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Abstract 

Under the assumption of gentle behavior of higher cumulants or correlation 

moments, we discuss how the multiplicity distributions approach the Gaussian 

(normal) or approximately Gaussian distribution at high energy. This is an ana- 

logue of the central limit theorem. A detailed comparison with experiment is made 

based on this formalism and shows that such an approach may be useful. It is 
5 . 

’ pointed out that if the 2-prong inelastic cross section in the pp reaction is identified 
. 

with the lower end point of the multiplicity distribution, then a deviation from the 

, 

Gaussian form is necessary at the present energy. The asymptotic relation 

=y= JW 

is well satisfied by experimental data, where am and y stand for the maximum of 

the topological cross sections and the width of the limiting Gaussian form, respec- 

tively. If the ratio of the width y and the modal multiplicity m approaches a non- 

vanishing value at infinite energy, then we obtain a scaling of the distribution function, 

the scaling function being of approximately Gaussian form with the scaling variable 

n/m. 
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I. INTRODUCTION 

For a long time, the Poisson distribution has been a favorite model of phys- 

icists for describing the high energy multiplicity distribution. Recent experi- 

ments, 1 however, indicate a departure from it by exhibiting nonvanishing corre- 

lation moments. It has been pointed out, in fact, that the asymptotic multiplicity 

distribution seems to approach a normal distribution 2-4 as energy increases ., 

Such a phenomenon resembles the central limit theorem in statistics and was 

proved by Haldane some time ago in the case of a continuous distribution on the 

interval (-co, co). The assumption that leads to this result is that the higher 

cumulants do not grow too fast, a condition which is met by multiperipheral 

models, 5 field theoretical models, 6 and a gas model. 7 

In this article, we elaborate on the Haldane theorem and present it in a 

form suitable for analyzing experimental data. In Section II, the central limit 
. 

theorem is exhibited for the Poisson distribution ko’as to be useful for discus- ’ . 

sions of the later sections. Section III presents the definition of various moments 

and their relationships. In Section IV, we prove the Haldane theorem for a dis- 

crete distribution on the interval (0, co) and derive the asymptotic expansion 

formula. Based on the result of Section IV, we discuss the asymptotic limit of 

the distribution function and various asymptotic relations among the parameters 

which describe the distribution function. A possibility of scaling of the distri- 

bution function is pointed out (Section V). Comparison with experimental data 

and discussion follow in Sections VI and VII. 
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II. THE POISSON DISTRIBUTION AND ASYMPTOTIC FORM 

It is a result of the central limit theorem 899 that the Poisson distribution 

n 

‘n= r(2n+ 1) e 
-a 

approaches the normal form in the limit a --+ 00. In order to see this more 

explicitly, we transform Eq. (2.1) into the form 

This can be done by using the asymptotic expansion of the Gamma function 

Qn r(n+ 1) L .n+ i‘)Qnn-n+ iQn(2n) + kn + 0 (n-3) , 

and the formula 

atip, 
ZZ 

an 0, 
n=m 

1 a2.hpn 
-= - 
Y2 an2 

, 
n=m 

f= J%P m 

and 

k akQnPn 

bk . a$ =& ,kL3 o 

n=m 

(24 2) 

(20 3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
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Leaving the details of the calculation to Appendix A, we write down the 

asymptotic solution for the parameters, 

1 
m = a- - 

2 - & +O(aW3) , 

l 
1152 a2 

+ 0 (aS3)\ 
/ 

(2.9) 

and 

b-&$$ ’ 
,k/2-1 ’ - 

(2 k - l)tk - 2) + o (a-4)\1 
48 a2 1’ 

k 23. (2.10) 

The coefficients ak are related to bk and given by 
. 

‘1 -5 
.48a2 

+ 0 (ae4) , 

a4=b4=--1- 
12a 

a5 = b5 = 2. 1,2 (1 - 169,2 + ota-4) ’ 

a6=b6+ -$bi = + O(aV3) , 

a7=b7+b3b4=- 72t3/2 (1 - j$ + O tae2) ? 

a8=b8+ $bi +b3b5= l7 2 
1440 a 

(l+O(a-l)) , 

ag=bg+ ibi+b3b6+b4b5 = 12g61a3/2 (l- Fa + 0 W2) 

and 

“3Q-4, 3Q-2, 38 =o(amQi2) , Q 23 . 
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Equations (2.2), (2.3), and (2.9) - (2.12) give us an idea of how the limiting 

normal distribution is approached as the average value a increases. 

The normalized cross section Pn has the maximum value l/J% p at 

n = m, which is called the mode or modal multiplicity. 10 The width parameter 

y and p have the same limit 6, but y approaches the limit faster than p does. 

