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APPEND= B 

ACCEPTANCE ANGLE CORRECTION 

The acceptance angle is Q! = s/Q (refer to Fig. 12). The fractional change 

in acceptance is 
Ad 8Q ha/a! = --j/ m 

for 

M = Ad(aQ,‘ad) << Q o 

We shall use the proportionality between AQ and A-y to correct the acceptance 

change. An optical system for correction is shown schematically in Fig. 13. 

The filter at the focal plane of the lens has a transmission profile for light 

T(x) = power (transmitted)/power(total) O<Tll 

For an orbit distortion, d, the power at the aperture is 

‘td) = ’ Q - ds(3Q/‘3d) 

P = power radiated into 1 radian 

The ray passes through the lens and reaches the filter at 

x = -fO = -f.d@@d) 

thus 
dz-+. ad 

3y 

and P(d) expressed as power variation at the focal plane, P(x), is 

P(x) =P S 

Q+ & 
-T- ay 

where x is the ray deviation at the focal plane (Fig. 13). Now, we posit a 

constant power passed through the system, independent of d 

pO = P(x) a T(x) a 
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PO is the power transmitted when y = 0, and 

TO = T(x) at x = 0. 

To is arbitrary, and can be chosen for convenience. Then, 

pO ToX aQ 
T(x) = p 

X 

=To+fq q o 
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APPENDIX C 

CORRECTION OF THE PHASE-SPACE CURVATURE 

We wish to straighten the boundaries of the 

corrections into the horizontal imaging system, 

and vertical optical systems are separable. At 
3 

source area by introducing 

assuming that the horizontal 

the source, the distortion in 

each ray is an error in x, proprotional to 0 -., We need to transform the dis- 

tribution of rays such that we have errors in 8, proportional x2, then they can 

be corrected by a focussing device. 

We use the optical system illustrated in Fig. 14. The lens f has focal 

length f. 

The first order transformation matrix for this system, up to f’, is 

T = (-i”,f I-Q;i) 

We work with a single ray from the central trajectory, (X0, e,), 

In front of f’ we have the ray coordinates 

x = f6 0 

xO 
R02 

e = pe, -f = pea -5 + p = 1 - Q/f 

If we were imaging a conventional point source instead of the curved central 

trajectory, x=0, and the second term would be zero. Since the second term is 
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second order in 8 O, we need a second-order lens, which is described by the 

simplified second-order lens matrix 

where l/k is the strength of the second-order element. 

At the exit of the second-order lens we have 

X = fq) 

Re2 
e=pe,-+ -+ - 

f2e2 
k” 

In order to eliminate all second-order terms, 

1 f2e2 0 
2 f +- = 

k 0 

thus 

k = - 2f3/R 

A conventional (first order) thin lens transforms rays such that 

A thin second-order lens has the characteristic 
2 

x0 
e =---E-- 

This lens may be realized by grinding a reflecting-or refracting surface to a 

third-order curve Z a x3 (Fig. 15), 

We look at the image in its normal position (Fig. 14). 
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FIGURE CAPTIONS 

Basic geometry of synchrotron radiation emission and observation. 

Definition of the optical axis and line of emission points. 

Coordinates for phase space representation of the light source. 

Projection of tangent rays to the source plane. 

Phase-space representation of the light source at z = 0. 

Light source area. 

A distant aperture transformed backwards onto the source area. 

Shadow effects due to finite beam size. 

Horizontal emission area of a beam observed through an aperture. 

A system which limits depth-of-field error due to horizontal beam size. 

Detailed geometry of synchrotron radiation emission and observation. 

The change in acceptance angle due to horizontal orbit distortions. 

An optical system which corrects errors in the angular acceptance of a 

photometric system due to horizontal orbit distortions. 

An imaging optical system which corrects errors in the horizontal plane 

due to source curvature. 

A second-order focusing element. 
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