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Abstract 

This paper discusses the role played by conserved currents in fixing the 

structure of currently popular renormalizable theories of strong electromagnetic 

and weak interactions. The major objective of this work is to show that these 

theories correspond to another kind of symmetry-which we call a Higgs-type 

symmetry-and to clarify the relation of this scheme to the already familiar 

normal and Goldstone symmetries. In order to do this, we introduce a language 
* 

which makes no reference to any specific Lagrangian formalism and so avoids 

questions of whether or not hadrons are composite and whether or not the Gold- 

stone bosons (massless particles of these theories) necessarily -have massive 

partners, For pedagogical reasons, we discuss the original Weinberg model of 

leptons and a model coupling leptons and hadrons from the current algebra point 

of view. 
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1. INTRODUCTION 

In an earlier paper’ we showed how focusing attention on the conserved cur- 

rents of a Higgs-Kibble-Weinberg’ type theory allowed one to obtain interesting 

results without resorting to a specific Lagrangian formalism. This paper extends 

the discussion presented in Ref. 1 and provides examples of the application of 

these ideas to the discussion of two non-abelian schemes: the first being Wein- 

berg’s original model of leptons, 
3 

and the second being the coupling of this model 

to hadrons. 
4 

These examples show that the abstract language we shall introduce 

is easily applied to the discussion of specific models, and that its use leads to a 

simplification of some arguments 0 

Besides the fact that it is nice to have a language for discussing gauge theories 

in the absence of specific Lagrangian models, we believe the approach to be de- 

scribed has the following additional advantages: 

(1) It clarifies the connection between gauze theories, Gell-Mann current 

algebra and the Goldstone boson interpretation of the partially conserved 

axial-vector current hypothesis (PCAC). 

(2) It avoids the issue of whether or not hadrons (including the Goldstone 

bosons) are composite particles by avoiding the use of Lagrangians. 

(3) It provides another view of the way these theories control fermion masses 

and mass-differences, and provides a simple way of discussing the dis- 

tinction between theories in which fermion mass-differences are calculable 

and those in which these mass-differences are controlled but not calculable. 

(4) It provides a unified language for the discussion of normal, Goldstone and 

Higgs-type symmetry schemes and clarifies their relationship to one 

another. 
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(5) It suggests a possibly interesting way of using low energy data for purely 

hadronic processes in order to rule out general classes of models for 

weak, electromagnetic and strong interactions. 

(6) It serves as a useful framework for simplifying the discussion of the re- 

normalization of specific Lagrangian models. 

Points (1) through (5) will be discussed in this paper; point (6) will be discussed 

in a forthcoming paper. 

Since much of our discussion requires an appreciation of the differences-from 

a current algebra point of view -between normal, Goldstone and Higgs-type sym- 

metry schemes, we include Appendix I, which reviews the major differences between 

a normal and a Goldstone symmetry. The appendix is pedagogical in nature and the 

reader familiar with these ideas should refer to it only to clarify matters of notation. 

In Section 2, we define a general Higgs-type symmetry. This section contains the I 

essentially new elements of our formalism. The remainder of this paper is devoted 

to developing some of the obvious consequences of this approach. 

In the belief that simple examples are often more instructive than general 

statements, Section 3 provides a discussion, from the current algebra point of view, 

of a generalized version of Weinberg’s original model of leptons, and a generalized 

version of the coupling of this scheme to a o-like model for hadrons. The discus- 

sion of this second model is included because it provides a non-abelian example of 

the ideas discussed in general terms in Ref. 1. Finally, in Section 4 we discuss 

some general points including the procedure we alluded to in point (5). 

2. THE DEFINITION OF A HIGGS-TYPE SYMMETRY 
IN TERMS OF CURRENTS 

The definition, to be given in this section, of what we choose to call a general 

symmetry of Higgs-type will be stated entirely in terms of the structure of currents. 
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We shall make no explicit reference to Lagrangian field theories; however, our 

assumptions Hl, H2, and H3 are an abstraction of properties which can be shown 

to be true for renormalized perturbation theory. 

A. One-Current Higgs-Symmetry Definition 

For pedagogical reasons, we start our discussion by treating the case of a 

single conserved current and progress to the general case. 

As in the case of a normal or Goldstone symmetry, our first assumption is 

that there exists a single conserved vector current j’ (x). The general Higgs- 

type theory is defined by the following three assumptions: 

Hl. There exists a massive vector meson, WP, of mass M-such that 

<wlJIj”(o)lo> = i (-M2gpy + kPk”) (1) 

The kinematic factor (-M 2 PV g + k’ kv) says that there are only three polar- 
. 

ization states for the massive vector meson, and the g 
-1 

can be under stood as a 

formal way of stating the fact that in a Lagrangian model, it is g d3 x j” (x_, t) 

which is the charge. Note the fact that the conserved current j’ (x) has non- 

vanishing matrix element between the single vector meson state and vacuum is a 

characteristic of theories in which the Higgs mechanism gives the vector meson 

its mass; it is not true, for example, for the current discussed in the usual for- 

mulation of massive quantum electrodynamics. 

H2. The vector meson mass vanishes in the limit g-0 and is the only 

physical particle mass to do so. And 

H3. All form factors from which the single vector meson contribution has 

been removed pass smoothly, in the limit g-0, to the corresponding (Goldstone 

boson free) form factors of a Goldstone theory which possesses a single conserved 

current, j’ (x), and a Goldstone boson, I$> , such that 
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<+ij’(O)(O> = -iq’f, (2) 

The meaning of Hl, H2, and H3 will be made more clear in the discussion 

of the vector meson mass formula which follows. 

