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ABSTRACT 

The Gram-Charlier series of type A is discussed in terms of deviants 

which are related to moments in a way similar to the Hermite polynomials being 

related to the powers. Distribution functions are also expressed in terms of 

the mode and moments (cumulants or deviants), which are useful expansions 

when the distributions are approximately normal. It is shown that such expan- 

sions as well as the Gram-Charlier series are valid asymptotically for discrete 

distributions defined on the semi-infinite interval [ 0, +XJ ] . 
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1. Introduction 

It is an interesting mathematical problem to express distribution functions 

in terms of various moments or cumulants. The Gram-Charlier (GC) series’ 

of type A is one of the solutions which is useful if the distribution is approximately 

2 93 normal (Gaussian). One of the characteristics of such a distribution - which 

we may call a quasi-normal distribution - is that it has a unique maximum, the 

so-called mode. In this article we will show that knowledge of the mode enables 

us to derive a useful expansion for the distribution function. 

The GC series and the expansion around the mode are obtained for a con- 

tinuous distribution in the range [- ~0, a] . In physics problems, however, we 

often encounter discrete distributions which are defined in the range [0, a] . 

For example, the cross sections an for producing extra n particles in high energy 

collision are defined for the multiplicity n = 0, 1 , 2. . . . A characteristic feature 

of the experimental data on multiplicity distributions is that they are quasi- 

norma14-8 and the mode and the width beco.me larger as the energy increases. 

It appears, therefore, that the expansions which we mentioned earlier are useful 

for these problems, at lease in an asymptotic sense. We shall show that this is 

indeed the case and shall describe the condition for the validity of the asymptotic 

expansions. 

In Section II, the GC series for distributions defined in the range [-00, w] 

is discussed by introducing deviants which are functions of moments or cumulants. 

It is pointed out that the relationship between the deviants and the moments is 

similar to that between the Hermite polynomials and the powers. Section III deals 

with expansions at the mode, and Section IV deals with the problem of discrete 

distributions in the semi-infinite range. 
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11. Deviants and the Gram-Charlier Series 

Moments ,uk and cumulants ~~ for a distribution function f(x) normalized 

in the range - 00 < x < ~0 are defined through the characteristic function (c. f. ) 

G(t) = / eitx f(x) dx , 
-co 

c O” I*ktitjk = 
k! = exp 

k=O 
c O" Kk(i# 

k=l k! 

c m tik(‘) titlk 
k! , 

k=2 

where 

1 , 

pk(a) = Or-a)k = J- lx - ajk f(x) dx 
-co 

stands for the kLth moment around a point a, and 

‘k = lyp) l (2.5) 

Cumulants are related to moments: 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.6) 

K4 = IL4(% - 3[P2&)12 , etc. 
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where 

It is convenient, for our purpose, to introduce deviants’ hk, o( ~3), by 

W = e 
iKlt+$[l + g3 A$$], 

? = $K2t 

and 

‘k = hk/K2k/2. 

Since the c. f. 

corresponds to the normal distribution 

K2 (it)2 

WI = e 

iKlt +- 2 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

3 

K2 (it)2 (X- K1 )’ 
co 

1 
f(x) = 5 J 

iKlt + 2 e- itxdt = J21 e- 2K2 , (2.12) 
-co TK 2 

deviants hk or hk give the measure of deviation from the normal distribution 

(as do the cumulants K~, k L 3). Deviants are related to moments and cumulants 

in the following way: 
- 

A3 = K3 = P3(X) 

(2.13) 

1. This name was suggested to me by G. West. 
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and 

‘k = k! 
lk12J (-l)pK;pk _ 2Q(z, 
c 
Q=O 2QQ! (k-28)! ’ 

kz3, (2.14) 

k! Kk Kk 
= Kk+z k.,3 k;k: +!$ c c 

Kkr Kk2 Kk3 

1 1’ 2’ kiz 3 kl!k2!k3! + ” ’ f2’15) 

kl+k2=k kl +k2+k3 =k 
kz3. 