III. MOMENTS AND CUMULANTS 

A statistical system with correlations is conveniently discussed in terms of 

various moments. They are defined through the characteristic function, c. f. , 

$(t) =-c eintPn 
n=O 

m 
=l+ 

c 

Fk (eit - Dk 

k! = exp 

k=l 

=eiplt [‘+ g ‘k::‘“] , 

co 
c 

fk (eit - l)k 

k! 
k=l 

(3.1) 

(3.2) 

where pk = nk , K k, Fk= n(n-1) oaoo(n-k+l), fk and dk = (n-li)k are 

moments, cumulants, 
9 

factorial moments, correlation moments, 11 and dis- 

persion moments, 12 respectively. 
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All these moments are related to each other. Some useful relations are 

given below: 

K1 = fl = ii = % 

K2 = fl + f2 = d2 

K3 = fl + 3f2 -I- f3 = d3 

K4 
= fl + 7f2 + 6f3 + f4 = d4 - 3d; 

K5 
= fl+ 15f2+m3+ lof4+f5 = d5 - lod3d2 

and 

k 

Kk = c 
Q 

‘kfQ ’ 
Q=l 

(3.3) 

(39 4) 

where 

, 
Q 1 

c 
k! 

‘k = E 
k16k2+ . ..+kQ=k 

kl! k2! . . *km! 

ki 2 1 

(30 5) 

f: (:I:) (-lper rk-‘, k 18 

r=l 

10 otherwise D 

It follows from Eq. (3,3) that the first two cumulants are positive definite. The 

correlation moments fk are cumulants of the factorial moments F k’ and therefore 

the relationship between Fk and fk is identical to that between pk and K k. The 

latter is given in Ref D 9, 
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IV, ASYMPTOTIC EXPANSION IN TEMPERATE CORRELATION MODELS 

Inverting Eq. (3.1)) we obtain 

7r 

Pn =& 
I 

e -int r/~(t) dt 

-7f 

‘IT 00 1 =- 
2n c 

Kk(it)kl 

k=l k! J 
dt 

= exp C 

k=3 

KkrF’k) & 1 .,(_int - $) dt, 

-7l 

where the abbreviation 

a 
D = an 

is used. Obviously, such a formal manipulation is not permissible for an 

arbitrary distribution P or a c.f. n q(t)* Very roughly speaking, it should be 

allowed for a distribution which is sufficiently smooth and vanishes sufficiently 

fastasn--+coo. The latter condition is also necessary for all moments or 

cumulants to exist., In any event, we retrict ourselves to a class of distribu- 

tions which permit this manipulation. For practical application in physics, 

this restriction does not seem a serious hazard. In particular, in the case 

of multiplicity distributions, conservation of energy requires a cut-off of the 

distribution for n > N 0~ & . 

(40 1) 

(4.2) 
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1 
x(n) = x 

K 2 t2 
- 2 1 dt 

-‘;r 

I W-K ) 
2’ 

1 =exp - 
2K2 

-‘II 

Now the integral in the last term of Eq. (4.1) is computed as follows: 

(n--K ) 
2 

1 1 
2K2 1 

i(n - K1) 

K2 

* I- (n7K1)2 
exp - 

c (4.3) 2K2 1 ZZ 

d 27W2 
Re {Erf \fi 111+ i(EiK1) ,! 1 , 

\ 

where the error function is defined by 

X 

2 
Erf (x) = - 

I 
emt2 dt 

& 
x--&yL- A$ ,1+0(x-2)) O (4.4) 

71 
0 

Thus we have the asymptotic form for X(n): 



Notice that the second term in the brackets of Eq. (4,5) vanishes exponentially 

in the limit K,- co as long as the condition 

is satisfied. 

n-K 1 
K2 

<T 

From Eq. (4. l), (4.3), and (4.5), it then follows that 

‘n = exp 

The first term of Eq. (4.7) is of the form used by Haldane in his analysis of the 

mode and median of a nearly normal distribution with given cumulants, 13 and 

is an exact formula for a continuous distribution in the interval (- x) , co ) 0 In 

other words, the problem of obtaining the asymptotic distribution function in 

terms of cumulants for the case of discrete distribution in the range (0, co ) is 

identical to that for the continuous distribution in the range (- a~ , cg ), apart 

from the terms that vanish exponentially, for the range of n which satisfies the 

condition (6). 

(4.6) 

(4.7) 
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If, moreover, we assume that 

Kk 
yk-2 z k/2 

= O(d-2)) k23, 
K2 

with E a small number, we can derive an asymptotic expansion for Eq. (4.7), 

following the method of Haldane. 13 We may refer to the assumption (B) as 

temperate correlation models. We further divide the models into two cases: 

If 

Kk 
i-i-- are bounded, (k >_ 3) , 

2 

so that 

E 
1 z------ 0 as 

J- K2 
K2- co, 

(9 

(4 

(4.8) 

we may call them weak correlation models, while those which satisfy the con- 
* 

dition (B) with a small but iinite E may be called moderate correlation models. 

A special case of the former is the so-called short correlation models, 6-8 

the name which originates from the behavior of correlations in rapidity variables. 

