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ABSTRACT 

It is shown that the multiparticle generating functional and the multiplicity 

generating function (or partition function) are experimental observables and can 

be measured directly for finite ranges of their parameters. Their derivatives 

can also be measured directly. Since these functions are observables, they are 

subject to statistical fluctuations due to the necessarily finite number of measurable 

events used in their evaluation. The expected RMS fluctuations of the partition 

function are shown to be simply expressed in terms of the total number of events 

and the partition function itself. Examples are given to clarify these results and 

their physical interpretation. 
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I. INTRODUCTION 

The large number of secondary particles produced in high energy collisions, 

and the surfeit of possible experimental variables, has lead to an inclusive 

approach to the description of such events. Consequently, a set of multiparticle 

correlation functions are introduced which allows a succinct characterization of 

the data. The inclusive differential cross sections are conveniently related to the 

exclusive cross sections by means of a formal generating functional. l-4 Par- 

ticular exclusive and inclusive cross sections can be found by taking functional 

derivatives with respect to its parametric function. The generating function of 

the multiplicity distribution, which was originally introduced by Mueller5, is 

achieved when the parametric function is replaced by a constant fugacity. 

The analogy between the distribution of produced secondaries and the ensemble 

distribution of a gas or liquid system in statistical mechanics has been rather 

thoroughly discussed. 6 97 The multiplicity generating function (partition function) 

has been used to conveniently derive properties of certain models of the production 

processes. 829 The introduction of long-range correlations into the multiperipheral 

model has been achieved using this approach 10 , and the possibility of I* phase 

transitions” has been discussed. 7,ll 

In the above works, the generating functional and the multiplicity generating 

function are introduced as purely formal devices to simplify the mathematical dis- 

cussion. In this paper, we wish to point out that the generating functional and the 

partition function are observables and can be directly measured by experiment, 

at least for a finite range of their variables (i. e. fugacity less than one). 
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The fugacity of a particular type of particle turns out to be the probability 

that such a particle, once produced, will not be detected. The partition function 

is then found to be the difference between the true total cross section, which can 

be measured by an absorption experiment, for example, and the one calculated 

by summing over detected events. The derivatives of the partition function can 

also be measured by varying the detector efficiency. Even the functional deri- 

vatives of the generating functional can be measured by the same technique. 
12 

Since the partition function, Q(z), is an observable, it is subject to statistical 

fluctuations due to the finite number of observed events used to compute it. This 

rather unusual aspect of Q(z) will be discussed and a simple formula for the 

expected fluctuations will be derived. This result is clarified by an explicit cal- 

culation of the fluctuations for two different multiplicity distributions. Let us turn 

now to a brief review of the generating functional approach. 

II. PHYSICAL GENEBATING FUNCTIONALS 
. 

In order to develop our formalism and interpretations in a convenient and 

simple form, it will be assumed that only one particle type is involved in the col- 

lision processes. The generalization to several particle species is straightforward. 

Following the formulation and notation of Brown, reference 1, the exclusive dif- 

ferential cross section for the production of n particles in the momentum interval 

(d3q,). . . (d3qn) is written as 

n d3q 
day = n I_ a a4 

a=1 go a 
(1) 
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where I?’ is the initial total four-momentum and Tn is the transition amplitude 

(including an incident-flux factor). This is a symmetric function of the n momenta 

ql. . . qn. The exclusive generating functional E[@] is now introduced in the form 

The exclusive cross sections can be extracted from E [q] by taking the appropriate 

number of functional derivatives with respect to q(q) and setting C$ = 0. The 

total cross section can be written as 

aTOT=E[$=l] . (3) 

The inclusive cross sections are defined as 

n d3q 
dg? = n -f m50& ( ii $64(;c qc-P)~Tn.+m12, (4) 

a=1 q b=l qb 

and the corresponding inclusive generating functional I[@] is found to be related 

to the exclusive generating functional by 

1p-J = Eel+ $1 * (5) 

Let us now turn our attention to a superficially quite different problem, 

namely, the effect of an imperfect experimental detection efficiency on the measured 

cross sections. ly The experimental detection probability of a particle of momentum 

z is denoted by dz) and will be assumed to be known. The dependence of d on< 

allows for the solid angle and momentum acceptance of the detector. The raw 



experimental exclusive cross section d;S y , which is deduced directly from the 

data without correcting for the detection efficiency, depends on the probability 

of detecting n particles and on the probability of missing the rest: 

n d3qa &q==n- 
a=1 q,” 

dza) c & ( b;l 3 (1 -dzbl) - 
m=O b 

a4[g qc-+ I Tn+m12. (6) 

One may prefer to divide out the explicit factors of d$ before defining the experi- 

mental cross section, but the above is convenient and more closely related to the 

actual data. The experimental exclusive cross section is therefore a type of 

inclusive cross section. Note that there is a finite probability that only one 

particle will be detected in the final state, hence dXy is not zero, The mea- 

sured raw elastic scattering cross section is dJZr. 

