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ABSTRACT 

A general nonperturbative model for the entire Compton amplitude which 

incorporates Bjorken scaling, gauge-invariance, and Regge behavior is pre- 

sented. We show that a covariantly regularized model based on the infinite 

momentum frame techniques of Drell, Levy, and Yan is equivalent to the mani- 

festly covariant nonperturbative parton model of Landshoff, Polkinghorne and 

Short. We also demonstrate that a general consequence of composite theories 

of hadrons with field-theoretic constituents which incorporates the above 

properties is the existence of a constant energy-independent and q2-independent 

term in T1@, q2) (a “Kronecker delta” 6 Jo term) and a J=O fixed pole in T2(~, q2). 

Sum rules for general Compton amplitudes are derived and a discussion of mass 

renormalization for electromagnetic self-energy corrections of hadrons is 

presented. We demonstrate that such sum rules are always finite, even in the 

presence of Regge behavior, when subtraction terms in the underlying parton 

proton u-channel dispersion relation are taken into account. Analytic continua- 

tion in 01 is thus justified. 
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INTRODUCTION 

Although many models of scaling behavior of the electromagnetic inter- 

actions have been proposed, the most compelling models continue to be those 

in which the hadronic matrix elements of the current behave as if the carriers 

of the current are elementary field-theoretic constituents. In addition to the 

general light-cone approach, specific dynamical models have been given by 

Drell, Levy and Yan (DLY), ’ Landshoff, Polkinghorne, and Short (LPS) ,2 and 

Drell and Lee. 3 One of the purposes of this paper is to show that a covariant 

regularized model based on the infinite momentum techniques of DLY is equiva- 

lent to the LPS model, and displays many of the covariant features of the 

Bethe-Salpeter bound state model of Drell and Lee. 

One of the great virtues of the LPS model is that it naturally incorporates 

t analytic Regge-behavior of the scaling function vW2(x), reflecting the hadronic 

Regge behavior of the parton-proton amplitude. In this paper, we present a 

related model, which is explicitly gauge-invariant, and allows a complete 

discussion of the entire Compton amplitude. The importance of Regge subtrac- 

tions in the internal representation for the parton-proton amplitude is emphasized. 

The new model is defined in a linear operational fashion in terms of lowest order 

calculations, and is eminently suitable for analyzing the interplay of fixed pole, 

Regge behavior, current algebra sum rules, and gauge invariance. One 

essential feature of the model is that all sum rules are automatically finite. 

In this paper we also establish in detail the direct connection between scaling 

in local field theories and the presence of a polynomial-residual J=O “fixed pole” 

contribution to the Compton amplitude. The infinite momentum frame analysis is 

particularly useful for establishing the presence of this contribution in the case of 
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Fermion currents. The magnitude of the fixed pole is given by a finite integral 

over the deep inelastic structure function VW,(X). 495 

The outline of this paper is as follows. In Section I we present an ex- 

tremely simple derivation of the LPS nonperturbative covariant model based 

on time-ordered perturbation theory in an infinite momentum reference frame. 

The Regge behavior of the scaling structure function is demonstrated. In 

Section II perturbation theory calculations in scalar and Fermion electro- 

dynamics are presented which are particularly instructive for demonstrating 

the close correspondence between Bjorken scaling, J=O fixed pole behavior, 

and the requirements of gauge invariance. The necessity for covariant regulari- 

zation is pointed out. Following this preparation we derive in Section III a 

finite gauge-invariant nonperturbative model, with general Regge behavior. 
\ 

’ A complete discussion and calculation of the analytic behavior of the Compton 

amplitude in this scaling theory is then presented. In Appendix A, a complete 

summary of fixed-pole sum rules for electromagnetic and weak processes is 

presented. In Appendix B, a general connection between the explicitly covariant, 

and infinite momentum techniques is discussed. Finally in Appendix C, a 

discussion of mass renormalization for electromagnetic self-energy corrections 

of hadrons is presented. 
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I. THE NONPERTURBATIVE PARTON MODEL 

In this section we present a simple derivation of the Landshoff, Polkinghorne, 
2 

and Short covariant parton model, based on time-ordered perturbation theory 

in an infinite momentum reference frame. The general procedure is to relate 

the analytic behavior of a parton-proton scattering amplitude to the proton 

structure function v W,(x). We first derive this relationship in lowest order 

perturbation theory. The generalization to any order in perturbation theory will 

then be immediate. The term “parton” refers to the elementary carrier of 

the electromagnetic current within the hadrons: at time t=O in the interaction 

picture, the current is a superposition of the free currents of these fields. 

Thus, first consider the u-channel contribution to the parton-proton scat- 

tering amplitude from gluon exchange in lowest order perturbation theory (see 

Fig. 1). All particles are taken as scalars. 

It will be convenient to use the following Lorentz reference frame: 

( M2 p= P+w,$,P 
1 i 

z-XP 2xP ’ I’ j 

Q. 1) 

where 0 <x < 1, and we will eventually take P -+03. In terms of the variables 

F2 and x we have 
1 ’ 

(1.2) 
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Using time-ordered perturbation theory, the time-ordering of Fig. 1 gives 

2 1 
&lu = 3 +I!$ (E~+E~) - (Ek+Ekr+EA) + ie 

82 1 
pX (2n)3 u-h2+ie ’ 

in an agreement with the covariant result 

time-ordering vanishes in order l/P2. 

cr. 3) 

since the contribution of the other 

To this same order in perturbation theory the proton form factor at q2=0 

is (see Section II and Ref. 4 ) 

1 = F&O) = Z2 -!- K4) 

where Z2 is the wave function renormalization constant in second order. Here 

the surviving contribution for P - m comes from the time-ordering shown in 

Fig. 2. The two energy denominators are the same as that appearing in “’ u. 
\ 

It is convenient to define a normalized distribution function f(x): 

s 
1 

F+O) = 1 = f(x) dx 
0 

with 

f(x) = 
dtlu 

d2kl y - 
[ I U-h2 

+ Z26(1-x) 

(I. 5) 

(I. 6) 

In fact, as shown in Section II, we can identify the Bjorken scaling function 

VW,(X) = xf(x), x = -q2/2Mv. Note that f(x) has one extra energy denominator 

beyond that of the parton-proton amplitude. 

We now generalize the pa&on-proton amplitude to include the full com- 

plexities of a Reggeized hadronic amplitude. One can in fact show that if 

proton-proton scattering has Regge behavior, then one cannot avoid having 
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Regge behavior in the parton-proton amplitude. We thus write 

(27r)3 Au =j 
u-m2*ie 

- [subtraction terms] (r- 7) 

where 7ro is the imaginary part of the forward (anti) parton-proton scattering 

amplitude. The spectral sum variable m2 replaces h2 of the perturbation 

result. In the case of a Regge contribution, p CC 2CY (m ) , 0 < cv < 1, a sub- 

traction term is of course required in order that the expression for &Lu be 

finite. As we shall see, the subtraction term does not enter the calculation 

of VW,(X) or the form factor, but it is essential in obtaining finite results for 

sum rules. The corresponding result for f(x) is then 

v W,(x) 
- zz 

X 
f(x) = 

J 
d2kl. f dm2 9 p(m2y p2’2 + Z2 6(1-x) 

(u-m2+ie) 
(I* 8) 

Again f(x) has one extra energy denominator beyond that of &?u. In the case of 

a composite hadron one may take Z2=0, corresponding to the absence of direct 

interactions of the photon with the proton. 

As indicated in Eq. (I. 8), one must in general take into account the off- 

shell dependence of the forward parton-proton amplitude when imbedded in the 

interior of a general amplitude. The usual Feynman off-shell variable p2 

corresponds in time-ordered perturbation theory to the invariant four- 

momentum squared of the particle computed taking the energy component from 

energy conservation (in addition to the usual three momentum conservation): 

M2(l-x) - m2-zL2 

2(1-x)P f T;I,fl 
i 

-2 

P2 = @-Pm?= 
x(1-x) M2 - xm2 - kl 

l-x (1.9) 
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or 

2 2 p -p. = & (u-m2) . 

In general, this off-shell dependence ensures strong convergence of the g2 

integrations, and the existence of Bjorken scaling - even in 

theories. The convergence occurs in the variable x:/(1-x) 

the covariant variable p2 - -2 rather than in k 
1 

alone. In the 
3 

the case of spin l/2 

- corresponding to 

Drell and Lee 

theory the convergence in pM is a natural consequence of a bound-state Bethe- 

Salpeter model. In any case, it is a natural assumption for the off-shell 

behavior of a hadronic amplitude. 