In such models, energy dependence of cumulants or correlation moments are 

Kk z fk=O(Qns) . 

On the other hand, long correlation models lead to 

Kk M fk = 0 (@ S)k) , 

i.e., 

‘k _ 2 = Kk k,2 are bounded 0 

K2 

The condition (B) further requires that yk be successively smaller as k increases. 

-lO- 

(4.9) 

(4.10) 
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Assuming the condition (A) or (B), we use O(E) and 0(~2~‘~)synonymously, 

unless otherwise stated explicitly, since the asymptotic expansion formulas are 

the same for both the cases. The rates of convergence are different, however. 

Then, using the definition of the Hermite polynomials, 

Hr(x) = (-1) r x2/2 e (4.12) 

we obtain13 

Pn=& 1+ H + + H (x) + @q- [ y1 6 3 (x) 2 H 4 (x) 120 3 5 

2 3 
Yl 

+ 72 H6W + 
V2 
-gyj- H7W + 

Yl 
1296 Hgtx)+O (4.13) 

where yk is defined in Eq. (4.11) and 

. 

Equation (4.13) enables us to derive an asymptotic form which is similar 

to Eq. (2.2) and (2.3). Or, alternatively, we may use the expression 

Pn = exp 

2 
K2 -y D2+ 

co 
-m)D+ 2 

c 

Kk ( -Wk 
k! ’ 

k=3 1 

(4.14) 

X 
1 exp ! 02 

2y2 , ;+oy+g (~2-pi)l)l, (4.15) 

x4Gy \ t 
Y / 

which can be easily understood from the way formula (4.7) was derived, or 

from the identities, 

exp(aD) f(n) = f(n+a) (4.16) 

-ll- 



and 

exp(;~2)exp -/@$i = dgexp I-$&\ , c > 0, b+c > 0 l (4.17) 

[Equation (4.16) is a formal expression of the Taylor expansion and Eq. (4.17) 

can be proved by taking the Fourier transform of both sides.] In Eq. (4.15), m 

and y2 can be arbitrary, but later we will identify them as the mode and the 

correct width. 

Using either form, (4.13) or (4.15), we derive the asymptotic form 

= . 1 _ 
! ,2n p 

where the parameters are computed in Appendix B; 

m=K -- 
1 2K2 

/ p=&l-+~ K2 -2 l 3 + 123+ 
K2 K2 9 

( ) K2, ’ 
I 

Y= li 0 , 

a3=b3=6 1 3/2 K3 
3 K3K4 1 -5/2 

+ 
K2 

+0\K2 

(4.18) 

(4.19) 

(4.20) 
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K4 
K2 a4=b4=-$T-is (-2), +oK 

K2 K2 
\21 

K5 a5 = b5 = 1 - 
120 5,‘2 

K2 

“6 
= I b2 + 0 

2 3 

a7 = b3b4 + 0 =GiTTp---- 
K2 

and 

“8 

The order of magnitude of the coefficients ak and bk is represented by 

“31-4, 3Q-2, 31 = 0 42 \ K2 
/ ’ 

and 

, 

Q>_3, 

k 13, 

which are analogues of EqO (2.12) and (2. lo), 

Expressions (4,20) - (4.23) contain the asymptotic forms (2.9) - (2.12) for 

the Poisson distribution as a special case, i,e, , the former reduces to the lat- 

ter if one puts Kk = a. We notice that the speed of convergence to the limit for 
2 

the parameter y is not necessarily faster than that for p unless K2 K4 rz K3, in 

contrast to the case of the Poisson distribution. 

(4.21) 

(4.22) 

(4.23) 
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Finally, we present a simple example which does not satisfy the conditon 

t-4 or W. Consider a distribution (continuous, for simplicity), 

Pn = &, forO< n < 2; 

= 0, forn>2ii D 

The c.f. is expressed as 

2n 

0 

which gives the moments 14 . 

(4024) 

(4.25) 

(40 26) 

In order to find the cumulantsS take the logarithm of Eq. (4.25), 

. - 
In@(t) = iIit + J?n slnnt 

nt 

t2~) 
2k 

B2k (it) 2k 

2k (2k)! ,forGt < r, (4.27) 
k=2 

where B 2k is the Bernoulli number15 

B2k = l-1) (4.28) 
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It is easy to see that the cumulants are 

K1 = n 

ii 2 

K2 =3 

(21i)2k B2k 
K2k = 2k 

and 

K2k+l = 0, k 21, 

(4.29) 

and therefore we have 

(2a)2k lB2kl > 2 
2k 

2k (2k - l)! -00, 

1 as k -.,, - (4.30) 

which violates the condition (B). In this example, absence of “smoothness” in 

the distribution function is related to the violent behavior of cumulants as shown 

in Eq. (4.30). 
. 

V. ASYMPTOTIC LIMIT AND SCALING 

The assumption (A) or (B) corresponds to very different physical models, 

although we can use the similar asymptotic expansion, as was mentioned in the 

preceding section. The difference of both the models lies in the behavior of the 

parameters as functions of energy. 