B. Vector Meson Mass Formula 

We obtain an interesting formula for the behavior of the vector meson mass 

as a function of “g” by considering the vacuum expectation value of the time- 

ordered product of two currents 

0 lT(j’(q) jv(-q))l O> = i M2 - 
g2 

w+ (-J(g) (q2) 8” +Dk)(q2)qi*qv 
q2-M2 1 (3) 

The r. h. s. of Eq. (3) is the most general form allowed by Poincare invar- 

iance, and we have explicitly displayed the vector meson contribution. 

Taking the divergence of j’(q) in Eq. (3) and using current conservation im- 

mediately yields 

J?f + c(g) (0) = 0 gz (4) 
If we were in the Goldstone world, the most general form of the time-ordered 

product in Eq. (3) would be 

<OIT j’(q) jv(-q)]iO) = i y fi + C(“)(q2)gI-1v+D(o)(q2)qcLqv 
I 

and (see Appendix I) current conservation applied to Eq. (5) yields: 

(5) 

C(O)(O) = -f2 e (6) 
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The assumption, H3, is to be interpreted here as lim C(g) (0) = do)(O); 
g--O 

hence, Eq. (6) tells us that 

M2(g) = g2f; + O(g4) , (7) 

a familiar property of Higgs models. 

C, Remarks about Ward Identities and Lagrangian Models 

The connection between the defining assumptions, Hl, H2 and H3, and La- 

grangian approaches to the discussion of a general U(l)-Higgs model can be clar- 

ified by investigating general properties of matrix elements of jP(x) taken between 

physical particle states. In this section we present one such discussion in order 

to derive a Ward identity which is essentially equivalent to the one derived by 

B. W. Lee’ in his treatment of the U( 1)-Higgs model. We also use this result to 

discuss some features of the g # 0, f 
4 

- 0 limit of the relations which we derive 

in order to see in what sense this limit corresponds to massless quantum electro- 

dynamic s. (Note : Eq. (7) tells us that f 
$ 

---+ 0 is just another way of letting M-+ 0. ) 

The matrix element we shall consider is j’(q) taken between scalar particle 

states (identical arguments work for spin l/2). Consider - 

<A(p’)ljp(q)lB(p)) = P-w 2 f 1 M hAB(q )+ - 2) \( H xB(q2)] 
q2-M2 

(8) 

where q = (p’ - p) and in line with H3 we have assumed that the function HvAB (g) (s2) 

takes care of the single vector meson contribution to this matrix element and that 

-(g) 2 the functions gAB (q ) -w 2 and hAB(q ) tend smoothly to their corresponding Goldstone 

forms. Clearly, unitarity requires, at q2 = M2, that the function (+M2cv -q ’ “) q H ($,&q2) 

is the sum of the three on-shell amplitudes for the coupling of the three polarizations 

of \W’> to the particles IA) and 1B) . Invoking current conservation, Eq. (8) yields 
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\ 
2 

*A - rni)g$$ (0) + i (qV H$B(O)) = 0 0 

If, instead of being in the Higgs case, we were in the Goldstone case, Eq. 

(8) would read 

<A(p’)Ijp(q)IB(p)> = 

and current conservation would require 

2 
*A - go;(O) = f+GoAB 

Hence, H3 tells us that 

lim (1 v (0) 
2’ HvAB (q2=o) \ 

g-0 
+ fGGGAB = 0 

(9) 

(8’) 

(9’) 

(10) 

Since we have already argued that gf 2 M, those familiar with B. W. Lee’s 

treatment of the abelian Higgs model will see that this identity is the g = 0 limit 

of the Ward identity so vital to a successful renormalization of that scheme. 

One other point work making is that the assumption of a smooth limit cor- 

responding to g ic 0, f 
@ 

- 0 for equations like Eq. (10) (which are free of ambig- 

uous kinematic factors) is consistent with the idea that such a limit is equivalent 

to massless electrodynamics. In fact, in that limit, Eq. (10) simply goes over to 

the usual result for massless photon amplitudes which follows from gauge invar- 

iance. This fact will prove useful in our discussion of more general models, such 

as the Weinberg models of leptons, in which one would like to have one massless 

vector meson. Note that the f 
cp 

- 0 limit is “smooth” in the aforementioned sense 

amounts to the statement that g - 0 limit corresponds to a normal symmetry. 
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D. The Simplest Non-Abelian Case-Definition 

The simplest non-trivial extension of these ideas to the case in which one 

has more than one conserved current, whose equal time commutators of charge 

densities close into some generalized Cell-Mann current algebra, will be dis- 

cussed next. This is the case for which one assumes the existence of n-conserved 

currents, j “, (x), satisfying the commutation relations6 

[ji(jY, t)$ ji(y, t)] = if,prjc(E’,t)63(z-7) f S-T. 

where f 
0P-Y 

are the structure constants of some semi-simple Lie algebra G (iO e., 

G would be SU(2), SU(3), O(4), etc.). Paralleling the case of a single current 

Higgs model, we assume the existence of n-massive vectors mesons Iw”,> such 

that 

where X 
aP 

is assumed to be some non-singular matrix. The next step is to as- 

sume the obvious generalizations of Hl, H2, and H3, and specify the Goldstone 

limit of this scheme to correspond to a world possessing n-conserved currents 

j “, (x) having the same equal time algebra, G, and n-Goldstone bosons such that 

Here, f 
w 

is also assumed to be a non-singular matrix (although at a later point 

we shall-in line with the comments made about the f - 0 limit of the abelian 
G 

case-discuss what happens if one relaxes this condition). 