If we absorb into p(m2, p2) two Feynman propagators, and define 

Im T(m2,p2) = 

then one obtains 

f(x) =$/ d2$ &) 1 dm2 Im T(m2,p2) , 

(I. 10) 

which is directly comparable to the LPS formula, Eq. (2.25). In our formula, 

one sums explicitly over both parton and antiparton, whereas LPS implicitly 

include antipartons via a crossed channel contribution. An alternate identifi- 

cation of f(x) in terms of composite wave functions of the proton defined in the 

infinite momentum frame, and a discussion of the sufficient conditions for the 

Drell-Yan threshold theorem is given in Ref. 5 . 

The general assumption of convergent off-shell behavior guarantees that 

the Bjorken scaling function vW2(x) = xf(x) comes solely from the “handbag” 

or ‘~contiguous ” diagrams shown in Fig. 3. 
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Perhaps the most important feature of the representation (I. ll), is the 

natural way in which scaling-Regge behavior 

f(x)- x-o, x-o 

arises as a consequence of the hadronic Regge-behavior 

amplitude. For instance, if 

one obtains 

with 

p(m2, p2) = (m21a! PGu2) 

(I. 12) 

of the parton-proton 

Thus for small x 

p2 z 
x(1-x) M2 - [- T;I” 

l-x . (I. 14) 

(r-15) 

and the integrals are convergent. 

Thus, in this model, one includes hadronic interactions to all orders, and 

electromagnetic interactions to minimal order. In order to show explicitly how 

renormalization works and gauge invariance is satisfied in scaling models, we 

will present the results for the Compton amplitude to second order in g for scalar 

and covariantly-regulated y5-spin l/2 electrodynamics. The perturbation theory 

calculations are done using time-ordered perturbation theory in an infinite mo- 

mentum frame since this provides the clearest treatment of the separation of the 

J=O fixed pole (Kronecker delta) contribution and its relationship to Bjorken 
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scaling. In Section III we construct a gauge-invariant nonperturbative model 

using a specific generalization of the lowest order calculations. The deriva- 

tions again result in the representation of Eq. (I. 11) for f(x), and illustrate 

the manner in which fixed pole sum rules are made convergent in the presence 

of Regge behavior. In Appendix B, we give the direct connection between the 

explicitly covariant and infinite momentum (or light cone variable) techniques. 
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II. COMPTON AMPLITUDE IN PERTURBATION THEORY 

As an example of the techniques and utility of time-ordered perturbation 

theory and the infinite momentum frame we shall review the illustrative $” 

field theory (scalar electrodynamics) where the proton is a composite of 

charged scalar and neutral scalar particles. Despite the simplicity of this 

model many of the results of the subsequent sections are already exhibited 

within this example, especially the scaling behavior of the virtual Compton 

amplitude, and the presence of a J=O fixed singularity. 

In the last part of this section we show the analogous results for a field 

theory in which a spin l/2 proton is composed of a spin l/2 charged particle 

and a neutral pseudoscalar (y5 vertex coupling). This example forms a bridge 

between the scalar electrodynamics model discussed in detail here and the y5 

model of Drell, Levy, and Yan, 1 who concentrated on the scaling behavior of 

the vW2. Our work (Section HI) shows how covariant off-shell convergence 

factors required for Bjorken scaling can be introduced within such models 

while perserving gauge invariance. Again we shall utilize the infinite momentum 

method, since this technique conveniently isolates the fixed pole behavior of 

spinor theories. 

A. Scalar Electrodynamics 

We first calculate for later use the second order wave function renormali- 

zation constant Z2= (l-B)-l s 1 + B(2). The methods are essentially those of 

Drell, Levy, YanI and Weinberg .6 From Fig. 4 one obtains 

=-g21 
B(2) (2r)3 2Ep 

d3(Tl +x1 -3 

tEp-ukl-wQ;2 
(II. 1) 
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We parametrize the momenta as follows 

C=F, T;,=xa+s 
1 ’ 

r1 = (l-x) 3 -F 
1 

, 

r;,.B=o , 
M2 

EP=P+= ’ Wkl 
= IxlP + 

2lxlP , (U-2) 

Then for P -+ ~0 

F2 -I- A2 
wQl= I(l-x)lP+ ’ 211-XIP 

P 3) 

where 

D(cL ,x) = 2P x(1-x) (wk + wB - EP) 
1 1 

= 2; -k xA2 -I- (l-x) p2 - x(1-x) M2 

Note that the energy denominator E - w P kl- ?I 
is of order (l/P) if the inter- 

mediate particles are moving forward relative to P’ (i. e. , 0 < x < 1), and of 

order P otherwise. In G3 theory there is no possibility of introducing com- 

pensating powers of P into the numerator (unlike spinor theory), and thus in 

the limit P em, only the region 0 < x < 1 contributes. 

The elastic form factor of a spin 0 particle, F(q2) is defined by 

<p’ I Jp(0) Ip> = 1 1 1 
32E 
(274 

- W2) (P+P’), pl 2% P 
W-4) 

The diagrams which contribute to F(q2) through order g2 in the scalar exchange 

interaction are shown in Fig. 5. Of the six time-ordered contributions to the 

order g2 Feynman amplitude, only the contribution of Fig. 5b survives for P --rco 
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if we choose the Lorentz frame such that 

w 5) 

where 

(For the elastic form factor, 2q. p z 2Mv = -q2.) In each of the other diagrams 

at least one intermediate particle must be moving backwards by three-momentum 

conservation and may be neglected to order l/P2. Using the parametrization 

s2=x3+ (z+--1’ , 
6; +cj2+p2 

Wk2 
= XP + 2xP (II. 6) 

1 lg2 <P’IJ&WP> = 2~p~ 
/ 

d2ki dxP(2P)2 (2k+q) 

P’ (270” 
2Wk 2w 1 k22wQl A A’ 

(II. 7) 

where 

A = 2P (Ep-mk 
- D’gl ,x) 

1- WQ 1 = 
1 x( l-x) 

A’ = 2P (Ep+Eq-tik 
2-we)= 

- D(3+ (l-x) $x) 

1 x(1-x) 

By examining the ,u=O components we obtain 

2 1 

F(q2) = -(2) -t-g 2(2*)” o dx /J ““‘;I 
x( l-x) 

D$) D(~L+tl-x)~l 1 

tn. 9) 
As z- - 0 (i.e., q2 -0) we see that F(q2) -1. That is, L(2), the proper 

vertex contribution at q2=0, is equal to -B 
(2) - This, of course, is a require- 

ment of any gauge invariant theory or, equivalently, a consequence of the 
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Ward identity. We define for future use the function f(x) which to order g2 is 

2 
f(x) = z2 6(1-X) +-J-- 

s 

d2k x(1-x) 

2(271j3 ’ D2(zL) 

so that 1 = F(0) =JoIf(x)dx, This is a special case of the results quoted in 

Section I. It is clear from the definition of the variable x that f(x) is the frac- 

tional longitudinal momentum distribution function for the charged particle as 

seen in the infinite momentum frame. In fact, by using time-ordered pertur- 

bation theory, it is clear that a normalized distribution function can be defined 

to any order in perturbation 

can be defined for each type 

F(O) = c, a ha j; CIX fat@. , 

theory, In general a distribution function fa(x) 

of charged constituent, a, within the hadron. Then 

Turning now to the forward virtual Compton amplitude (spin averaged) we 

will calculate Ti(q2,v) and T2(q2, v) where 

(II. 11) 

In the infinite momentum frame previously defined (Eqs. (II. 2)) (II. 5)) 

T 
P2T2 

00 --g- 
(II. 12) 

while, if the components h, v=i are chosen orthogonal to ??aand TL , then 

Tii= -giiTl=T1 . (II. 13) 

Using the above definition of TI and T2 the Born contributions turn out to be 

TBorn TBorn = 8q2M2 
1 =+2 2 - (2Mv)2- q4 

(11.14) 
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I 

and 

lim Tyorn + { Tf”” -.+ 0 (II. 15) 

q2-+o q 

as required by analytic&v of T 
CLV 

in q’. 

To second order in g2 the only surviving timeordered diagrams contributing 

to the Compton amplitudes in the P -00 limit are shown in Fig. 6. Using trans- 

verse components, the only contributions to T1 arise from the “seagull” (e) 

and (b) and l*handbagl’ (c) diagrams. The Born type contributions (e) yields 

Z2 x TForn. The seagull contribution (b) is calculated in close analogy with 

the form factor calculation for cl = 0, the only difference being that the seagull 

“current” is proportional to -2g 
PV 

rather than x2P. Thus we immediately 

have 

TSeagull = 2 
1 s 0 

(rc- 16) 

We note that because of this analogy the dependence on t (of the Compton ampli- 

tude) for the seagull contribution is like that of the form factor. For diagrams 

(c), the outside two energy denominators are equal and proportional to D(rL), 

whereas the middle ones are 

$ C M2+2Mv - p - 
A2 + k; 

3 
-1 

X l-x 3 2P x(1-x) DI (11.17) 

Including the contribution of (c) to TI we obtain 

TI(v ,q2) = 2 Z2 + 

(II. 19) 

where ki is the component of ‘;; perpendicular to < , and we have defined I 

2 =D($+(l-x$), D=D(i;i). 
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Forq2=0, v -0, we can use the identity 

J 2Z-- (l-x) 2 

d2$ d2ki D3 = J 

d-k1 (1-x) 
D2 

andthe Ward identity, B(2) = -L(2), to verify the Thomson limit 

(II. 20) 

lim Tl(v , 0) = 2 . (rr. 21) 
v--o 

-2 The integration by parts in k I is essential here: if there had been an arbitrary 

cutoff in the -2 k 
1 

integration then a surface term would be introduced and the low 

energy theorem would fail. 