(a) Weak correlation models 

Let us assume that 

K1 = 
n= O(Qns) (5.1) 

-15- 



and consider a little more general case than Eq. (4.9), e.g., 

Kk = fk = 0 ((In s)‘), k 22, 

where p is a positive constant. 

I(i) The asymptotic limit 

The asymptotic expansion (4.18) will approach the limiting Gaussian form 

exp - d 

Pn = [ 1 2y2 

JGp ’ 

where 

m 

(5.2) 

(5.3) 

(5.4) 

and 

(3 inel pa-,-- IT- 
Y271 Y 2 m 

Y- 5 21 (5.6) 

However, the present energy is not sufficiently high to realize such a limit. 

This may be understood from the fact that the cross sections for small multi- 

plicities are still not small and therefore the condition for using the simplest 

asymptotic limit, Eq. (5.3) - (5.6), is not satisfied. As a matter of fact, the 

normal distribution (5.3) with condition p = y implies that the distribution is 

normalized (automatically) for the range (- oc), co) but not for the range (0, co ) o 

We may notice, however, that the parameters p and y approach their limiting 

value with different speeds, as is seen from Eq, (4.20) D A simple modification, 

-16- 



keeping the normal distribution, would be to impose the normalization condition, 

/Y =mgm , 
t 1 

where 

g(x) = $- (I + Erf(&)) . 

It is easy to see that the asymptotic form of the function g(x) is 

g(x) -- X2 x - - e -1/2x2 
(1+0(x2)) , 

x- 0 s 

1 --- $+-- + 0(x-2) , 
X-3& JF 

and the inequality 

;< P < 1 
Y 

(5.7) 

(5.3) 

- 

(5.9) 

(5.10) 

is satisfied. 

The analysis based on Eq. (5.3) and (5.7) was carried out in Ref. 2 - 4, and 

shows that a reasonable agreement with experiment is obtained as long as the 

two-prong events are neglected. 

(ii) Correction to the normal form 

The question of how the two-prong events should be treated is a difficult one. 

If the total two-prong events are to be included, the Gaussian limit would not fit 

the experimental data. This is because the elastic cross section at high energy 

-17- 



is mostly of diffractive nature and is too large to be explained by a Gaussian 

distribution or any other simple distribution which is supposed to cope with in- 

elastic events, It would be more natural to use a model consisting of two com- 

ponents, one for the diffractive and the other for the non-diffractive (inelastic) 

component, as was elaborated by Quigg and Jackson. 16 The difficulty is, how- 

ever, that we do not have a theoretical idea which enables us to make a clear-cut 

separation of the elastic amplitude into the diffractive and nondiffractive components. 

The simplest possible assumption is to identify the inelastic two-prong cross 

section with the term Pn- _ o 0 This would imply that the nondiffractive component 

in the elastic amplitude is quite small at high energy. This is compatible with a 

remarkable constancy of the elastic cross section in the energy range 50 - 300 GeV 

(see Table 1) 0 Adopting this assumption, we see that comparison with experiment 

rules out the asymptotic form, Eq, (5.3) and (5.7); the cross section of the two- 

pront events is too small to be fitted by a Gaussian distribution. In other words, 

an asymmetry around the modal point becomes evident and a correction to the 

normal form is definitely needed. In particular, the a3 or b3 term, which is the 

dominant one in the brackets of Eq. (4,18) or (4,19), should be included, Notice 

l/2 that a3 = b3 0~ l/~~ , while the coefficients a k or bk of all the other terms are 

at most of the order l/K2 , according to Eq. (4.21) - (4.23) 0 In fact, we would ex- 

pect to have a positive value for a3, in order to explain a lower value for the two- 

prong inelastic cross section D 

We are thus led to use a modified asymptotic form 

(5.11) 

-18- 



or 

(5.12) 

instead of Eq. (5.3). Around the modal point, both the formulae, Eq. (5.11) and 

(5.12)) give roughly the same prediction, while away from the modal point, they 

may differ from each other. That will be reflected in the determination of a3 

when experimental data are fitted with these formulae. Which of these two should 

be used is a question of efficiency to reproduce the data, since they are equiva- 

lent if one takes into consideration the infinite terms. 

There are some advantages to using formula (5.12): (a) It is clearly pos- 

itive definite, and (b) convergence may be more efficient, as may be indicated 

from the comparison of Eq, (4.22) and (4.23), should a few more terms be in- 

cluded. ‘Nevertheless, we will use formula (5.11) in our analysis of the experi- . 

mental data for the following reasons: (a) This is the way the formula has been 

derived (see Appendix B), (b) a3 is small and the accuracy of the present ex- 

periment is not sufficient to select either form, and (c) it is easy to handle the 

normalization condition which reads 

_e 
m = g(*) + 

a3 

JiG 

(iii) The asymptotic limit of the ratio y/m 

Let us define the quantity 

lim y = lim 21-’ K2 ---=d. s--r00 m s+w K1 

m2 

7. (5.13) 

(5.14) 

-19- 



If we use the normalization equation (5.7) or (5.13), we would be led to conclude 

that 

d 0, = 

since at infinite energy, we have 6 = y and a3 = 0, and the equation, x = g(x), 

has the unique solution, x = 0. Equation (5.15) restricts the value of the ex- 

ponent p in Eq. (5.2) to 

o<p<2. 