To obtain a mass formula for the mesons Wi > we consider the T-product I 

<OIT jLtq)jLt-s) O> = 

(13) 

(14) 
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Current conservation then implies 

c X* M2 X 
Ya Y YP 

+ g2c@) ,p = 0 

Y 

If we let X+ be the matrix such that (X+),p = Xzcu, we can rewrite this in the 

suggestive form 

c x+ 2 
aY MYxYP 

+ g2 c(g) ,p) = 0 ’ 

Y 

(15) 

(15’) 

Two facts are immediately clear: first that C 2; (0) is a hermitian matrix, 

and second that (X-I) 
a@ 

is a matrix s. t. (X -1f (g) ) C (X-l) is a diagonal matrix. 

If we now, as in the one current case, consider the same T-product as in 

Eq. (14), but for the corresponding Goldstone world, we obtain 

c f+ f gclqv 
@Y Y/3 q2 

+CIyg)j(q2)gpv+D(o) (q2) qPqv 1 (16) 

(where f+ 
aY 

= fqa) and so, invoking current conservation, we obtain 

c f+ f 
aY YP 

= -&$(O) 0 

Y 

The obvious generalization of H3 tells us that 

c x+ 2 
a!y Myxyp = g 

2 

c 
f+ 
QJY fYP 

+ 0 (g4) 

Y Y 

which is the general form of the mass-matrix obtained for a Lagrangian model 

of this sort. Under the simplest possible hypothesis the matrix X -1 
aP 

can be taken 

to be the unitary matrix which diagonalizes the hermitian matrix, C(g)(O). 
@ 
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At this point we should note that having diagonalized C (iiT) 
d 

one could take the 

limit g # 0, and let some eigenvalue of C (g) 
@ 

go to zero, In general, we will only 

be interested in cases in which only one such eigenvalue is set equal to zero. What 

this will amount to is having fewer Goldstone bosons than conserved current 

Goldstone limit which -in the sense of H3 -corresponds to the limit g --t 0. It is 

not hard to see that in such a situation once the diagonalization has been carried 

out, one obtains a theory with (n-1)-massive vector mesons and a massless vector 

meson which plays the role of the ordinary photon. An explicit discussion of this 

point will be given in our discussion of the Weinberg model of leptons in Section 3. 

E. More Complicated Schemes 

Even more interesting than the previous case is a world possessing many con- 

served currents whose equal time algebra closes to some product of the form GI@, 

G2@, . . . @Gm, where the Gi are semi-simple Lie algebras. This is the kind of 

scheme we have to define if we wish to consider the most general models for cou- 

pling chiral SU(2) Q N(2) or SU(3) @SU(3) worlds of hadrons (possessing exact low 

energy theorems) to leptons, and requiring the final symmetry to be of Higgs-type. 

There are many reasons why one might be interested in schemes of this type and 

the reasons we find most interesting have been discussed in detail in Ref. 1. We 

shall not, at this time, say more about this other than to note that even the Weinberg 

model of leptons is of this form and so having the fully general formalism corre- 

sponding to these cases is necessary. 

The generalizations of the previous discussions of a single semi-simple algebra 

are totally straightforward. We assume that we have a large number of conserved 
(Gj) 

currents which we will denote j a! (x) Q (j = 1, . . . m). The superscript (Gj) denotes 

the particular subalgebra of GI @ , . Q . @ Gm that the current belongs to and the index 

“CV” runs from 1 to the dimension, d., of G.. 
J J 
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Next, we assume the existence of as many massive vector mesons as there 

are conserved currents, such that 

<wi 1 jYkGj) (0) (O> = t X2’ ‘- I$ gpv + qpqv) (19) 

where the gj(j = 1, . . . , n) can be different from each (Gj). (The introduction 

of these gj’s corresponds to the freedom in gauge models of coupling commuting 

sets of currents with different coupling constants. ) The Goldstone limit 

of these theories are assumed to have as many Goldstone bosons, ] $,> , as con- 

served currents so that 

Gj) P (G.) 

@P ) L! (0)lO) = -iql* fpd 

Repeating the arguments of the precedi.ng section, we arrive at the formula 
-e- 

(G.)+ (G ) 
z X@[M;X$)= ‘i, gjfor; fy; 

’ 
go + Otgjg~ 

Y Y 

which relates the vector meson masses to the parameters defining the Goldstone 

case. The notation in Eq, (21) is not as complicated as it seems at first glance, 

and its meaning is readily understood within the context of any reasonably simple 

model, such as the Weinberg model of leptons discussed in the next section. 