Using Eq. (10) and the similar notation (;;k = \ / K:‘~, etc. ), we may rewrite 

Eqs. (14) and (15) as 

p&l 

hk=k! c 
(- 1fi$-2Qtz) 

Q =0 2QQ! (k-28)? 
, kz3 

=; k! 
k+2? c 

Kkl Kk2 k! 

k: > 3 kl!k2’ 
+- 

3! c 
Kkl “kz”k3 

+ 
k;r 3 kl!k2!k3! ‘-.’ 

kl + k2 = k kl + k2 + k3 = k 

We notice that in Eqs. (14) and (16), we have the identity 

/.L1 (2) = z1 (Z) = 0 

ks3. 

by definition, and that the series in Eqs. (15) and (17) terminates with the 

[k/3] - th sum. The inverse of Eq. (16) is given by 

WI “h 
Fk(x) = k! c k- 28 

Q=O 2’Q! (k-2Q)! ’ 

(2.16) 

(2.17), 

(2.18) 

(2.19) 
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with the constraints 

With these preparations, we express the distribution function f(x) in 

terms of deviants : Using Eqs. (l), (8) and (9), and defining 

X-K 

z=$, 

we obtain 

-itx e q(t) dt 

where the identity of the Hermite polynomial 

Z2 Z2 

-?!- 
-- 

= (-l)k Hk(z) e 2 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

has been used. Eq. (23) is the Cram-Charlier series of type A. 

We point out that the reciprocal relation between moments and deviants, 

Eqs. (16) and (19) resembles that between the powers and the Hermite polynomials 

Hk(z) = k! c (;I) 
Q ,k-XQ 

Q =0 2 I! (k-2Q)! ’ 



-7- 

and [!dd 
zk = k! c Hk-2P) 

Q = 0 24! (k-21)! 

which follows from the generating function 

co tjH.(z) 
e = c -. 

j=O j! 

The only difference is that in the former the first few terms of moments and 

deviants are missing by definition (Eqs. (8) and (20)). Using Eqs. (25), we 

recast the CG series into the form 

z2 * -- 
f(x) = -$.g e 

2 
c 

G Zk 
k - 2 

k=() k! 

, 
where 

‘4 ‘6 = 1+4” hg 
vO . . - - +8!! - . . . 6’ ’ . . 

(2.26) 

(2.27) 

(2.28) 

h3 h5 h7 
Vl = --F +qy-gTJ +*.* 

‘2 = -=+4!! (3!! - - +... 
(2.29) 

v3 = x3 - h5 I h7 
rr . . 4!! - -** 

and 

‘k = 
kz3. (2.30) 
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Finally we note the further relations 

and 

Ccl 
c 

k=O 

-.k - 
‘k 1 Hk(t) 

k! 

z2 -- 
k 2 .k z e 

z2 z2 -- 
2 = i- 

(2.31) 

(2.32) 

which are reciprocal to Eqs. (8) and (24) respectively. Eq. (31) can be 

obtained from Eqs. (8) and (26), and Eq. (32) is the Fourier transform of 

Eq. (24). From Eqs. (22), (31) and (32), it follows that 

~0 - k 2 

f(x) = c 
-- 

2 
=&k;O~e c 

vz -z- k 2 (2.33) 
k=O 

, 

which is identical to Eq. (28). 

III. Mode and Quasi-normal Expansion 

The mode m is the stationary point of distribution functions and is deter- 

mined as the solution of the equation 

03 - co 

c 
‘k+l’ 

k 

c 
;r zk k 

k=O k! - ’ k=O k! 

= z1 -I- (;r - 2-vo)z+p -z1jz2+... +(gL - &jzk+... 

= 0 . 
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This can be solved only if a few terms in the series are important, or if 

Eq. (1) is summable in a compact form. The former case was discussed in 

references l-3, and 9. In this article, instead, we consider the case where 

the mode is known. This simplifies the problem enormously as far as a formal 

manipulation is concerned, as will be seen below. 

In terms of the mode, we anticipate the expansion 

1 

f(x) = 4-m exp 
[-*](,+S3$(gki; (3.2a) 

(3.2b) 

These expansion formulae were discussed previously3 for the Poisson distribution 

and temperate borrelation models which are characterized by the condition 
\ 

Kk = O(E 
k-2 

) , kz 3, 

where 
E << 1. 

In the latter case, we can prove that3 

and 

a3 = O(E) , 

a4,6 = O(E2) , 

Q 

bk = o(E k-2 ) , k 2 3 , 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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thus the coefficients of higher powers in (x-m)/y are successively smaller. 

The distribution clearly exhibits a quasi-normal behavior. The mode and the 

2,3 width are also calculated as expansions in e 

and 

The aim of this section is to derive expansion formula (2) in a more general 

case. 

Assuming that the mode m is already known, the width may be computed 

by the formula 

1 = 1 a2!nf(x) 
7=- ax2 T- 2 x=m 

I +z;- k =‘O k! 
GO- k 

c 
“kZm 

k=O k! 