This is a somewhat surprising result, in view of the fact that our asymptotic 

expansion should satisfy the normalization condition automatically (it is built 

in) and we have used neither such a condition nor Eq. (5.16) in its derivation. 

It is possible that because of several limiting processes involved and ap- 

proximations made in the discussion of the preceding section, we may be forced 

to a false conclusion. In fact, the precise normalization condition is a discrete 

sum2 of a finite number of terms (due to energy conservation). It is also worth 

noting that the contact of the function y = g(x) and y = x is of infinite order at 

the origin x = 0, and Eq. (5.7) and the asymptotic relation p -y are asymp- 

totically compatible as long as 

d 2 1. 

If d is nonvanishing, we have a scaling of the distribution function, as will be 

discussed in the next subsection. 

(b) Moderate correlation models 

(i) The asymptotic limit 

In this case, the asymptotic expansions which are to be compared with 

experiment read 

(5.15) 

(5.16) 

(5.17) 

-2o- 



l(n -- -m)2 

Pn = 
&I e 

2 y2 jl+a3(yf + 0(.52)) 

K3 -- 
m=K1 2K2 (1 + W2)) 

Y= 

a3 =+ (l+O(e2)) , etc. 

2 

These are the same formulae as in weak correlation models, but have a very 

different meaning. (1) All the asymptotic relations (5.4) - (5.6) are valid only 

approximately even at infinite energy, (2) In particular, a3 is small (order E) 

but does not vanish as s- 00, and most importantly (3) 

K3 

ii-m= 2K2 
- =0(E)& - oo* 

In weak correlation models, the quantity corresponding to Eq. (5.23) approaches 

a constant. Although we use the same formula for analyzing experimental data, 

the behavior of various parameters decides which of the models is the correct 

one, as was pointed out earlier. Incidentally, we remark that Eq. (5.17) should 

be valid as long as E is small. 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

-21- 
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(ii) Scaling of the distribution function 

In moderate correlation models, the limit 

lim x= lim 1+ O(c2)) = d 
s+w m FJ+w K3 -- 

Kl 2K2 

need not vanish. If that is the case, we obtain a scaling law 

1 n -- - 

1 e 2d2 m -1)2 a3 n 3 
mPn= ___ ‘+ 1 

--1“ 
dS\rn , 

+ O(G) i&b 1 
r 

or 

1 r 1 2 1 = exp 
a3 (n 

1% b 
-7'E-l f- 

I 2d 
d3 g -1,3 + O(G) 

where 

b= lim -@-m=d(l+O(e2)) . 
s--Pa, 

The energy dependence of Eq. (5.25) and (5.26) appears only through the modal 

multiplicity. This is similar to the KNO scaling 17 in that the scaling law is 

given by 

GP n = (I, (n/E) 

Our scaling law is, instead, 

mP n = q (n/m) , 

where the scaling function Cp is approximately Gaussian. 

Both of the scaling laws coincide at infinite energy, provided that 

lim g= ( lim l- K3 
( 1+ O(G), 

\ 
S-00 ii S--+00 \ 2K1K2 ! 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

(5.30) 
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is a finite constant. Equation (4.10) is a sufficient condition to realize such a 

case, Equation (5 0 26) is then equivalent to the formula which was used by 

Slattery 18 in his analysis of the experimental data. Olesen, on the other hand, 

used the Gaussian scaling function 19 in a similar analysis. 

(c) The asymptotic relation at the mode and the Weisberger relation 

Equation (5.5) or its original form in Eq. (4.20) may be written in the fol- 

lowing form : 

E- 
2 =-* 

NfGp 
(5.31) 

On the other hand, using the saddle point method, Weisberger obtained an 

asymptotic relation 20 

lim hi- 
-- 

S 
K2 Pn- &r 

*co 

for the case 

KkodIIS . 

Equation (4.20) permits us to calculate a correction term to Eq. (5.32), 

d- 
p- Z-J--- 

K2 n Jzll- 
i 

1 K4 
K2 

1+g2- 

K2 

&++o(cJ) . 
K2 ) 

Using the empirical values of cumulants of the multiplicity distribution for 

the 303-GeV pp collision (Table 2 and K4 = 6.0 f 4.8 from Ref. l), we make an 

estimate of correction in Eq. (5.31) and (5.34), 

J Z-P 1 = - (1 - 0.005* 0.03) 
2m &i-F 

(5.32) 

(5.33) 

(5.34) 

(5.31’) 
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and 

=- (1 -0.06-1: 0.05) . (5.34’) 

The asymptotic relation (5.31) is equivalent to the Weisberger relation (5.32) in 

weak correlation models, while the latter needs correction terms to be added 

in moderate correlation models. Equations (5.31’) and (5.34’) may indicate that 

the convergence to or the approximation of the asymptotic relation at the mode, 

Eq. (5.5)) is better than that of the Weisberger relation. 