F 0 Some Observations 

Before going on to discuss specific examples, there are two general points 

we should make at this stage of our discussion. The first has to do with the 

hermitian matrix @b(O). It is entirely possible that the Goldstone limit, 

($0) ,p = -qqj fyP’ could have some degenerate eigenvalues. In that event, un- 

less there is a symmetry which forces this degeneracy, one would expect the 

degeneracy to be lifted as we go away from g = 0, 

(20) 

(21) 

-11- 



This would be the general case if, for example, the Goldstone world pos- 

sessed a larger symmetry structure (Le., there were actually more conserved 

currents around) than the corresponding model of Higgs-type. Clearly, in this 

event one should take care, when it is relevant, that one is working with those 

linear combinations of vector meson states which are smooth limits of eigen- 

states of C$L (0) 0 

The next point has to do with classification of Higgs-type symmetries in terms 

of the mass formulae they permit, As we discuss in Appendix I, the presence of 

Goldstone bosons in vector currents gives rise to formulae for mass differences 

of particles in terms of their couplings to the Goldstone bosons. Moreover, this 

persists to lowest order in “g” when we go over to the corresponding theory of 

Higgs type (Le, , we have a zeroth order mass relations of the sort discussed by 

Weinberg an9 Georgi and Glashow7). Therefore, we have two possible classes of 

theories : First, there are those theories for which, for example, fermion mass 

differences persist in the limit g - 0, due to the fact that in that limit there is a 

Goldstone boson coupled to the fermions in question. These are theories in which 

we shall call the mass differences controlled but not calculable. The second class 

of theories, the ones in which for symmetry reasons the Goldstone couplings in 

question vanish in the theory corresponding (in the sense of H3) to the limit g-0, 

shall be the kind of theories in which we call mass differences calculable. Obviously, 

depending upon the particle in question, both sets of possibilities can exist in the 

same theory 0 
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3. WEINBERG MODELS 

This section is devoted to discussing Weinberg’s original SU(2) (9 U(1) model 

of leptons, and his SU(2) @ U(1) model of leptons coupled to a generalized cl -model 

for hadrons, from the current algebra point of view. Before proceeding, however, 

we should point out that we always assume we are discussing schemes which are 

anomaly frees When one gets down to using this language to describe possibly 

realistic schemes interesting distinctions can be made based upon the nature of 

the anomaly cancelling scheme being used; however, for the present we will not 

bother with these details and shall assume that all current algebra manipulations are 

anomaly free without specifying how this is accomplished. 

A, Model of Leptons 

The generalized version of the original Weinberg model of leptons is completely 

specified by the following statements about the currents: 

Wl. There exist three currents jr(x) (i = 1,2,3) (corresponding to the (V-A) cur- 

rents of his scheme) and a fourth current j[ (x) satisfying the following equal time 

algebra: 

i 
jp(z, t), j’j(y,t) 1 = ieijk ji (2, t) a3(x -7) + S.T. 

(In other words, we have an SU(2) Qp U(1) of conserved currents,) 

W2. There exist four vector mesons 1 Wr > (i = 1,2,3) and IW,“> such that 

<W”lj y (0)‘O) = i Xij c-MfgPv + kP k”) 

<W”\ji(O)10> = -$- Xi4 (-Mf gPv + kPkv) 

(22) 

(23) 

(24) 

(25) 
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<W~Ij~(O)lO) = $Xqi(-MigPV +kPkv) (26) 

<W~Ij~(O)lo) = $ X44 (-Mi gPv + kPkv) (27) 

W3. The Goldstone limit, (I$,$) -+O, of this scheme corresponds to having 

four vector mesons 1 $I > , ( @2 > , I @3 > and I+4 > such that 

<CiIj~tO) lo> = -i 9’ fedij (28) 

<qi ijz tO)[O> = +iq’ f+d,, (29) 

<+ ljcl(O) 0> = 0 
4l J 

(30) 

/$4!jl*4 (0) !O> = -iqp fi (31) 
- 

LEquations (29) and (31) are chosen so that in the f’+ = 0 limit the current(j3+ j,-) - 
/ 

which we shall identify with the electromagnetic current a la the Gell-Mann- 

Nishijima relation-couples to no Goldstone boson.] 

Given Wl - W3, EqO (21) becomes the following matrix equation: 

I 
g2f; 0 0 

0 g2f; 0 

0 0 g2fi 

0 

0 I + 0 tg4, gr4, 2 g 2 g’ 9 0 0) (32) 

-g&f; 

M;O 0 0 

0 M;O 0 

0 0 M;O 

0 0 0 Mi 

x11 x12 x13 
X 14 

x21 x22 x23 x24 = 

x31 x32 x33 x34 

x4l x42 x43 x44 

I 0 0 -‘w; g I2 f2+f2 
( )I 

(#) $1 
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Making the simplest assumption that (X-l) is the matrix which diagonalizes the 

r.h.s., we see that the masses of the four-vector mesons are given by the 

eigenvalues of the matrix on the r. h. s. of Eq. (32). Therefore, we see that 

there are two vector mesons, coupled to the currents j: and jz, of mass 

MI = Mi = g2f2 -I- O(g4) one vector meson of mass 
+ 

/ 

f2 (g2+g’2)+fT2gT2+ 
M;= @’ 

2f2g’2(g’2 -g2) 
2 (33) 

and a vector meson of mass 

f2 (g2+g’2)+f2,g’2- \2 

M;= ’ 
(f2(g2+g’2)) +f’4g’4+ 2fT2f2g12(g’2 -g2) 

2 (34) 

The matrix (X-I) is obviously the rotation matrix which takes this to diagonal 

form, h an the limit f’ 
+ 

= 0 corresponds to the usual Weinberg case which has 

Mi = fi(g2 + g12) and Mi = 0. We have gone through this argument only to show 

how the general point about the f’ 
+ 

- 0 g’, g # 0 limit works out as expected. It 

should be obvious that we can proceed from the outset setting f’ = 0 ignoring the 
4) 

fact that this implies that Eq. (19) does not really make sense, so long as we 

understand that only the formulae relating the various form factors make sense. 