At large energies only the “seagulllf contributions 6(b) and (f) survive 

because of the additional v-dependent denominator in the handbag diagram. 

Thus 

lim TI(v , q2) = 2 
v-m 

= TBorn 
/ 

1 

1 (IL 22) 
0 

This result will be generalized in later sections. Thus in the (coherent) 

impulse approximation (v >> binding energy), the Compton amplitude exhibits 

an energy-independent, q2-independent constant real term in the g 
PV 

amplitude. 

In complex J language, this is a J=O “Kronecker delta” with t-independent 

energy dependence v ‘. We also note that the seagull contribution to the general 

Compton amplitude TPv (v , t, q:, q$ is independent of either photon mass at 

fixed t. The t-dependence of this contribution is similar to that of the elastic 

form factor F(t). These features all reflect the locality of the two photon 

seagull interaction, and are consequences of the point-like nature of the parton 

couplings. 
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The result of Eq. (II. 22) is entirely analogous to that obtained for the 

Compton amplitude in atomic or nuclear physics for v >> BE (but below strong 

interaction thresholds). It corresponds to Thomson scattering on the elemen- 

tary constituents with effective mass meif = rnTiT <l/X>. Further discussion 

may be found in Refs. 4 and 5. 

The calculation of the amplitude T2 (by examining Too) proceeds in 

analogous fashion. The only new feature is that in the case of diagram (6a) 

one must perform mass renormalization. The net result for diagram (a) is 

-1 
J&jd2klj$& - 6) +(v-+-v) ; 

(2Mv -<;)’ 2(27r) 
(II. 23) 

the D-I term is the mass renormalization counter term. Although the sub- 

tracted form is finite, the individual terms must be defined using a covariant 

regularization procedure - e. g. , a Pauli Villars negative metric regulator. 

This allows us to replace D -lwD-l in the mass subtraction term. This will - 

be essential in obtaining the final forms. The other contributing 

diagrams are (c), (d), and (f). Diagram (c) and the two diagrams of type (d) 

give 

-$$/d2kL$dx[F - 2M;- qH p] + (V-+-V) 

(II. 24) 

Adding in the Born contributions (diagram (f)) and using the above replace- 

ment for the mass subtraction term one obtains after rearrangement 

T2(v,c12) = 4M 
2 

BMv-q 
++d2kl11 dxx;-x) (t-i)] 

2(271j3 

2 1 
+ 4M2 J J d2k 

2 
x (1-x)2 1 1 

2 

-wrr) IO Dk i i iq + v--v (II. 25) 
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Of primary concern is the check of gauge invariance 
2 

lim 3T2+Tl=0 . 

q2-0 q 

For T2 as qf - 0 one has from the first term of Eq. (II. 25) 

8 q;M2 

2 4 4 4M v -qi 
+ </d2kIi1 y] + O(q;) 

167r 

(2) 
+ L(2) 1 V 

The remainder-reduces, using 

(a. 26) 

(II. 27) 

(II. 28) 

to 

2 
!$ TrnaBorn 

2 x2( l-~)~ 2k; 

q 

= 8M2v2 + 
2cw D3(D2-x2(1-x)2 4M2v 2, 

(II. 29) 

Writing Tl as T 1 = T 1 Born + T non-Born 
1 we have (at qH=O) 

non-Born -G? 
T1 (qL=O,v)= 2L3 

2&d 
/d2kL11 y [o 2kT -g D+x(~!~~~~Mv)-iel 

non-Born which explicitly cancels (v2/q2) T2 . 

Of course, at v - 0 only the Born contribution survives in T 1 and T2 and 

the correct Thomson limit is obtained. 
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In the limit v - 00, q: finite, straightforward algebra yields 

2 Born 
lim vT2(qf, v) = - 5 ‘I1 

s 
hx 

-y f(x) - 
v-00 0 

@* 31) 

In complex J plane language this is a fixed pole with a=0 (v T2 N v o-l) with 

residue linear in q2. 

Finally we consider the scaling region v,<T -00 with w = 2Mv/qT fixed 

(Bjorken limit). The k: integral here is sufficiently convergent such that the 

standard limiting procedure is valid. We obtain 

Bj 1 
T2tv ,+-+- 

4M2 

lwB(2) 2Mv - q: + ie 

so that defining 
VW2 = &ImvT2 

we have 

vW2(v A1 )---+ 2 Bj /ldxf(x)x *(x-$)=;f($) 
0 

The results given above in terms of f(x), i. e. , 

F(0) = jIf(x) dx , 
0 

VW2 x=; = xf(x) 
i ) 

(II. 32) 

(II. 33) 

(II. 34) 

(II. 35) 

and 

TFP=z FP 
1 2 T2 

= TBorn 

q s 
ldx 1 VW,(X) dx 

l 0 
x f(x) = Tyorn 

X2 

(II. 36) 

are clearly valid to any finite order in $3 perturbation theory. The scaling 

result only depends upon the convergence of the k2 1 
integrations. In higher 

order we may define f(x) from the infinite momentum frame time ordered 

perturbation calculation of the form factor. All the matrix elements of interest 
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are variations on the vertex operator in x space, i. e. , 

64 xha for form factor 

2hf for fixed pole in TI 

x2Ai 6 x-i for VW,(W) 
( ) 

(ha = charge of parton a, all charges to be summed over) an effective local 

operator can clearly be derived in any case in which the impulse approximation 

applies between the times of emission and absorption of a given constituent, 

e.g., arbitrary currents acting at light-like separation. f(x) gives the hadronic 

emission matrix element for each constituent over which the above effective 

operators must be integrated, and as such is the unifying link between a large 

number of theoretically interesting quantities. 

The renormalization procedure may be carried out to any finite order in 

perturbation theory in a straightforward fashion. The explicit occurrences 

of the wavefunction renormalization factors Zi and Zt are shown in Fig. 7, 

for any of the above three effective operators. The wavefunction renormali- 

zation of the parton propagating between the photons cancels for VW 2 in the 

scaling region. 1 We define the renormalized parton-proton scattering amplitude, 

as usual, as 

T =ZaZPT R 2 2 unrenormalized (II. 37) 

Thus from Fig. 7b we see that f(x) implicitly contains a factor Zi when expressed 

in terms of renormalized parton-hadron scattering amplitude TR (see Eq. (I. 11)). 

Thus Ztf 0 for a scaling theory, and the parton constituents cannot be composite. 2 
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We now turn to the analogous results for spin l/2 perturbation theory, in 

which the proton consists of a spin l/2 charged particle of mass p and a neutral 

pseudoscalar of mass A. We may compute the F1 form factor trivially using 

the “good” ~“0 component of the current, and the same choice of Lorentz 

frame used above [I<II. 2) and (II. 51. Then only one time-ordered diagram con- 

tributes and we obtain as in DLYI 

FI(0) = 1 =s” f(x) dx 
0 \ 

(II. 38a) 

where 

f(x) = -X2- J d2$ x( l-x) 
T;L” -I- (,u-xM)’ 

X 

2(27r)3 D2@, ,x) 
(II. 38b) 

The denominator factor D( kl ,x) is defined as before. The numerator bracket 

is the factor 2(p. p1 - Mv), which comes from the spin average pseudoscalar 

coupling. When divergent, the dcf integration will be temporarily defined in 

this, and all subsequent formulae of this section, by means of simple covariant 

regularization - either by a spectral condition on the mass A2 or specifically, 

Pauli-Villars negative metric subtraction in this mass. In the nonperturbative 

model discussed in Section III, this unphysical but gauge-invariant regularization 

is replaced by the assumption of strong off-shell convergence in the parton- 

proton s tattering amplitude. 