VI. COMPARISON WITH EXPERIMENT 

We analyze the experimental data for pp collision with 50 - 300 GeV/c 

laboratory momentum based on the formula given by Eq. (5.11) or (5.18) with 

or without the constraint 

“n co = the 2-prong inelastic cross section (6-l) 
, 

We consider the negative charge multiplicity distribution in order to take care 

of charge conservation, (n- = nch /2 - 1). 

The XX-fit of the data is shown in Fig. 1 and the parameters thus deter- 

mined are listed in Table 1. Also given in Table 2 are the values of cumulants 

obtained from the experimental data. 1 Figures 2 and 3 and Table 3 are presented 

in order to show the energy dependence of some of the parameters and the validity 

of the asymptotic relations among them. Case I (II) of Tables 1 and 3 corresponds to 

the analysis with (without) the constraint (6.1) and its best fit of the experimental 

data is represented by solid (dashed) curves in Fig. 1. Incidentally, we did not 

use the normalization condition (5.13)) since it must be approximately satisfied by 

the X2-fitted solution, anyway. 
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Summarizing the result of the analysis, it may be said that the asymptotic 

form (5.11) well represents the experimental data up to 300 GeV. In particular, 

should the 2-prong inelastic cross section be included in the analysis, the neces- 

sity of the a3 term is evident, as was anticipated. However, an improvement 

of the X2/N ratio for the case II at 69 and 303 GeV might suggest a possibility that 

the constraint (6.1) is too stringent. Some portion of the elastic amplitude may 

be identified as nondiffractive and be added to the inelastic cross section, although 

its magnitude is unknown. An alternative way of decreasing the X2/N value is to 

introduce a few more correction terms. Should the accuracy be improved in future 

experiments, this would be a useful approach. We may point out also that there is 

some irregularity in the experimental data at 303 GeV which contributes to a high 

X2 -value. 

If Case II is preferred, then the existence of the a3 term becomes inconclu- 

sive. Nevertheless, it should be pointed out that even in such a case, a small 

value for a3 changes the value of the parameter y significantly. Compare the 

values of y in Table 1 and those given in Ref. 4. Let me mention also that the a3 

term dominates the first term of Eq. (5.11) in the prediction of high multiplicity 

events . Moreover, the values of y obtained in this article are more appealing 

than those of Ref. 4 in the sense that (1) they are close to those determined lo- 

cally around the modal point and (2) they better satisfy the expected asymptotic 

relations. The former point should be taken seriously since the asymptotic ex- 

pansion (4.18) or (4.19) is the best approximation around the mode. The latter 

point will be discussed in the next section. 
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VII. DISCUSSION 

We discuss further aspects of our analysis. 

(1) Asymptotic relations 

Both the asymptotic formulae 

--I@- = 1+0(G) r K2 

and 

f = 1+0(G) 

(7. I) 

(7.2) 

are in reasonably good accord with those in Table 3. In particular, the conver- 

gence of Eq. (7.1) seems much faster, while Eq. (7.2) is satisfied in Case I but 

the departure from it is somewhat larger in Case II. 

The energy dependence of the parameters /3, y, and J- K2 , shown in Fig. 2, 

indicates a linear increase in In s, with a slope of approximately l/2, i, e. , 

- 
p, y, JK2 = + Jk s+ constant D (7.3) 

The asymptotic relation 

2K3 lim (ii-m)=- 
s-w 

K2 (1 + W2)) 

is also consistent with the values given in Table 3 or Fig. 2, although larger 

errors which originate from those of K3 do not permit us to draw a definite 

conclusion. 

Figure 3 and Table 3a show the validity of the asymptotic equality 

K3 
“3 = 6K3j2 (1+0tE2)j , as s - 03. 

2 

(7.4) 

(7.5) 
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We may notice that the quantity 

K3 
7 2 

is roughly constant over the energy range 50 - 300 GeV. If this constancy per- 

sists at higher energy, we will be forced to choose moderate correlation models 

over weak correlation models and will have scaling with an approximately Gaussian 

scaling function. This is a view consistent with the analysis of Slattery. 18 

If that is the case, what is the magnitude of the expansion parameter E ? At 

303 GeV, we have 

E 2L K4 = 0.39 i 0.38 . 
Yl J- K2 K3 

(7.6) 

Unfortunately, this does not tell us much because of the large error which is 

due to that of ~~~ We should point out, however, that the convergence is better 

than what Eq. (7.6) might indicate, thanks to numerical factors. In order to see 

this, the first few coefficients of the asymptotic expansion, Eq. (4.18) and (4.19), 

are calculated using Eq. (4.21). 

a3 = b3 = 1 K3 
6 3/2 = 0,ll * 0.03 

K2 

a4=b4=-0.047zk 0.028 

a5 = b5 = 0.024 f 0.030 

a6 = 0.006 k 0.003 

a7 = - 0.005 f 0.005 

a9 = 0.0002 * 0.0001 , 

(7.7) 

where we have neglected the term which contains K 5 . 
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(2) The analysis with Eq. (5.12) 

In order to see a difference between using Eq. (5.11) and (5.12) in our anal- 

ysis, we made the x2-fit of the 303-GeV data with the assumption of Eq. (5.12). 