With this in mind, we complete our discussion of the Weinberg model for 

fb 
= 0. In this case we see that the matrix (X) has the simple form 

1 0 0 0 

0 1 0 0 
X= 

0 0 cos 8 -sin 8 

0 0 sin 8 cos 8 

(35) 
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where cos 8 = g/ and sin 6 = g’/ 

squared matrix have the form 

in order that the mass- 

M2 = 

g2fi 0 0 0 

0 g2f; 0 0 

0 0 fi(g2+g’2) 0 

0 0 0 0 

It is then a trivial consequence of inverting Eq, (24) - (27) by multiplying 

their matrix form by (X-l) i j, that ti4> couples solely to the current 
I 

jp = 
( SillBgj~+cos~g’jp = 

1 
em 4) J-y+ (j!i+C, 

and Wt > couples to the combination I 

jp = P 
z \ 

cos8gj 3 - sin8 g’j1*4.‘ 

(36) 

(37) 

(38) 

(Note: The combination jg+ jt is precisely the combination of currents which 

in the limit f’ 
@ 

= 0 has no coupling to the Goldstone boson and this is a general 

result.) Equation (37) can be immediately interpreted as a formula for ‘e’, 

namely, e = gg’/ g + g p-7 which is the usual result of the Weinberg model. 

We shall see that this result is compatible with the discussion-which follows 

next-of the restrictions our formalism places upon electron-neutrino form 

factors, 

Although the structure of the vector meson mass matrix is one of the most 

interesting features of the Weinberg model of leptons, it is very amusing to see 

how much of the Lagrangian model is reproduced when one goes on to consider 

the couplings of electrons and neutrinos. To see this, consider a general fermion 
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matrix element of the form 

+ c !%L’ (-“:g’v+q’qv) 
?’ ga q2 - M2 

Y 

U&P) 

where we have explicitly exhibited the vector meson contribution and adopted an 

obvious notation in which the Greek letters Q! , y = 1,2,3,4 and gal = g for 01= 1,2,3 

and g’ for CI! = 4. The remainder of the notation in Eq. (39) is self-explanatory. 

Taking the divergence of Eq. (39) yields: 

+ c -+ q” (H;l,n(0) + HZ,1 (0) Y”; us(P) 
Y CL! I 

The barred form factors are assumed, in the limit g - 0, to go smoothly 

to their Goldstone counterparts, which appear in the analogous equation to Eq. 

(40) -namely, 

<UP’$~ ts)l~(P)> = iEl, (P’) 

i 

5o! 50! 
+ F gmy (s2) + sp~p#12) + qua pv$; (s2) ) Y5 

(40) 

(39’) 

clp -- 2 
q2 Y 

f;y\G#l Ul (P) 
Y 
m+ G; Q’P y5 

Y ;J 
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In the Goldstone case, current conservation yields 

- c f;, (G+,y p,p+ G;y p11/5j u&P) 
Y 1 

which, using Eq. (28) - (31), yields (setting f’ = 0): 
cp 

f$G$iee = -f+GG3ee = O (i = 1,2,3) 

(*e - mu) gi v (0) = f+G$.ev 
1 

0-n e - “J 9; v (0) = -fg,G+3ev 

fGG+ivv = -f$G$3~v = ’ 

2 me !& = f+ Giiee 

2megi5 = -f+ Gi3ee 

5i 
(me + mvkev = fq)Giiev 

54 
We + mu) gev = -fq)Gi3ev 

2mv g”,: = fq)G;ivv 

2mvg~v = -f$G&3v v 

Equations (41) - (46) tell us that certain Goldstone boson couplings must vanish 

and that in general gz v (0) = -gz v (0)) 
53 54 

and gila = -gala. Moreover, H3 implies 

(40’) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 
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these relations also hold for the Higgs case to lowest order in “g”. Forcing 

m 
V 

= 0 places further, non-trivial, constraints upon these couplings. It is easy 

to check that this essentially fixes the parameters of the Weinberg theory. 

Another amusing point worth making before concluding this discussion has 

to do with our identification of the electromagnetic current with the combination 

*P eJ em = gsin8 jl*3 + g’cos0jz 0 

Taking this between electron states at rest, we obtain 

+g 

54 
ee (O$] ue (P) 

Now Eq. (41) tells us this reduces to 

-P 
I I 

1 
e<el,,e> =. i-fe (P) YP ‘gZe (0) + gz, (O), 

J g2+g12 [ 1 ue (P) 

(47) 

(41’) 

and if, as in the Weinberg model, we let gk (0) = gi (0) = - l/2, then our identi- 

fication of e = gg is completely consistent. 

B. Weinberg Model of Hadrons and Leptons 

In this section, we present a discussion of a general model for the coupling 

of the Weinberg SU(2)@ U(1) scheme for leptons, to a chiral SU(2) 8 SU(2) @ U(1) 

scheme for hadrons which possesses exact Goldberger-Treiman relations, g/gA - 

sum rules, Adler self-consistency conditions, etc. The principal reason we 

bother to go through this discussion is it provides us with an instructive example 

in a non-abelian case of the general effect we discussed in Ref. 1, namely, the 
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strong feedback of spontaneous leptonic symmetry breaking into the hadron world 

which occurs when the Goldstone limit of a gauge theory has a larger Goldstone 

symmetry than its Higgs-type analogue. 