For the purpose of gauge-invariance checks we will only need to calculate 

Tl for q2=0 and arbitrary v . In Fig. 7 we show the contributing graphs to 

Tii(v , 0) in order g2 and the corresponding time-ordered graphs which survive 

in the limit P-00. Here i refers to any component perpendicular to the 0 and 

P” directions. Because of the Gordon identity, a graph in which a photon is 
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attached to an external leg will not contribute unless it also connects to a 

backward-moving spinor. As first emphasized by DLY, intermediate states 

with backward-moving Fermions can contribute in the P -00 limit, since the 

numerator algebra can compensate for the two powers of P of the “bad” 

denominators. [A method for automatically including the contribution of 

z-graphs is given in Ref. 7 . Here it is useful to exhibit them explicitlyd The 

complete result for Tl(v , 0) is 

+ 2(1-x) 
2 2-f s 1 - + - 

D2D+ xD+ 

+ (l-x) s ; 2(1-x) q 
D2 x D D+ 

Born + (v--v)+Z2Tl (II. 39) 

where 

and 

D+ = D(E-,x) - 2Mv x(1-x) (nr. 40) 

s= 
r-+ (p -xM)~ 

X 
(II. 41) 

As in the e3 case, integration by parts in 
-2 
k 1 

is crucial in ascertaining 

that lim Tl(v , 0) = 2, the Thomson limit. For v +m, only the z-contribution 
v-m 

H3 survives. This is true as well for q2#0, since the numerator traces do not 

depend on v , but only on q1 ; it is thus not possible to compensate for the 

denominators which increase with v . It is this feature, which makes time- 

ordered perturbation theory so useful for extracting the energy-independent 
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contribution to Tl. We thus obtain 

lim Tl(v , q2) = TF”” 
v-m s 0 x 

(II. 42) 

Note that z-graph H3 takes the place of the seagull contribution of scalar elec- 

trodynamics. Because of the effective local coupling of both the z-graph and 

the seagull contributions, this energy-independent contribution to the virtual 

Compton amplitude Tpv (q:, qi, v , t) is independent of either photon mass 

q;, qi at fixed t. Experimental implications of this remarkable behavior have 

been discussed in Ref. 4 . 

We will now calculate the T2 amplitude for all v and q2. It is easiest to 

evaluate T2 by examining the p=O, v=O component of T 
W’ 

since the resulting 

currents cannot reverse the direction of a Fermion line - the “good” current 

rule of DLY.l Thus only the time-ordered diagrams shown in Fig. 8 contribute. 

The contributing terms in the amplitude must be proportional to P2, which 

results in a considerable simplification of the algebra. The result is 

2 J J 
1 

T2(q2,v) = + d2k dx 
2(270 0 

i 
-2 q1 - 2Mv) (l-x) + A2 - (M-/J)~ A2 - (M+Q2 

D; H; DH: 

(9 (6m:S2) 

C Sxfl-x) 
+ (2) 

-I- X-- * C1(l-x) 1 - s x2(l-x)2 

DDkH+ D2 D; 

V3) Wl) i 

I- v--v, i (11-43) 

, 
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where 

H+ = 2Mv - zf + ie 

) + q1 (*” - 2Mv) x(1-x) - ie (Il. 44) 

TBorn _ 4M2 
2 H+ 

+(v-+-v) . 

Upon regularization, the 6m subtraction for S3 in fact cancels the S3 

contribution. As in c$~ calculation, this is made explicit by the ability to shift 

the ‘;i integration in S3. After some algebra, one verifies the threshold 

constraint - qfmfoT1(92. v) + 
2 

5 T2(q2,v) = 0, and the Thomson limit. The 

J=O fixed pole agrees with Eqq (II. 36), with f(x) defined from Eq. (II. 38). 

Finally, the Bjorken scaling limit is 

lim vW2(v,q2) =xf(x)l 
I,=h * 

v--tm,w =5 fixed w 

ql 

As stated before, these results in terms of f(x) are more general than 

these specific perturbation theory examples. When summed to all orders in 

perturbation theory, the fixed pole sum rule may formally diverge at x - 0 due 

to Regge behavior f(x) - X-O, 0 < c1! < 1, but in actual fact subtraction terms 

automatically arise which keep the sum rule finite. The mechanism for this 

and a full treatment of a nonperturbative model is given in the next section. 
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III. A FINITE GAUGE-INVARIANT NONPERTURBATIVE MODEL 

In this section we consider a simple nonperturbative parton model for 

electromagnetic processes which has the following features: 

(a) It is gauge invariant by construction. 

(b) It is explicitly covariant. 

(c) It contains the off-shell suppression required to obtain scaling 

for deep inelastic e-p scattering. 

(d) It contains a proper treatment of Regge behavior in the parton 

model including the crucial role of subtraction terms. 

(e) It yields a polynomial-residued fixed pole whose magnitude is 

given by a finite integral over the VW,(X) deep inelastic 

structure function. 

Further, the model can be generalized for any of the spin-dependent or spin- 

independent sum rules (see Appendix A). It can be employed as a theoretical labor- 

atory for checking results based on light-cone dominance or parton model intuition. 

This model can be regarded as a gauge-invariant extension of the Landshoff- 

Polkinghorne-Short nonperturbative model. The results can also be obtained 

from an infinite momentum frame OFPT approach, with covariant regularization. 

The basic starting point for our model is a representation of the parton- 

proton forward scattering amplitude, Fig. 9a, which is assumed to have the 

normal analytic features of a hadronic amplitude. 

We write the off-shell forward amplitude as = @-k)2, u=k2, see Fig. 9a 1 
T(u,p2) = - 1 w. 1) 
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Note that the total antiparton-proton cross section is proportional to p: 

The subtraction term,8 which only contributes to the real part of T, is necessary 

to ensure convergence of the representation (III. 1), and will be crucial in the 

derivation of finite sum rules; it is required for that part of T which has Regge- 

behavior 

(III* 3) 

In order to-obtain the “softened” behavior necessary to derive scaling 

we take T to have off-shell damping in the variable p2. We thus assume that 

at least the first moment in p of p NR (m2 ,p) and pR(p) vanishes. Such be- 

havior is not unnatural for a hadronic amplitude, and it is a natural conse- 

quence of bound state models for the target proton. 3 

The form (III. 1) leads naturally to the following representation for the 

self-energy of the proton due to the emission and absorption of a parton. [In 

general one sums over all types of partons (see Fig. 9bfl: 

27(p) = + $ d,*s2 dp $ d4k/i 

1 1 

$-k)2-mz (p-k)2-P j 
(III. 4) 

We can generalize this further by using the general KUlen-Lehman representa- 

tion for the parton propagator 
co 

1 l s d@ 1 

(p-k) 2-mz+i e 
p”P) 

o b-k) 2 -a+ie 
(III. 5) 
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Then 

Z(p) E I 
J- 

with 

(m. 6) 

where we have used a Feynman parameter to combine the denominators 

1 1 

@-k)2-o @-k)2-/3 = i-l b-k;‘-ZJ2 
(III. 8) 

zy = yp + (l-y)0 . 

Note that the resulting nonperturbative theory is defined in a linear operational 

way on second order perturbation theory results. Since we are starting with a 

finite expression for Z(p), the subsequent formulae we derive will all be well- 

defined. 

Starting from Z(p) we can use the Ward-Takahashi identities to derive 

gauge-invariant expressions for the form factor and the full Compton amplitude: 

Q-w) - ZtP) = -$ r&P+q,P) 

(rrr. 9) 

1‘,j?+q, P) - I/&P, ~4 = -qv TCLV 

In each case this yields the proper amplitude. The full vertex and the full 

Compton amplitude illustrated in Fig. 10, also include the improper contribu- 

tions . The case of a composite protonis I (l-l-B)=O, which eliminates the Born- 

like diagrams. This procedure yields the nontrivial, minimal gauge-invariant 

currents (i. e., terms which are not explicitly transverse). The results for 

p term are thus identical to those obtained from the effective spectral sum of 
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contributions corresponding to the elementary self-energy, vertex, and 

Compton diagrams of the usual Feynman perturbation theory. In the present 

case, the line carrying momentum p’“-kP is the only charged line. In the case 

of multiple charge, one applies the Ward identities to a basic self-energy 

diagram in which the external momentum is routed in proportion to the fraction 

of charge carried by that line. Thus, in the form factor calculation, one 

sums the individual parton and antiparton contributions weighted by the parton 

charge. 

Using Eq. (III. 6) for Z(p) we obtain for the one-photon vertex, 

I? = I J -4 d k/i 

[ 
(p+q-;::y;;-k)2-Xy] 

= r/d4k/ii1 dz 

I 

[J 1 dx 2(1-x) [2xp+q(l-22 (1-x))lP 

D3tx, z) 
P+ 

(l-22) qppR 

0 ,N~D~(O, z) 

where 

D(x, z) = k’x2 -xm2 - (1-x)Zy + M2x(l-x) 

+ 2~ zx(l-x) + q2 z (l-x) (I-z(l-x))+ie 

and 

k’x = k - (1-x)p - z (l-x) q . 