(3.7) 

(3 4 

\ (3.9) 

where 
m - K, 

Z =^. 
m 

(3.10) 

4 

In order to compute the other parameters in the expansion formula (2), it would be 

more convenient to use the expansion of the c. f. 
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imt 4 (W? 
cP(t) = e 2 [l + g1 yyk] 

= e 

where 
CJd21 
c 

Q 28 
5, = k! 

t-l) Y b&2Qfrn) 

Q=O ZQQ! (k-28)! ’ 

[k/21 
tk = k! lx- t-l)% k-2Q(m) 

Q=o 24! (k-as)! ’ 

A 
t = yt , 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

and 

i‘, = tk/ yk , ;k k 
= pk/y , etc. (3.16) 

P,(m) = 5, = 1 . (3.17) 

It is obvious that we have the relation reciprocal to Eq. (14) which is similar to 

Eq. (2.26), 

ik(m) = k! c ‘k-2Q 
Q =0 2’Q! (k-2Q)! * 

(3.18) 
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An alternative expression of the c. f. , which is analogous to Eq. (2.31), 

is given by 

8, ik Hk (t) 

k=O k! ’ 

where the identity (2.26) was used, and $, is related to tk by 

03 
$k = c (- &Q+k, Q=. PQ)!! 

krl . 

(3.19) 

(3.20) 

(3.21) 

As was done previously, the distribution function is obtained as the Fourier trans- 

form of Eq. (19), 

f(x) = 2 
GkikHk(i-$-] 1 - $ 

- e 
k=O k! 

GY 

co $ yk y2 
1 

c 
-- 

k 2 = 
k!e > 

&y k=O 

where 

From the fact that m is the mode and y is the width, it follows that 

(3.22) 

(3.23) 

A 
n1 = G2 = 0 (3.24) 
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and Eq. (22) can be written in the form ( 2a) with the parameter 

and 

(3.25) 

(3.26) 

The coefficients bk in Eq. (2b) can be expressed in terms of ak and vice versa: 

kl+k2=k 

aklak2ak3 
kl!k2! k3? - . . . 

kl+k2+k3=k 

(3.27) 
and 

b b 

“k = bk+$ k;3 kl!k2! + % 
klk2 k’ c bklbk2bk3 

+ 
kiz 3 kl!k2!k3! * ” 

k,:,rk kl+k2+k3=k 

(3.28) 

The series in Eqs. (27) and (28) terminates with the -th sum as in Eq. (2.17). 

This completes the formal derivation of the quasi-normal expansion, Eq. (2). 

Needless to say, such expansions are most effective if ak or bk decrease very 

quickly as k - 00. 
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IV. Discrete Distribution in the Semi-Infinite Range2 

For a discrete distribution Pn which is normalized by 

00 
c ‘n = 1 ) 
n=O 

(4.1) 

we proceed in a way similar to the preceding sections. The c. f. is defined by 

(4.2) 

and most of the formulae concerning the moments, cumulants, deviants, and the 

like, are valid also in this case except that the integral in x is replaced by the 

sum over n. For example, the moments are given by 

00 

Pk(a) = (n- a)k = ’ c 
k (n-a) P . 

n=O n 

Using Eqs. (2.8)-(2.10) and (2.31), we invert Eq. (2) to obtain 

\ 

(4.3) 

2. The basic argument in this section is the same as in reference 3. We present 

it for completeness to include the case of the general expansion formula 

discussed in the previous sections. 
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” 

N y2 
izt-2 

d: 

T2 -izx- _ 
2 e d? , 

where 

‘Z 

The integral in these equations is 

z2 

x tn) = 
1 e- 2 

rG2 

I- 
,-+(T+ iz)2d; 

w-5 - 7iJK; 

where the error function and its asymptotic form are given by 

U 

Erf (u) = -?- f 
eet2 dt 

h 0 

2 
1 eeU 

- l--g u U”W 

In the limit ~~ -. =J, therefore, we get th e asymptotic c: expression for x (n) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 
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Z2 -- 

x 03 -- 2 1-o 

K2 - O3 &qe 

i 

(4.11) 

The second term in the parentheses of Eq. (11) is negligible in the limit 

K2 - ‘=, provided 

n-K 
I ---A,,. 

K2 

Hence, Eqs. (4) and (5) coincide with Eqs. (2.23) and (2.33) asymptotically. 

It is easy to see also that the asymptotic expansion 

Pn = --L exp 
Gp 

- p$] (l+;3$ (yk\ x 

I, +o .,[_ q2-(y2j] 
\ i Y y )i 

is valid in the limit y - 03, provided the condition 

I n-m -I 
Y2 

< ll 

(4.12) 

(4.13) 

(4.14) 

(4.15) 
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is satisfied. The formulae expressing the parameters of the asymptotic 

expansions (13) and (14) in terms of the mode and the moments are identical 

to those in Section III. 
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