The experimental total cross section ZTOT is found by integrating the 

above over the n particle phase space and summing from n=l to n=O”. The 

result is 

or in other words, 

E[l-d] = I[-d] = ~~~~~~~~~~~~ . (8) 

This relation allows one to directly measure the functional dependence of E[@] 

for arbitrary values of 4 such that 0 < $(<) < 1. 
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The physical interpretation of this equation is clear. The difference between 

the true total cross section and the experimental total cross section is E(l-d), 

which simply measures the total number of events in which no particles at all 

are detected. 

The experimental multiplicity is a quantity of considerable interest and it 

is given by 

< n> n 
exp’TOT - n=l n! = J diqxc 

(9) 

I= 
I dgI”C d(Tl) , 

which is the average value of d(q) over the true inclusive cross section. 

The mathematical functional EL$j is introduced purely formally in order to 

reproduce the exclusive cross sections by taking functional derivatives with 

respect to 4s and then setting $I to zero. However, these purely formal manipu- 

lations can actually be carried out and have a definite operational meaning. 

Consider two experiments, one run at a detection efficiency of d(q) and the other 

at a slightly different value of d(q) + dd(q) where dd(q) is an arbitrary change in 

the detection efficiency d(q). The difference of the experimental total cross 

sections is 

62 TOT =Z TOTcd + 6dj -‘TOT [d]=l++ 6d 

d”xc a=2 ii (l-dza)) ad@ = 1 6d(&dZ~lexc/d($ . ‘lo) 
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By choosing 6d(q) to be zero except for a narrow range of values ofy, the 

exclusive cross section in this range is determined by this difference in the 

measured total cross sections. Higher order differences determine the higher 

exclusive cross sections. For example, the double difference yields 

fzj2.-2 TOT 
=2 T(-,TLd + sdl - 2xToT[dl + ZTOT[d-6d] 

(11) 

- 6dGl) 6dc2) d$xc/di;il) dki2) 3 

where dXtxc is the experimental elastic cross section. Clearly this is not avery 

practical way to extract information from the data, but it does illustrate that the 

functional derivatives of the generating functional are experimentally realizable. 

III. PARTITION FUNCTIONS 

The partition function can be introduced as a special case of the generating 

functionals. Setting the function G(q) = z, the partition function Q(z) is defined as 

Q(z) = E[z] = x zngy . 
n=2 

Using this definition the relation between the experimental and the true total 

cross sections is (see Eq. (8)): 

QP-D) = OTOT - ZTOT, (12) 

where D is the (constant) detection probability. Therefore, one sees that the 

partition function is an experimental observable, at least for values of its argu- 

ment between zero and one, since 2 TOT is measured directly by counting events 
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(and depends on D) and (T TOT can be measured independently (for example, by 

an absorption experiment). Since D can be varied experimentally, the derivatives 

of Q are also directly measurable. Following the discussion in the previous 

section, the derivative of Q is related to the difference in two measurements of 

2 TOT at slightly different detection efficiencies: 

dZTOTtD) = ‘TOT(~ + 6D) - x~o~(D) 

= SD&’ (1-D) . 

The multiplicity is therefore given by 

d‘z TOT aTOT<n> = dD = Q’(1) . 
D=O 

Thus a differential measurement of the total cross section at very poor detection 

efficiency (D N 0) measures the derivative of the partition function directly. 

The experimental partition function Q,(z) is calculated by taking the mea- 

sured values of 2 exe and forming the sum n 

Q,(z) = x z n2y . 
n=l 

For the case of a general dc), the experimental partition function can be shown 

to be 

Q,(z) = E[l - (1-z)d] - E[l-d] , 

(13) 

(14) 

which at z = 1 is equivalent to (8). 

If d has the constant value D, then note that the experimental exclusive 

cross sections are 
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co 

2 exe = c (n+m)! Dntl -D)mo exe 
n m=O n!m! 

In this case, it is a simple matter to define 1 - z = (1 -x)/D and expand both 

sides of Eq. (15) to yield the inverse relation 

co 

(D- l)n-QD-nZ ,“” , 

which expresses a truly exclusive quantity in terms of inclusive ones. The 

fact that the left hand side vanishes for B = 0 and 1 allows one to express Zlexc 

andBF(= Q(l-D))in terms of Zn for n > 2. 

One can introduce an experimental exclusive generating function in ana- 

logy to Eq. (2) with dZ exe in place of doexc. n n Proceeding as 

that, dG) does not vanish, one finds the more general inverse 

above, and assuming 

relation 

exe 
cQ 

co 

I( 
d.Z exe n ii 

b=l 
‘$b) 3 

which reduces to the above when d is constant. This is a generalized statement 

of the well-known relation expressing the exclusive cross sections in terms of 

the inclusive ones. 