The parameters thus obtained are given in the last column of Table 1 (Case III), 

while the best fit curve for the distribution function is almost identical to the 

solid curve of Fig. le. As is seen also from Table 1, the fit is not significantly 

different from that of Eq. (5. ll), except the value of a3. 

In conclusion, asymptotic multiplicity distributions seem to approach an 

approximately Gaussian form and suggest that correlations among the produced 

particles at high energy are not strong. 
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APPENDIX A 

ASYMPTOTIC EXPANSION FOR THE POISSON DISTRIBUTION 

From Eq. (2.1) and (2.4), it follows that 

jJ+$n+L 
12n2 

+ 0 (nW4) , 0, for n = m. 

Substituting the solution of the form 

m=a+c2 a2 o!3 
1 +a+-* no- a2 

in Eq. (A. l), we obtain 

3 O(am4) = 0 , 

(A. 1) 

(A. 2) 

(A. 3) 

which gives 

1 1 cY1=-~, cY2=-z, and a3 = 0 . (A-4) 

Using Eq. (A. 2), (A. 4)) (2.6)) and (2.7)) we get the expressions 

\ + 0 (av4) J 
and 

i=exp[mQna -(m+-$)Qnm+m-a-&+O(m-3;1 

= --& exp ka+ O(a-3) 
[ 1 . 

(A. 5) 

(A, 6) 
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The coefficients bk in Eq. (2.3) can be computed using Eq. (2.8): 

k-l (k + (-l)k (k - 1) t (-l)k+l k + O(m-k-3) 
k-l m 2mk 12 mk+l I 

_ (-l)k-l 1 
k(k - 1) ,k/2-1 ’ + 48k,2 

- + 0 (a-4)’ tk-l)2 + 0 (a-4) 
24 a2 I 

_ (-l)k-l 1 
k (k - 1) ak/2-1 

_ (2k-l)(k-2) 
48 a2 

. 

It is easy to see that ak are given by Eq. (2.11). In order to obtain the order 

of magnitude for ak, we observe that the dominant contribution in ak is given 

by the term bkm3b3 or bk-3pbt, since b3 is the largest of all the coefficients, 

(A-7) 

Then, by induction, we can prove Eq. (2.12). 
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APPENDIX B 

DERIVATION OF THE ASYMPTOTIC FORM, EQ. (4020 - 23) 

Defining the quantities, 

n-m 
y=Y’ 

D a =- 
Y aY ’ 

K1-m =A 
Y 1 ’ 

2 
K2-Y = 

Y2 
A2 ’ 

and 

Kk PZ.2 
Yk 

hk, k 13 

we may express Eq. (4.15) as 21 

where the extra term which vanishes exponentially as K2- co was dropped. 

In Eq. (B. 2), m and y should be determined in such a way that Eq. (B. 2) coin- 

cides with Eq. (4.19). Anticipating that 

(B. 1) 

(Be 3) 



and 

hk = 0 (Y-~+~), o(K; '+ '> , k13, 

Eq. (B.2) can be expanded as 22 

Y2 -- 
Pnzl e2 

&Giy 
l+AIHltY)+ $(hq+h2)H2(y) f 

+ &(h3+3A2Al+A;)H3(y) + & (A4+4h3hl H4(y) + 

+ ,;I,(hg+5hqhl + loh3ii2 + IOh3h;jH5(~) + $ A32 H6(y) + 
. . 

+ 6 /35h4h3 + 76h32 Al H7(y) + 

+ 280 3 
gr A3 Hg (Y) + 0 (BE 4) 

The assumption A2 = 0 (ym2), instead of 0 (y-l), is justified a posteriori, and is 

expected also from the solution for the Poisson distribution. (Otherwise, we would 

have to keep a few more terms in Eq. (B. 4). Explicit calculation, then, shows that 

the assumption is correct.) In order to simplify the algebra, we use this assump- 

tion from the outset. 