3 

(III. 10a) 

(III. lob) 

PI. 11) 

(RI. 12) 

Since we are considering the on-shell vertex, vr p-q= -q-/2. The odd terms 

in k’ have been discarded in the numerator of (III. lob). 

Since the denominators D(0, z) and D(x, z ) are symmetric under z--c l-z (for 

v= -q2/2) the Regge subtraction term in (III. 10) vanishes and the numerator 

vector in the surviving term is x(2p+ q)‘. The stability condition M < me,Z 
Y 
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is assumed. The form factor is thus 

F(q2) = -n2 I 
1 4 f 

1 
dz dx x( 1-x)p . 

0 
[ 
x,2+(1-x)Zy-x(l-x)M2-q2(1-x)2z(1-z) 1 

(III. 13) 

We define the normalized distribution function f(x) via 

where 

For the Regge part of the spectral function p, we have 

For x - 0, the last integral is proportional to 

Thus 

1 = F(0) =Jol dx f(x) 

f(x) = -7r2 I x(1-x)p 

~~~~+(l-x)Z~-x(l-x)M~ 

(III. 14a) 

(III. 14b) 

f(x) - c 
l>a>O 

Y, x--O1 
where we have defined 

tx - 0) 

(III. 16) 

(III. 17) 

(III. 18) 

andy is the (p,cr,y) integral operator defined from the first line of (III. 15). 

As we shall see below, the structure function VW,(X) is given by xf(x). 

The Regge behavior of f(x), which follows from the Regge behavior of the 

parton-proton total cross section, does not disturb the convergence of the x 
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integration for F(q2). In the more general case of multiple internal charges, 

it is possible for the distribution function f,(x) for an individual parton to have 

Pomeron behavior. However, even charge-conjugation contributions such 

as the Pomeron cancel in the summation over parton-antiparton types for the 

form factors: 

F(O) = j-‘c Aa f,(x) CIX 
0 a 

The form factor does not receive any contribution from the Regge subtraction 

in .X(p). 

Using the second Ward-Takahashi identity for the forward Compton 

amplitude 

-q” Tpv = [I rcL(p+qd - rpb3,P) 1 w. 20) 

+ Pcl(P,p) - Pn(p,p-9) 
[I 1 

T(l) = 1 
PV J d4k/i 

[&+N 

l- 

?$ 2 - [I@, -k;& y, ‘1 

we obtain the %ncrossed” diagram and half the “seagull” contribution from the 

first bracket of (III. 20). 

(III. 21a) 

=I J d4k/i11ti11dz 

[2xp+q(l-2z (l-x)) - 2k’l’ [2xp+q(l-2z (l-x))-2kqv6 (l-z) (l-x) 
2 p 

D4tx, z) 

+ [q(l-22) - 2kgc” [q(l-2z) - 2k’]’ 2(1-z) pR g~v 2(1-xb g~vPR 

D3(0, z),>a2 D3tx, 0) D2(0, 0),,2 I 
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In each term kL is chosen to diagonalize the denominator D, defined in 

Eq, (III. 11). The remaining contribution T (2) is obtained from the substitution 
PV 

4- -q, v--v. 

As usual we define Tl and T2 from Eq. (II, 11). The structure function 

W2(v ,q2) = (27rM)-’ Im T2(v, q2) is obtained in the scaling region from the 

proper contribution Tz alone, and may be isolated from the p p coefficient 
PV 

in Eq. (II. 21b). Thus 

lim $W2(v ,q2) = lim Bj S$ q’ dz x2(l-x)2 (l-z) pv 
v-03 

-2v /q2=w fixed 

Im 2vzx(l-x)+q2z(l-x)(1-z(l-x))-x~~~2-(l-x)~y+x(l-x)M2+i~ 
C 1 -2 

(III. 22a) 

=-7r2 lim I 
/ 

1 dx x2(1-x) 2v 6(2vx(l-x)+q 2 ( 1-x))p 

Bj 0 x~~~+(l-x)Z~-x(l-x)M~ 

(III. 22b) 

= xf(x) 
I x=-q2/2v 

(III. 22c) 

The surviving term in the Bjorken limit is obtained by integrating Eq. (III. 22a) 

once by parts in z. Only the surface term at z=O contributes for ~-+a,. The 

existence of the scaling limit is guaranteed by the “softeningl’ conditions on 

the spectral functions. Again, the Regge subtraction term does not contribute. 

The invariant amplitude Tl(v, q2) may be isolated from the coefficient of 

ihe g FLU 
terms which only occur in the proper part of the Compton amplitude. 
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We obtain (after angular averaging in k’) 

Tl(v, q2) = I/h/ii’dxi’dz 

+ 2(1-z)pRk12 2i!sQ!L- pR 
,fi2D3(0, z) 1 D3(x, 0) ,,,2D2(0, 0) 

+ (v - -v 1 (III. 23) 

At this point we can check the low energy theorem 

lim Tl(v, 0) = (2) I r2 J 

1 
dx 

(1-x)2p - (1-x)p 

v-o 0 

= 2 J dx f(x) = 2 (III. 24) 
0 

which is the correct Thomson limit for the covariant normalization used here. 

A more complicated proof can be derived for the case of multiple charges. 

We next investigate the high energy limit of T l(q2, v ) at fixed q2. From 

Eq. (II. 23) we have 

Tl(v,q2) = -?$$h$dz 

3 2(1-z)(l-x) p 

d2tx, z) 
(III. 25) 

+ (v+ -v) 

where 

d(x, z) = x,>,.~ -I- (l-x) Xy - x(1-x) M2-2v zx(l-x) - q2z (1-x)(1-z(l-x)) (III. 26) 

andy is the same as I without the d/dZy differentiation. We have grouped 

together uncrossed diagram contributions and the seagull diagram contributions 

(z=O terms), The d(0, 0) term (which arises from the seagull Regge subtraction) 
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may be rewritten as 

R - P -(2)7;21 2 = 
922 2 

Y 
-27r2 L(* [x;a:;J2 

(III. 27) 

Thus the contribution to Tl(v, q2) from the seagull diagrams (second paren- 

thesis of Eq. (III. 25)) is 

Ty(v,q2) = 2 J mdx- y f(x) 
0 

where 

P. 28) 

(III. 29) 

Z2 8 (l-x) f(x) - c y,x-” , 
o! 

with y, as defined in Eq. (III. 17). Thus the seagull diagrams yield a finite 

energy-independent, q2-independent contribution to the Tl amplitudes. Note 

that the subtraction term is crucial for the finiteness of the seagull contribu- 

tion in the presence of Regge behavior. For q2=0, the effects of the subtraction 

term actually cancel out in the total contribution for T l(v , q2). An even 

simpler derivation of the 6 sum rule for T l(v , 0) can then be given. See 
JO 

Ref. 4. 

The remaining contribution to Tl from the uncrossed and crossed graphs 

has normal Regge behavior. The presence of the p 
R subtraction terms for 

these contributions is crucial for obtaining a finite result. The Regge terms 
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only arise from the p R contribution and the leading behavior at x -0: We have 

- - Jdp CIU dmfi2 F(o) c p,(p) (m’,,s’dz /‘dy 2(1-z) 7T2 

tm* a! 0 JO 

J 1 
c&.d- 1 

0 d2@, z) en2 zy - q2z(l-z) 
[ 1 

where 

J 
a, 

dg,? (-2)Q [ ] d,m2 (~6~) Q 
0 - 

(III. 30) 

1 1 
co 
dx 

J k 

e( l-x) 

0 x~~~2+~y-2vzx-q2z(l-z) 2- 1 II xP9%2+‘Zy-q2z(1-z) 2 11 

1 [ t+.Zy-q2z(1-z) 13 2 (III. 31) 

Using integration by parts on 5, the surface terms vanish (for 0 <a! < 1) and 

Eq. (III. 31) becomes 

Co 

o! 
s 

dt; [“-l 
0 

v. 32) 

For v large we scale 

CY 
2 -Q--q2z(1-z) 

x = x’ 1 
2vz (m. 33) 
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and obtain 

where 

SG Tltv,q2)=‘$v,q2)+Tl 

and 

ta! =- 
J 

O” dxf(xr)l-a! = _ l-e-inol 

0 l-xV2-ie 

@I. 34a) 

(III. 34b) 

(III. 34c) 

is the correct signature factor for a crossing even amplitude. This result for 

Tl shows the scaljng behavior of the Regge term in the variable w = -2v/q2, 

which arises from the z - l/q2 region. In the case of our spinless example 

q2Tl scales in W. This illustrates the general point that the “handbagl’ diagram 

contains Regge vo terms which vanish in the scaling region. 

The subtraction terms, which are crucial for the finiteness of Tl are not 

evident Tom the approach of Polkinghorne et al. ,2 but arise from a consistent -- 

gauge-invariant finite treatment of the electromagnetic amplitudes. These terms do 

not contribute to the form factor F(t) or W2, which arise from currents propor- 

tional to the external momentum pc”, since the subtraction terms which involve 

d(x, z) with x=0 correspond to contributions in which the external momenta 

does not flow through the charged line. The Feynman variable x appearing in 

the above equations may be identified with the fraction of the momentum carried 

by the charged particle in the infinite momentum frame of the proton. 
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As is evident from the perturbation theory example given in Section II, 

the result (III. 28) for the q’-independent v -independent J=O Kronecker delta 

term in the T1 amplitude, holds as well for the case of spin l/2 charged 

particles. 9 This result for Tl, which we first presented in Ref, 4, is a 

compelling feature of the scaling parton model. We can also derive a result 

for the J=O fixed pole in T~(v , q2), first given by Cornwall, Corrigan, and 

Norton, 10 who used a scaling DGS representation. 