A second reason for considering this example is that it provides a simple 

theory in which one could have hadronic fermion mass differences which are 

either controlled or calculable. 8 
- 

The definition of the coupled hadron-lepton SU(2) @ U(1) scheme proceeds in 

exactly the same way as in part A of this section insofar as the discussion of the 

number of conserved currents and vector mesons is concerned. It is only in the 

discussion of the g -0 limit of this theory that interesting new features arise; 

hence, we shall assume that Eq. (22) - (27) carry over intact to this case. 

There are two importantly different cases of the g-0 limit which we shall 

discuss. The first case is described by saying that the g-0 limit corresponds 

to a Goldstone world possessing only an SU(2) @U(l) of’conserved currents and 

three Goldstone bosons, xi> (i = 1,2,3), satisfying equations of exactly the 

same from as Eq. (28) and (29). (Note that, for example, the vector meson mass 

matrix is then given by the appropriate form of Eq. (36).) 

In this case, one would imagine that these Goldstone bosons couple to both 

leptons and hadrons, and so-in this Goldstone world-baryons and leptons satisfy 

mass formulae of the sort 

t*,, - “B) g&to) = fXi GX BIB 
i 

(48) 

(This follows from arguments identical to those presented in order to derive Eq. 

(40’). ) Hence, this theory has the property that, for example, the neutron- 

proton mass difference can survive the passage g- 0 and although it is controlled 

by a sum rule relating it to Goldstone boson coupling constants, it is not calculable 

solely as a function of “g” unless, of course, the Goldstone boson couplings GX np 
i 
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happen to be zero. In that event, the smoothness of the passage to the Goldstone 

limit will force the mass differences to start out in order “g2”. One would then 

call them calculable. It is obvious from models which have been discussed in 

the literature’ that both cases are realizable within the context of renormalizable 

field theories. The second case usually corresponds to have in the g = 0 limit a 

much larger number of conserved currents and Goldstone bosons. 

We shall devote the remainder of this section to a brief discussion of how, 

within the context of this scheme, one sees that even very weak couplings of lep- 

tons to hadrons can generally be used to produce large hadronic symmetry viola- 

tions. The ideas being discussed here have been more completely discussed in 

Rev. 1, and we content ourselves with only touching upon those points which we 

find particularly interesting. 

For purely pedagogical reasons, we limit our discussion to the case in which 

the g + 0 limit corresponds to an SU(2) @ U( 1) Goldstone world. We shall then 

assume that there exists a limited set of small coupling constants i’i\ such that 

in the limit i E i I- 0 all lepton hadron couplings vanish. - Our basic assumption 

will be that this world of uncoupled hadrons and leptons possesses many more con- 

served currents and Goldstone bosons than is the case of { ii#o.1o E 

To be specific, we will assume that we have an SU(2) Q SU(2) @U( 1) equal-time 

algebra of conserved hadronic currents and an SU(2) @U(l) of leptons. The totally 

decoupled world of leptons will be assumed to have the Goldstone boson structure 

of the Weinberg model, and so requires no further description. The hadronic 

world, in this limit, is assumed to have the symmetry structure of a generalized 

g-model, and we now list its properties. 

First, we assume the existence of seven conserved currents VP yi(x) ti= 1,2,3), 

AP (x) (i = I, 2,3) and Y:(x) whose equal-time algebra closes, in the usual way, to 
H,i 
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SU(2) @ SU(2) (8 U( 1). To be precise, we assume that the combinations 

satisfy 

j’;,: (4 = + bki (x) rt A&p)j 

the commutation relations. 

[ 
j;,p(z, t), j:,T(y, tg = ieijkj2,$?, t)a3(z-y) + S.T. 

[ j:H’,Lt), $(y, t)] = 0 

The second assumption is that there exist three pseudo-scalar Goldstone 

bosons 1”;) such that 

/n! I] 1 *k j(O)lO b = I iqPfy,dij 
, 

<7$-Y; (O),O> = 0 

(49) 

(50) 

(51) 

(52) 

(54) 

or, in other words, gf 
1 > 

are coupled to vacuum solely by the axial-vector currents. 

This second assumption says that the limit {g, g’ , E i\ = 0 corresponds to a 

world of leptons of Weinberg-type, and a hadronic world possessing a normal 

SU(2)-isospin symmetry-generated by the three vector currents, V:(x) -and three 

massless pseudo-scalar mesons which satisfy exact low-energy theorems. 

The third defining assumption is that the SU(2) @ U( 1) of conserved hadronic 

. cl(g) plus leptonic currents, JH+L,~ (o? = 1,2,3,4), corresponds in the limit {g,g’, E ii = 0, 

to the SU(2) of currents .P(h - .P .P 
J~+~ . P.(O) 

, 
i - J H i + J L i, and the U(1) current, J H+L 4 = 

, , , 

.+t/Jj + Y/J 
‘H,3 

aI-1 
H + ‘L,4’ (Note that this U( 1) combination guarantees the existence of 

a conserved electromagnetic current 0 ) 
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This third assumption specifies a great deal about the nature of the limit 

~~i~-oo The reason for this lies in the fact that in the limit E 
i ii 

= 0 we have 

six Goldstone bosons: three hadronic Goldstone bosons 
I 
“f > and three leptonic 

Goldstone bosons 1 @i > 0 All six of these bosons are forced to be massless since 

they couple non-trivially to the six conserved currents ALi and j ti(x) 0 Now, 

as we go away from Ie. 
!l I 

= 0, the separate leptonic and hadronic currents are no 

longer conserved, but only the four currents corresponding to the combined lep- 

ton hadron SU(2) @U(l) (generated by the currents jk+L, i(x) and j&+L i4(x) )0 
> , 

