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ABSTRACT 

A quasi-normal expansion is used to examine a possibility for scaling of 

charged multiplicity distributions in pp collisions. 
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It has been pointed out by several authors that the charged multiplicity 

cross section an in pp collisions’with incident energies 50-300 GeV are well 

represented by normal 2-5 or approximately normal 6,7 distributions. The KNO 

scaling8 

also seems not inconsistent with experiment at the present energy, where $ is 

approximately Gaussian. 46 

A mathematical basis which leads us to obtain a quasi-normal distribution 

was discussed in references 7, 9, and 10. It is an analogue of the central limit 

theorem and can be stated in the following way: the asymptotic expansion at the 

mode” m, 

is valid provided that 

K2+* as s--c- 

(2b) 

(3) 

and that the condition 

(4) 

is satisfied. The parameters p, m, y, ak and bk can be expressed in terms of 

moments, deviantslO or cumulants12 ‘13. If correlations of the produced par- 

titles are temperate 739 in the sense that higher cumulants K k satisfy the condition 

Kk/K;‘2 = o(Ek-2) , k 2 3 , (5) 
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with 
E << 1, 

then we have 
J? 

a&cj3&2,3~ = ‘(‘)’ 8z1y 

and 

bk = O(e k-2) , k 2 3 . 

Therefore, only a few terms in expansion (4) are important. 

If, moreover, the limits7 

lim P = lim 
S+a 

m 
s--L* 

JK2 K3 (1 +o(c2)) = b , 

K1-i (2 

lim 2 = lim 
IS-* 5-m 

‘yK3 (1 ‘-O(6) = d , 

-2 - Kl K2 

are nonvanishing, Eq. (2) reduces to 

u n 
’ m- = 

u inel fib 

=&exp[-&(g-l)Z+$-(z-‘)a’...\ 

(6) 

(7) 

(8) 

(9) 

(10) 

(lla) 

/ (lib) 

This is a scaling in terms of the variable n/m, while the KNO scaling is expressed 

in terms of the variable n/n (Eq. (1)). Both scaling laws coincide at infinite 

energy provided that the limit 

s-00 n s-03 
( 1 

2K1 K2 
(1 + O(e2) 

Ii 
lim E = lim I K3 _ - (12) 

exists. 14 Certainly that is the case if 
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Kk cc (lns)k. (14) 

The advantages of using Eq. (11) over the KNO scaling (1) are that (i) the 

approximation is best around the mode, and (ii) the scaling function is proved 

to be quasi-normal. 

From this point of view, we analyze the pp collision experimental data 

based on Eq. (11). The results are shown in Figure 1 a, b, and in columns A 

and B of Table 1. A few remarks are given below. 

(1) With the accuracy and the energy range of the present experiment, we 

do not see an essential difference between the two forms of Eq. (11). Any 

improvement of the accuracy or increase of the energy of the experiment might 

differentiate the two forms with respect to the effectiveness of representing the 

experimental data. Although the two forms of Eq. (11) are mathematically 

equivalent when one takes an infinite number of terms, there is a difference in 

practice when only a finite number of terms are considered. 

(2) The necessity of the a3 term is clearly exhibited. We repeated the 

analysis neglecting the errors due to (T inel ’ since their inclusion forces us to 

give more weight to the events of high multiplicities. The results are shown in 

columns At and Bt of Table 1, in which the real x2 value should be obtained 

from the listed value divided by a factor 1.5 - 2. In this way, the relative weight 

of the experimental data around the mode is increased, which is a reasonable 

procedure because of the nature of expansion (11). We do not see a big dif- 

ference in the results, however. 

In conclusion, the scaling based on Eq. (11) is consistent with the present 

experimental data. 
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13. Cumulants are defined by 

1 
e. g. K1 = n, K2 = (n-<)2, K3 = (n-K)“, etc. 

14. In this case, Eq. (llb) gives an explanation of the scaling function used in 

reference 6. 

Figure Captions 

Figure 1 Scaling of negative charge multiplicity distributions in pp collisions. 

a. With scaling function, Eq. (lla). 

b. With scaling function, Eq. (llb). 

Table Captions 

Table I Values of the parameters for the best fit [N (degree of freedom)= 421. 

A. With scaling function, Eq. (lla). 

B. With scaling function, Eq. (llb). 

The prime indicates the case where the errors due to oinel are 

neglected. The number in the parenthesis that follows m represents 

energy in the unit GeV. 
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TABLE I 

P/m=b 

y/m=d 

"3 

m(W 

m(W 

m(102) 

m(205) 

m(303) 

x2 

A 

1.02 f 0.01 

1.10 rt 0.01 

0.071* 0.006 

1.25 f 0.03 

1.44 * 0.01 

1.59 -k 0.04 

1.99 f 0.03 

2.33 rt 0.05 

35.6 

A' 

1.03 f 0.01 

1.11 f 0.01 

0.081 * 0.005 

1.23 f 0.01 

1.41 * 0.01 

1.56 zk 0.03 

1.96 f 0.01 

2.28 f 0.03 

60.4 

B 

0.97 f 0.02 

1.05 * 0.02 

0.036 h 0.072 

1.31 * 0.03 

1.51 h 0.02 

1.68 rf: 0.04 

2.10 * 0.04 

2.46 5 0.05 

35.0 

B' 

0.98 h 0.01 

1.08 h 0.01 

0.037 * 0.002 

1.29 * 0.01 

1.48 f 0.01 

1.63 zt 0.02 

2.06 zt 0.03 

2.39 h 0.03 

62.4 
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