The experimental value of the average multiplicity is given by 

(15) 

<n> 
exp = & QnQ,(z) zz z-1 

z=l TOT dz d E[-dd]~ =1 3 
Z 
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which agrees with Eq. (9). Thus Q,(z) is the proper partition function for 

characterizing experimental quantities since it takes into account the detection 

efficiency. To extend the above discussion to several species of produced 

particles, one simply notes that each type has its own detection probability 

and hence its own fugacity, and proceeds accordingly by expanding in multi- 

nomial series’. 

IV. STATISTICAL ERRORS OF Q,(z) 

Let us now consider the effect of statistical errors on the partition function 

by examining a simplified but not unrealistic experiment. It will be assumed that 

in a particular experiment a total of N events are detected with Nn being the 

number of events with measured multiplicity n, where 

N=zN 
n=l n’ 

Our fundamental statistical assumption will be that the expected fluctuation in 

counts satisfies the familiar relation 

<NN > nm -<Nn><N >=a 
m < Nn ’ , 

where the angular bracket stands for an ensemble average. 

(16) 
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The partition function, normalized to the total number of events at z =l , 

is 

Q,(z) = c z%& . 
n 

The expected fluctuation in this quantity follows from the expected fluctuation in 

the Nn: 

< Q;(z) ’ - < Q 
A 

z) ,2 = < QN(z2) > = < QN(z2) > < Q,(l) >/N . 

Therefore the expected statistical fluctuations in the conventionally nor- 

malized partition function are expected to be of the order 

Q,(z) = < Q,(z) > f N-’ r L< Qx(l) > < Qx(z2) > 1 ’ . 
-I 

(17) 

jig) 

This is a convenient form for estimating the errors of Qx since it involves only a 

knowledge of Qx itself and the total number of events. 

In order to clarify this result and its implications, it is instructive to con- 

sider an example. Let us assume that the experimental values of Nn happen to 

have a Poisson distribution and, as is customary, we will set < N, > equal to the 

experimental distribution and estimate the expected fluctuations. Since we have 

(< No > = 0) n 
<N n+l> = N%e-‘, 

the associated partition function is 
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< Q,(z)> = !Nze(Z-l)< n-1 >I 

1 1’ 

where < n-l > = c (note that this multiplicity is shifted compared to the ordinary 

one). The expected fractional fluctuation in Q,(z) is then 

Q,(z) 1 

< Q,(z) > n! ' * N 
‘z exp 

( 
+(z-l)2 < n-l > ) (19) 

The fractional error is a minimum at z = 1 since the maximum amount of experi- 

mental information is used. This is true for any distribution function < Nn >. 

For small values of z, only the lowest multiplicities matter, and since they 

involve only a small fraction of the total number of particles, the statistical 

errors are larger. A similar argument holds for the more interesting region of 

large z, which is sensitive to the decreasing number of events with multiplicities 

much above the average. 

As a second example, consider the generalized distribution which has been 
14 discussed by Hoang , 

<N n+l 

This becomes a Poisson distribution in the limit of zero b but is otherwise quite 

different for large values of n. For this distribution the partition function is 

< Q,(z) > = < Q;(O) > c zn+’ (c +bn)n/n! 
0 

= < Q;(O) 3 y(l-by)-’ e(c-b)Y, 
(20) 

where y = y(z) is given by z = ye -by . The sum coverges if I zbe I < 1 

( 0 < I y I < b-l ). Defining yl = y(z =l), the total cross section is given by 



I 
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CY 
2 TOT = < Q;(O) > (1 -by,)-’ e ’ 

Many other interesting distributions of this type can be generated by differentiating 

with respect to the parameters of this distribution. 

The average multiplicity i n B is easily found by differentiating with respect 

to z and then setting z = 1 and by using the fact that dz/dy is known. The result 

is 

<n-l> = yl (1 -byl)-2 [U -byl) + b] . 

It is also easily computed that 

< (n-l)(n-2) > - < n-l >2 = by; (1 - byl)-4 [c(l - byl)(2-by+ + b(3 -bY,)J > 

which vanishes for a Poisson distribution (b = 0). 

The expected statistical errors are easily computed from Eq. (20). If 

terms of order b2 are dropped, one finds that the fractional statistical error is 

Q,(z) 
< Q,(z) ’ 

zz 1 + J@ (1 exp a(~-l)~< n-l >A), (21) 

where 

and 

A = 1 +b (1 +z12-2) ( + O(b2) 

< n-l > = c(1 +2b) + b +O(b2) . 

Thus we see that this distribution leads to roughly the same type of statistical 

error as the Poisson, at least for values of b small compared to one. For both 

examples, one sees that for a given fractional error in Q, the value of z that can 

be reached increases only as the square root of the logarithm of the total number 

of events. 
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