We shall show below that 

FP- 2 T2 (q (III. 35) 

Thus, using (III. 35), we see that 

zJ2 -- TFP(q2, V) = T;’ 
M2q2 2 

(III. 36) 

This result is equivalent to the assumption of a fixed pole whose residue is 

polynomial in q2 (as conjectured by Cheng and TunglI), plus the assumption of 

scale-independence. 

The derivation of the fixed pole in T2 is in many ways more difficult than 

the derivation for the Tl amplitude; for example, in the model described above, 

one must be certain to include the improper (proton-pole) diagrams shown in 

Fig. 10, as required by gauge invariance. In particular, the finiteness of the 

x integration for the fixed pole in T2 requires inclusion of these contributions. 

In a true bound state model the pole diagrams do not appear; in this case the 

T@) diagrams (i. e . : those which involve the connected six-point hadronic 

amplitude) are required to restore the full gauge-invariance of the theory, and 

are necessary to obtain the correct result for the J=O fixed pole in the T2 amplitude. 
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We first calculate an expansion for the self-energy terms in Fig. 10. 

1 1 

(p+q-k)2-Zy - @-k)2-Zy 
I 

(III. 37) 

The pR term vanishes upon a shift of the (finite) kP -integration. We then have 

[w?+q) - VP)1 I p2,M2 

=yr2 J 1 
dxtl-x)p - 0 

(III. 38) 

where 

h(x,z) = x1.,’ + (l-x) Zy - x(1-x) M2 - (2v+q2) zx(l-X) . 

The vertex required in Fig. 10 is obtained from Eqs. (III. 9) and (III. 20). 

Again, the Regge subtraction term does not contribute. We thus obtain from 

the pPp,/M2 coefficient 

T2b ,s2) = r 2n? I~~dx~ldz B(x,z) + (v-+ -v) 

where 

(III. 39) 

B(x,z) = 0 (l-x) p 
8x( l-x) 4x( l-x) 

(2v +q2) d(x, z) + (2v+q2) h(x, z) 1 ’ 
(m. 40) 

the three terms arising from the proper, vertex, and self-mass contributions, 

respectively. 
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It turns out to be convenient to isolate the leading v behavior of T2 using 

the Mellin transform technique. The contribution of the first term of B(x, z) 

to the Mellin transform of T2 

is 
J omW~) (2~) s-1 T2b, s2) tc 0) (III. 41) 

-2 .1,2,2 yr($, rt3-gl (-1)3-$ 
E(3) SJ ‘& ‘& 

0 0 

3 4x2(1-x) ( l-z) p 

[x,2+$(1-x)-x(1-x)M2-q2z(l-x)(1-z(l-x))l3-~[zx(l-xjlB 

(III. 42) 

To isolate the J=O fixed pole contribution we add and subtract the leading 

x - 0 integrand 

4x2(1-z) p R 

[ 
xWE2+Zy-q2z(1-z) 1 3-$zxJg 

Using the Mellin inversion formula, 

(III. 43) 

J;: dg F($-) (W-’ (III. 44) 

one may isolate the leading v dependence by picking up the nearest $ plane 

singularity of F(g) to the right of the inversion contour C (see Fig. 11). 

For the difference term the x-integration is strongly convergent so that 

the leading v dependence is obtained from the pole at #=2 arising from a 

z integration of the form 

s 
l dz 

o-$x=& * (III. 45) 

(Note that when the cross term (V --V) is included, the resulting signature factor 

(-lpl cancels the contribution of the g=l pole. ) Expanding the denominator 
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I 

in powers of z gives 

2 r2M2y(-1) 3-<g I-(/g) Iy3-,J%) l 1 
r(3) -6 - dx 2-g 

I 3 

\ 

4x2(1-x) p 

x&-x)$ 

(III. 46) 

so that the residue of the pole at $=2 gives a contribution to T2 

11 2 

The corresponding calculation for the vertex and self-mass terms in B(x, z) 

precisely cancels the q2-independent terms in (III. 47). The contribution of the 

remainder to the J=O fixed pole is thus 

The final contribution to the J=O fixed pole of T2 is obtained from adding back 

(1-x)p 

in the Regge term (III. 43). Exhibiting the ,n2 dependence from 

P R= 
c 

o! 
(III. 49) 
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we have 
2 (xm = 5) 

2 -2n M 2 

= -2 T2M2 ‘($) r(3-$) 
r (3) 

1 
dz 4(1-z) 

1 
For the moment we will concentrate on the contribution of this term to the 

(RI. 50) 

J = 0 fixed pole. The required pole at $=2 arises from the z 1-g terms in 

the z-integration; specifically for $m 2 we have 

As before, the q2-independent term is cancelled by similar contributions from 

the vertex and self-energy amplitudes. The linear q2 term gives the fixed pole 

contribution, 

(III. 52) 

which combined with (III. 48) is precisely Eq. (III. 35). 

Clearly T2 also has Regge-behaved terms v 
o-2 arising from the explicit 

poles at $=2 - Q! in Eq. (III. 50)) as well as in the contributions of the vertex 

and self-energy amplitudes. We will verify that the Regge contribution of 

Eq. (III.50) are in fact “‘scaling Regge” contributions ( v T2 m w a-1). The 

vertex and self-energy contributions vanish in the scaling limit. 
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For q2 large one may take z = -i/q2 and drop the z2 term in the denomin- 

ator of (III. 50). One then obtains 

= -2r2M2 I ‘(g) rt3-cg) i 
2-g-CY 

(-q2)a- 1 

r(a+i) ry2-g-0g I r(i-g) ryi-q 
r (3-g) [I 2 l-Q! r(2-,g--or) 

Y 

(@2-a) 
r2M2 I = 0!7T 1 => - 

sin n(2-o) sin w 

(III. 53a) 

(III. 53b) 

which has exactly the q2 dependence appropriate to scaling Regge behavior. 

Including the cross graph, the signature factor is (-1) [ 2-q. 

For CV~ l-, i.e., Pomeranchuk behavior, one obtains a finite contribution 

VT -w 2 ‘, since the numerator zeroes from (a) the signature factor and (b) the 

spectral contribution: 

lim I 
(Y-1 

‘1-o = 
Py) 

&Y-l) I log z;’ (lII.54) 

are compensated by the denominator zeroes: (a) sin 742-o) from the z - 0 

integration and (b) sin no. 

This agrees with the proof of Landshoff and Polkinghorne12 showing the 

survival of the Pomeranchuk contribution due to its coincidence with the fixed 

pole at J=l. 
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IV. CONCLUSION 

In this paper we have presented a general nonperturbative model for the 

Compton amplitude which incorporates Bjorken scaling, gauge-invariance and 

Regge behavior. In the case of the deep inelastic electron scattering, the 

results agree with the Landshoff, Polkinghorne, Short’ model and exhibit scaling 

Regge behavior. We have also given a particularly simple derivation of the LPS 

results for vW2 using a covariantly-regularized infinite momentum frame 

analysis. 

As we have shown, a general consequence of composite theories of the 

hadrons, with field-theoretic constituents, which incorporate (a) Bjorken scaling 

(and thus “softened” off-shell behavior), and (b) gauge-invariance, is the 

existence of a constant energy-independent q2-independent term in Ti(v, q2) 

(a “Kronecker delta” 6 Jo term) and a J=O fixed pole term in T2(v, q2). Contri- 

butions can be expressed in terms of VW,(X) as follows: 

T1 ‘JO tq 2 
2 

,4=y2 J=O 02 2 ,d=2 -4 
where 

VW,(X) - c l-a! 

x-o Q! Yc?l x 

and 

VW,(X) = VW,(X) -c y, Pat 
a! 

(IV. 3) 

The sum rule for Ti=’ was first derived by Cornwall, Corrigan and Norton. 

The sum rule for 6J0 
T1 was derived for arbitrary parton spin in Ref. 4. 

650 More recently, the TI result has been derived from the light-cone approach 

by Bander 13 and Frishman. 14 In addition, other authors 15 have confirmed our 

parton model results. The extension to the nonforward Compton amplitude is 
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given in Ref. 4. Applications to neutrino scattering and polarization measure- 

ments are discussed in Ref. 15 and Appendix A. 

Notice that if the leading term in VW,(X) at x - 0 has o < 0, then, by inte- 

gration, the right-hand side of the sum rule (IV. 1) reduces correctly to 

2 
f 

5x 
--yg VW,(X) @ < 0) (IV. 4) 

0 x 

which is the result obtained directly in the parton model if there is no leading 

Regge behavior. Since (IV. 1) and (IV. 4) coincide for all Re(a) < 0, the result 

(IV. 1) must be the unique analytic continuation of (IV. 4) to positive CY. The 

derivation given in Section III shows that this continuation in a! is justified: the 

result (IV. 1) is obtained automatically for a! < 1 when subtraction terms in the 

underlying parton-proton u-channel dispersion relation are taken into account. 

In general, all sum rules which are formally divergent at x - 0 due to leading 