This tells us that there are at most four boson states that will be kept massless 

as a consequence of current conservation; in fact, we shall see that our assump- 

tions tell us there are only three states, xi 
I > 

, which pass smoothly to the par- 

ticular linear combinations of hadron and lepton Goldstone bosons which owe their 

masslessness to the conservation of the combined lepton and hadron currents, To 

be more specific, consider the combinations 

IR!10)> = cosep: + sin 0 $i> 
I 

(55) 
IX;O)> = cos SIT?> - sin eJ@i> 

If, in the limit ei = 0, we choose 
i 1 

cos e = f / 
z---T-~ 

fX’ + f 

(56) 

(57) 

This shows us that the three states, xi I > , are Goldstone bosons which do not 

couple to the sum of the hadronic and leptonic currents; hence, they owe their 
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masslessness to the fact that the limit {ei \- 0 has a much larger symmetry 

group (( SU( 2) 63 SU(2) 63 U( l))H@ (SU( 2) 8 U( 1))L) than the group (SU( 2) Q U( l))H+L 

of the coupled theory, The states, Xi 1 (0) > , are coupled by the sum of hadronic 

and leptonic currents to vacuum in the usual way and the E 
i i’ 0 limit of 

<X~‘)lj~,, j 
IO> = -iq’f (6) 

, 

(58) 

‘>= +iqpf(E) , 

must correspond to 

<x(O) i- 

.,yw 
i 

.P 
‘H+L, j I 0) =+iq p 

J 
f; +ff, 

jk+L,4T = -iq p 
J 

f; + ff, 

(59) 

It is clear that only these states can be smoothly related to the massless Gold- 

stone states of the { eii f 0 coupled theory of leptons and hadrons. The states, 

I > xi 9 are the ones which are replaced by massive vector mesons in the Higgs- 

type theory and the 1~~) will show up as low-mass meson states which remember, 

to some degree, their Goldstone nature due to the very simple form of the mixing 

formula, Eq, (55). 

It is important to note that Eq. (55) is determined primarily by the structure 

of currents in the totally symmetric theory and not by the details of the interac- 

tions which couple leptons and hadrons-so long as they are “weak.” 

As explained in Ref. 1, these mesons-which we would identify with the pions 

of the real world-would be expected to show 10% violations of PCAC-identities 
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even for couplings whose strength is consistent with their being due to second- 

order weak interactions. Moreover, the presence of Goldstone bosons in the 

vector currents of the fully coupled theory leads to leptonically induced hadronic 

violations of isospin. In the case of isospin, this is not a very interesting pos- 

sibility, but as we shall remark in the next section, it is more interesting when 

one considers models based upon SU(3) 8 SU(3) -Goldstone schemes for hadrons, 

Other interesting general features of this model can be obtained by pursuing 

arguments of the sort given throughout this discussion; however, they are better 

discussed at another time. 

4. SOME GENERAL RENIARKS 

In the previous sections of this paper, we have discussed general properties 

of Higgs-type theories from the current algebra point of view. Moreover, we 

have deliberately limited our discussion of models to simple but unrealistic the- 

ories. One could proceed to translate many other possibly more sensible La- 

grangian schemes into this general language and also, using the current algebra 

framework, one could develop all sorts of models which can be contrived to fit 

any given preconceived notion of what constitutes and interesting result. Instead, 

however, we would like to make a few comments about why we do not think this 

is necessarily the most fruitful approach which can be taken and suggest an alter- 

native which we believe deserves more attention than it has received to date. 

The first point we would like to make is that from the current algebra point 

of view many of the features of renormalizable theories, such as formulae for 

vector meson masses, sum rules for fermion mass-differences, low energy 

scattering theorems, etc. , really amount to nothing more than a kind of spec- 

troscopy: that is, they are equivalent to the naive perturbation theory arguments 

one makes when discussing ordinary symmetry breaking. There are subtle 
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differences, of course, in that we are discussing theories with abnormal sym- 

metry limits, and that we are not necessarily discussing symmetry breaking as 

much as the transition between different kinds of symmetries. Nevertheless, 

the kinds of results we have discussed and the nature of the most general as- 

sumptions which lead to these results represent a discussion of dynamics at the 

crudest level. In the same sense that the success of the Gell-Mann-Okubo mass 

formula gives us no really detailed information about the structure of hadronic 

interactions, we do not believe these kinds of statements, even if true, should be 

taken to be a revelation of the details of lepton-hadron dynamics. Instead, they 

should be thought of in the same way one usually things about SU(3) results, namely, 

as a way of using experimental information to place limits upon the structure of 

“symmetry breaking terms in the Hamiltonian” (we use this term in a very vague 

sense). 