The explicit forms of the relevant Hermite polynomials are given below: 

H+Y) = Y 

H2(y) = y2 - 1 

H3(y) = y3 - 3~ 

H4(y) = y4-6y2+3 t B.5) 
r 

-32- 



H5(y) = y5 -10y3+ 15y 

H6(y) = y6 - 15 y4 + 45 y2 - 15 

H?(y) = y7 - 21y5 + 105 y3 - 105 y 

H8(y) = y8 - 28 y6 -I- 210~~ - 420~~ + 105 

Hg(y) = yg - 36y7 + 378 y5 - 1260~~ + 945~ (B. 5) 

The condition that the terms linear and quadratic in y are missing in the paren- 

theses of Eq. (B.4) leads to two equations: 

Al - ${A3+3h2Al+h;]+ -$ (h5+5h4A1+10hgh2+ 1oA3h;) - 

-5 /35Agh3+ 70h;hJ+ 280 g! x 945 A3 3 = o tB0 6) 

and 

, 4! \‘4’ 4h3h1 
450-& 0 

+ 6. 3 ’ ’ * (B.7) - 

The solutions for Al and A2 which are of the form 

A1 
= ah3+bh4+ch5+dh~+eh3h4+fh~+O(y-4) (B. 8) 

A2 = b*X4 + c’Ag + d’ Ai + e’A3 A4 + f’ Ai + 0 (ym4) (Be 9) 

are sought by substituting them in Eq. (B. 6) and (B. 7). We thus obtain 

1 b=O, c=-+, d =0, 
1 

a = -, e =-- 
2 6’ 

f =o, 

b’ I+ c’ = 0 > d’=-;, e’ = f1 =O (B. 10) 
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I 

and 

i.e., 

Kl -m 
%= y = iA3 - iA5 + iA3A4+ 0(y-4) 

5 -Y 
2 

A2 = 
Y2 

2 

= 1 K4 1 K3 -- - 
2 Y4 

ST+ o(y-4) . 
Y 

(B. 11) 

(B. 12) 

These equations can be solved easily; we get 

1 K4 y2 = K2- 2-+ 
K2 

2 
+ $ f 0 C-K;2 

K2 

(B. 13) 

1 K3 1 K5 K K 
m=K -----f--- 

1 
2 Y2 8 Y4 

+ + + 0 (y-4) 

Y 

=K 1 - %i2 8 K2 (B. 14) 
2 

From the value for n=m, (y=O), the parameter p is determined as follows: 

i.e., 

(B. 15) 



The parameters ak are given by the coefficients of yk; explicitly written, 

K K2 

a3 l- +A2 + $4 ( ) K2 K2 

=+ h3+3h2hl+hi 
i 1 ( 

- $ A5 + 5h4h3 f 10h3h2 + lo,,,;) + 

+ & (35 h4h3 + 70 A&) - E A; 

=- 
6 3+5+ lA 

1 K3 
=---+487 6 K3/2 

2 

a4 . =&(h4+4A h -- 31 ) 
150 A2 
6! 3 

1 K4 
2 

1 K3 -2 
=24 -- 2 - 

K2 
83+‘p2jy 

K2 

l a5=5 h5+5h4hl+ loA3h2+ 10h3q 280 X 378 h3 
g , . 3F 

=ikh5-i+4h3+8 3 
1 A3 

3 
1 K5 -- 

= i% 5/2 
K2 

-35- 
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3 
1 K3 K4 K3 - - 

= 144 K7/2 ii - g/2 + o(K;5’2, , 
2 K2 

a8 = 

1 3 
“9 =izP3= 

1 K3 3 
-- 1296 g/2 

K2 

which lead to the expression of Eq. (4.21). The dominant term in the parameter 

ak (k L 6) is given by h k 3h3 and its general form is shown, by induction, to be 

a3Q-4, 38-2, 38 = ‘0 Kf2j e 

The coefficients bk in Eq. (4.19) are related to ak through the relations in (2. ll), 

and therefore must behave like 

bk 
= O~K-tWl)j 

2 , 

(B. 17) 

(B. 18) 

at most, otherwise it would upset Eq. (B. 17), according to an argument similar 

to that given at the end of Appendix A, 

(q.e.d.) 
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Table Captions 

Table 1 The values for the parameters. Column I(II) corresponds to the 

x2 fit by Eq. (5.11) with (without) the 2 prong inelastic cross 

section included. The last Column III for the 303 GeV experiment 

is obtained under the assumption Eq. (5.12). 

Table 2 Experimental values for cumulants. 

Table 3 The ratio of various parameters 

a. Case I 

b. Case II 
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Figure Captions 

Figure 1 The negative charge multiplicity distribution in the pp collision. 

The solid line and the dashed line represent the x2 fit with and 

without the 2 prong inelastic events, respectively. 

a. 50 GeV 

b. 69 GeV 

C. 102 Gev 

d. 205 GeV (The dashed line coincides with the solid line. ) 

e. 303 GeV 

Figure 2 Energy dependence of the parameters in Case I. The asymptotic 

equalities read /3 = y = ~~~ and 5-m = K~/~K~. The solid line is 

an eye-fitted linear curve with gradient l/2. 

Figure 3 Test of the asymptotic equality a3 = K3/6~2 3’2. (Case I) 
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