Regge behavior may be rendered finite by analytic continuation in this manner. 

Further examples are given in Appendices A and C and Ref. 15. 

All of the derivations of the specific forms of the sum rule (Eq. (III. 28)) 

assume normal Regge behavior of the underlying hadronic parton-proton forward 

scattering amplitude. In principle, it is possible that this amplitude could have 

a J r0 Regge contribution at t + 0. In this case, the portion of the Compton 

amplitude with J-O Regge behavior would be more complicated than that given 

in Eq. (III. 28). Nevertheless, the existence of an energy-independent photon 

mass-independent (at fixed t) contribution to the full Compton amplitude which 

derives from the elementary electromagnetic interactions is not affected. Since 

the J plane position of the accidentally-coincident Regge contribution is expected 

to depend on t, the fundamental terms, with energy dependence independent of t, 

can be isolated by direct measurements of the real part of the nonforward 
4 

Compton amplitude. 
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Physically, the q2 independence of the 6 Jo term in T,(q2, V) is a direct 

consequence of the local space-time coincidence of the two current interactions. 

This is immediately apparent from the “seagull’* contribution of the spin 0 

currents, and is made explicit by the z-graph contribution in the case of spin 1/2 

currents. Such terms have dramatic and testable experimental consequences 

in Bethe-Heitler interference experiments and the 2y annihilation processes 

measurable in e*e- collisions. 4 

Finally, there is the important question of how these parton field-theoretic 

calculations can be of physical interest despite the fact that the elementary 

constituents are not seen in the final state. From one point of view, this model 

for the electromagnetic interactions of composite hadrons can be viewed as a 

theoretical laboratory which allows one to abstract the most fundamental features 

of local current interactions (including light-cone properties) without regard to 

the exact composition of the final state. Alternatively, if the physical deep- 

binding picture of Johnson and Drell17 is relevant, then the calculations presented 

here could be valid when the free particle states of the model are a good match 

to the near continuum closely-spaced levels of a bound-state model. 

Note that in the case of the real part of the Compton amplitude, constituent 

production is not involved. In fact, if one believes in the existence of an ele- 

mentary fundamental current within the hadron that is relevant to the calculation 

of elastic and inelastic form factors, then it is difficult to avoid the possibility 

of having two photons interact on the same current line. Thus inevitably one 

has contributions to virtual amplitudes, e. g . , the real parts of T 1 and T2, from 

local two photon interactions, and the conclusions stated above must apply. 
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APPENDIX A 

FIXED POLES IN WEAK AND SPIN-DEPENDENT 

ELECTROMAGNETIC AMPLITUDES 

In general, one expects all parton model amplitudes with two or more 

currents to have fixed pole behavior. Physically, the large four-momentum 

qc” of the current is routed through the parton propagator in Fig. 3, rather than 

the supporting strongly-convergent parton-hadron scattering amplitude. The 

physical current scattering amplitude TClv thus reflects the elementary fixed- 

pole dependence of the parton Born amplitudes. In this appendix we will give 

the parton theory fixed-poles for both neutrino inelastic scattering I8 and spin- 

dependent electroproduction. 
15 

The spin-averaged virtual weak current scattering amplitude (with 

absorptive parts corresponding to the inelastic neutrino structure functions) has 

the form 

E qq 

-i$$ pPqoT3+=T4+ 
q&J + P$/J 

M2 2M2 

T 
5 

ZC rf; + p/Jpv + 
-g#uv 1 M2 2 

E A qq h (P P,+P,q) 
-impoqcT3+ET4+ p 

* 

2M2 M2 2M2 T5 (A. 1) 

The Ti(q2,p*q) are the kinematic-singularity-free amplitudes related to Ti by 

Ti=T i (i=l,2,3) , T5=T5+yT2, 
q 

2 

(A. 2) 
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I 

The numerator of the contributing spin-averaged parton amplitude is 

t IT pv=Ti r 1 
P-m) ypU-y5) W+Izi+m) rvU-y5) 1 

= 2 
[ 
kpW-q)v + kv(k+Qp - gpv k- W-s) - ic ~ vp ufi+s)p k”] (A. 3) 

The parton momentum k? can be computed using the infinite momentum method 

of Section II or the explicitly covariant method of Appendix B. The identification 

of terms of the same order in P then yields 
A 
T1 = 2x p*q 

+ =4x2M2 
2 1 T3 = m&M2 s lfJxJ 1 

x 2xp.q+q2+ie 
dx (A. 4) 

+,=o 
0 

T5 = 4xM2 

plus an equal contribution with pa q -+ -pm q, p - v obtained from the crossed 

amplitude. 

Note that we have approximated the parton propagator 

1 - 1 

two2 - -m2+ie 

-l-x 1 +ic 
X 

1 + 
2xp*q+q2+ie 

The leading fixed pole behavior of the five invariant amplitudes is thus 

+FP = 2 
1 

TFP = 2(q2+a) M2 
2 - 

@*cd2 

^FP 
T5 

= -pp- 4M2 

l .kldx !jQ -&Ya ;] 

3 P.cl 

T4 
-co 

2 

(A. 5) 

(A. 6) 

- 46 - 



I 

In the case of T2, the direct and crossed amplitudes cancel in leading order; 

2 thus terms of order a/u , where a is a model-dependent constant, can arise 

from corrections to the approximation (A.5) as weJ..l as nonleading “T w,, 

diagrams. In some cases one can show that a, and hence 

TFP 5 
= &FP -f- m T12’P = -4aM2 

5 
q2 tP’4 q2 

(A. 7) 

as well as Tfp vanishes, if, for example, a Ward identity for the weak current 

is satisfied, or if z-graph contributions can be neglected at P - 00, as in com- 

posite models. This is discussed further in Ref. 19. As in the derivation of 

TFP 2 for the electromagnetic currents given in Section III, such a result depends 

on the cancellation,of contributions from T (4) and T@) diagrams. 

As usual, the fixed pole sum rules (A. 6) and (A. 7) must be summed over 

the types of parton-constituents. The subtraction terms required for convergence 

in the case by Regge behavior can be obtained explicitly using the method of 

Section III or the analytic continuation method of Section IV. From Eq. (A. 4), 

we also obtain the scaling results (V = p.q/M, x= -q2/2Mv) 

$dp, $W,=xf(x),, $ ii, = - f(x) 

6 8) 
;s;j4=o, ff w5 = f(x) 

and thus vW5 = vW4 = 0. 

Let us return to the electromagnetic case and examine the spin-dependent 

structure functions. Assuming the initial and final proton spin states are the 
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same, we define 

Tpv = (-gpv +y) Tl+(pp-y)(pv -y)T2 

(p- q sU- s-q pQ)G2 

M 
4 1 t-4.9) 

witi S2=-1, S.*p=O. 

Let us assume the proton has positive helicity. Choosing the reference 

frame as in Section II, we can take the helicity vector s as 

M2 ‘+m > (A. 10) 

then s.p=O, s2=-1, s-q= p.q/M. The positive or negative spin vector for 

the on-mass-shell parton can be written as 

f 
wP 

(A. 11) 

then w2=-1, andw.k=O if G .x =O, Gf=E2 . 
1 1 1 

In general the parton-proton scattering amplitude has helicity conserving 

and helicity nonconserving contributions. Let us define h+ (h ) to be the ampli- 

tude for the emission of a positive (negative) helicity parton from the positive 

helicity proton. The numerator of the contribution (uncrossed) parton amplitude 

is then 

= (h+ -h-) im ~~~~~~~ WY + . . . (A. 12) 
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Matching this to T we obtain 
WJ 

G2 
FP XI 0 (A. 13) 

and (taking /.L=O, v=l) 

4GFP 

*= 

(A. 14) 

or 

mGFP= 

M2 1 
p$+z 

+ cY CY o!- 

Ya- -1 CY- 
(A. 15) 

where f+(x) is obtained from integrating h* over d2k I andf(x) = f f+(x)+f 
[ - I 

(x) . 

Since the amplitude Gl(v, q2) has leading behavior v 
02-l , the fixed pole contri- 

bution is a Kronecker-delta singularity at J=O. The corresponding scaling 

structure function is 

!iwl 7rIrn G1(x) = 
f+ 64 - f-(x) 

M2 2 ’ (A. 16) 

The results (A. 15) and (A. 16) are to be summed over parton types weighted by 

square of the charge. 
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APPENDIX B 

In this appendix we give a direct, general connection between the explicitly 

covariant and infinite momentum (or light cone variable) techniques. 
20 

For illustration consider the covariant expression for the full vertex 

function shown in the first diagram of Fig. 10. For the spin zero case we have 

I?’ = (2p+q)’ F(q2) = (B- 1) 

where Ji is the full off-shell parton-proton amplitude with u = @-k)2 and t=q2. 

As usual we write a u-channel dispersion relation 

J 
Iia~'Z(k~,(k+q)~, m2,t) d,m2 

2 u- 02 +ie 
03.2) 

modulo possible subtraction terms. We can parametrize the four-momenta as 

follows 

( M2 M2 
P= P+w$ P-q 

) 

q= -?&xc ( -i2si 
) 1’ 2P ’ 

q2 = -;;I” (B. 3) 

( x2+k2 F2 +k2 
k = XP + ‘4 xp , r 

1’ 
XP - ‘4 xp 

Notice that all invariants are independent of the parameter P = i (po+p3). 

Unlike the infinite momentum calculation, P need not be large. For example 

in the target rest frame, P = M/2; in general log ZP/M is the rapidity of p, . 

The four degrees of freedom in kr” are thus replaced by 

(B-4) 
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The great merit of this parametrization (B. 3) is the simple factorization of the 

k2 integration. For the calculation of I”, all the singularities in the k2 plane 

necessarily lie in the lower half plane, except for the pole arising from 

,,c2 f -2 k 
1 

l-x I 
-I- is P-5) 

Thus if (l-x)/x is negative, the k2 integration gives zero. On the other hand, 

for 0 5 x 5 1, we can close the contour in the upper half plane and obtain: 

2 F(q2) ‘“,+p’ 3 - 1 - 1 / d9vz 2 J ix Imcilt(kB , @+s) , 9~2~) t) 1 u= pph2 = = 

7T (2Tr)3 0 2x(1-x) [M2- S] [M2-g] 

cB.6) 

where 

s = s(~12,x) = 
E-f+ pi K2+m2 

X + ll-x 

z= S(iTjj + (l-x) T1, x) 

and at the pole u = c2 

k2 - /J; = x [M2-S] 

(B-8) 
(l~+q)~ - pi = x [M2-g] 

This result reproduces the infinite momentum TOPT results of Sections I and II. 

The resulting expression for f(x) is the LPS formula (I. 11). Equation (B. 6) is 

a further generalization of the model covariant calculations for F(q2) given in 

Eq. (ID. 13). 

This method for relating covariant and infinite momentum frame calculations 

has general applicability; inclusion of spin factors is trivial. Notice that since 

p= 1 Z (po+p3) is an arbitrary parameter, we can, as usual, interpret the 
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“light-cone” variable x = (kofk3)/2P as the fractional longitudinal momentum 

of the charged constituent in the frame in which p3 becomes infinite. As we 

have stressed, any integrated result which diverges formally at x- 0 due to 

Regge behavior Im A&‘- +n2) O1 will be rendered finite when the subtraction 

terms in Eq. (B. 2) are considered; the final result can equivalently be obtained 

from analytic continuation in a. 
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APPENDIX C 

MASS SHIFTS IN THE PARTON MODEL 

The lowest order shift in energy due to a change in the parton masses Ma 

can be obtained immediately in the parton model: 

a a 

i.e., 

w. 1) 

which is the result obtained by Weisberger. 
21 

In fact, Eq. (C. 1) is undefined 

if VW,(X) has Regge behavior, and a more careful derivation must be given. 

For the case of scalar fields, the interaction energy density due to the mass 

shift 

is similar in operator structure to the electromagnetic seagull term 

(C- 3) 

Thus we can use the analysis of Section III to show that the Regge subtraction 

terms necessary for the parton-proton amplitude representation lead to a 

subtracted form for the mass shift 

where 

Fa(x) = fa(x) e (l-x) - c x-cyy, --f 0 for x -t 0 
a>0 

(C. 4) 

(C. 5) 
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as in Eq. (III. 28) . The proof for spin l/2 fields is similar: in this case we 

note the similarity of the z-graph (effectively local) contributions of the P--m 

analysis 

3ifI = C ei 
~ YiYoY. ~ci AiA. 

a xaP 

to the mass shift interaction 

se1 = c jhM,$ 
a 

(C. f-3) 

(C. 7) 

and we again obtain (C. 1). Note that if 6M2 = e2/e2 AM2 a a o, as is the case for 

for the shift of the bound state mass M due to electromagnetic mass shifts of 

the constituents and TTp in the J=O fixed pole (Kronecker delta 6 Jo) which can 

be obtained from Eq. (III. 28). More generally we can obtain the mass shift due 

to other interactions (e. g. , from the h-p quark mass differences) and obtain 

the tadpole model results for masses squared. These results also agree with 

the results obtained by Jaffe and Llewellyn Smith.22 If the partons are 

isosinglets and isodoublets only, as in the quark model,effects of the parton 

mass shift cancel in the 7r* - no mass difference but not in the n-p mass difference. 

In general, the Cottingham formula for the electromagnetic mass shift 

includes the shift due to the electromagnetic self-energy 6Ma of the field- 

theoretic constituents. This contribution is formally logarithmically (quadratically) 

divergent for spin l/2 (0) constituents, and thus the Cottingham formula will be 

divergent for AI < 2 mass differences such as n-p as long as scaling holds. 
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I 

As in the case of the leptons, higher order electromagnetic or weak corrections 

presumably render the n-p quark mass difference finite. Thus if the divergent 

piece of the Cottingham formula can be exactly identified with the self mass 

divergences we obtain a finite result for the total mass shift 

6Mtot = (sM2), + (GM2)parton 

where (sM~)~ is the finite mass shift obtained from renormalizing the Cottingham 

formula via a subtraction term of the form (C. 4) with (6M2)a given by the 

standard QED spin l/2 or spin 0 result (covariant regularization in the photon 

mass is assumed), and (GM2)parton is the shift in mass due to the physical finite 

mass shifts of the constituents, and may be computed from Eq. (C. 8). Thus, 

from this point of view, the n-p nucleon mass differences can never be computed 

from integrals over scaling contributions in the Cottingham formula without 

knowing the mass difference of the n quark and p quark constituent. This pro- 

gram for renormalization and further consequences of this point of view are 

discussed in Ref, 19. 
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5. 

6. 

7. 

8. 

9. Note that the spin 0 parton seagulls actually measure as well the magnitude 
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FIGURE CAPTIONS 

1. Time-ordered perturbation theory contribution to the parton-proton 

scattering amplitude. The parton line has mass po, 

2. Time-ordered perturbation theory contribution to the proton elastic 

form factor. This is the only time-ordering surviving at P-a in the 

reference frame defined in Eqs. (II. 2) and (II. 5). 

3. The flhandbagY’ or “T (4) I1 contribution to the forward Compton amplitude. 

4. Time-ordered perturbation theory contribution to wave function 

renormalization. 

5. Time-ordered perturbation theory contributions to the elastic form factor 

corresponding to Eq. (II. 9). 

6. Time-ordered perturbation theory contribution to the forward virtual 

Compton amplitude for spin-zero constituents. See Eq. (II. 16) through 

(II. 25). 

7. Renormalization of vertex operators in the parton model. The occurrence 

of wave function renormalization factors Z2 and $ are represented by 

full and half circles respectively. 

8. Time-ordered perturbation theory contribution to the forward Compton 

amplitudes in the case of spin l/2 constituents. The first column shows 

the total covariant Feynman amplitude. The corresponding time-orderings 

for T1(v, 0) and T2(v, q2) surviving at P ---too are shown in the second and 

third columns, respectively. (See Eqs. (II. 39) and (II. 43) .) The z-graph 

contribution H3, the origin of the J=O fixed singularity, reduces to a 

seagull-like contribution (see Fig. 6b) at P -00, 

9. (a) The forward parton-proton amplitude. 

(b) The corresponding contribution to the proton self-energy. 
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10. Gauge-invariant nonperturbative model for the vertex and Compton 

amplitudes . 

11. Contour for the Mellin inversion formula, Eq. (III. 44). 
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