The second point we would like to make is that even if one does believe that 

one will be able to give a reasonably convincing argument for a specific Lagrangian 

model of the world, not enough attention has been paid to the general way in which 

symmetry properties of the lepton world feed back automatically into the hadronic 

world and are capable of generating large symmetry breaking effects. In the kind 

of theories outlined in Section 3(B) in which one supposes all of hadronic SU(3) and 

even SU(3) Q SU(3) breaking to come from the coupling of hadrons to leptons, there 

must exist non-trivial relations which one can establish between the structure of 

the violations of SU(3), PCAC low energy theorems and the SU(3) Q SU(3) trans- 

formation properties of the leptonic Goldstone bosons. For example, as we showed 

in Ref. 1, derivations of the generalized Goldberger-Treiman relations for the 

octet of pseudo-scalar mesons are related to constants of the type f+ , i ‘~ BB” i 
etc., where Qi> are the Goldstone bosons of the lepton world. There must also be 

-26- 



relations for baryon mass differences, violations of SU(3) in the scattering of 

r’s, K’s, and q’s off baryons, violations of PCAC-low energy theorems in 

meson-baryon scattering processes and the same set of parameters. Obviously, 

within the framework of any specific assumptions about the symmetry structure 

of the lepton world, one must then have sum rules among parameters which meas- 

ure deviations from symmetry predictions for hadronic processes. The success 

or failure of such relations should provide one with another way of getting a handle 

on what a correct theory of leptons must look like, at least insofar as its sym- 

metry structure is concerned. 

We wish to emphasize that this exploration of relations between hadron sym- 

metry breaking and lepton structure rests upon very general assumptions which 

must be true in any Lagrangian theory for which perturbation theory is assumed 

to have any relevance. They will exist whether one believes one is doing spec- 

troscopy and that there are underlying “partons” or “quarks” which bind strongly 

to produce the Goldstone phenomenon-an effect which one could not treat easily 

within the framework of Lagrangian perturbation theory-or one believes he is 

discovering a Lagrangian which is close to that of the real world, We wish to point 

out that the search for relations of this sort, which depend only upon the most gen- 

eral aspects of the Lagrangian formalism, merits a great deal more attention, 

since it opens up the possibility of distinguishing between different models of lep- 

tons on the basis of low-energy hadronic data. 
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APPENDIX I 

Normal vs Goldstone Symmetries 

In order to make our review of the differences between normal and Goldstone 

symmetries as simple as possible, we divide the discussion into two parts. First, 

we discuss the case of a single conserved current (i.e., a U( 1) symmetry) and 

show the differences between a normal and Goldstone version of this theory. Sec- 

ond, we give a brief discussion of the important features of what happens if we 

have several conserved currents whose equal time commutators close to a Lie 

algebra, G . 

A. One Current-Normal Symmetry 

We begin by assuming the existence of a conserved vector current j”(x) (or 

axial current J .5pw ), such that 

ap j”(x) = 0 (A. 1) 

ap j5’(x) = 0 (A. 1’) 

To extract useful information from Eq. (1) for Eq. (1’)) consider j”(x) taken 

between fermion states of the same intrinsic parity. The most general expression 

for this matrix element is: 

where 

qP=(p’ -p)c1 . 

Taking the divergence of Eq. (2) and using Eq. (1)) we obtain 

uA(p’) mA -m ‘g B) AB (q2) + q2hAB (q2) 
I 

u,(P) (A.3) 
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The assumption that the conserved current, j”(x), corresponds to a normal 

symmetry is seen to be equivalent to the statement 

2 
lim q hAB(q2) = 0 

92-0 

since then Eq. (A. 3) yields 

“A - mB gAB to) = ’ i 

(A.4) 

(A. 5) 

Therefore, either mA = mB z gAB (0) = 0. As it is conventional to call gAB(O) 

the matrix element of the vector charge taken between fermion states IA> and IB> , 

one way to paraphrase the content, Eq. (A. 5), is to note that it is equivalent to the 

usual statement one makes about conserved charges, namely, “a conserved vector 

charge can have non-vanishing matrix elements only between states of the same 

mass. ” 

The same argument applied to the discussion of an axial-vector current (if 

Eq. (4) holds) yields 10 

“A + mB ’ 5 
J gAB (O)=O (A* 6) 

We have, therefore, obtained the result that the axial charge has no matrix 

elements between massive states of the same intrinsic parity. 

B. One Current-Goldstone Symmetry 

In order to escape the conclusions embodied in Eq. (A. 5)) one relaxes Eq. (A, 4) 

by allowing $im q2hAB(q2) f 0. To make this consistent with naive dispersive 
q--+0 

or field theoretic ideas, we assume the existence of a zero mass scalar (pseudo- 

scalar) boson coupled by the conserved vector (axial-vector) current to vacuum. 

In other words, we assume there exists a single scalar particle state ‘#‘> (or 
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pseudo-scalar $ I ps> such that 

or 

<+‘(j’(O)/O> = -iq’f+ 

<~ps’j5p(OJ)O~ = -iq’fi 

(A. 7) 

(A o 7’) 

The masslessness of I$‘> (or I$“>) is a direct consequence of Eq. (A. 7) 

(Eq. A. 7’) ) and so does not amo>nt to an extra assumption. Equation (A. 7) leads 

in the usual way to replacement of Eq. (A.4) by 

hAB(q2) = -* + cAB(q2) 

q2 
(A. 4’) 

where lim q2hAB(q2) = 0 
92-o and G$AB stands for the usual (c$, A, B) - coupling 

constant (we shall use G5 to stand for the C$ PS 
GAB 

, A, B coupling constant). 

Substitution of Eq. (A. 4’) into Eq. (A. 3) yields 

uA tp’) [( mA -mB’gAB tq2) - f G 2- 
, WB 

+ q hAB tq2)] u,tp) = ’ 

which implies 

gABto) = f G 
+ #AB 

In the case of an axial vector current, this becomes 

(A. 3’) 

(A. 5’) 

Equations (A. 5’) and (A. 6’) exhibit the great difference bet ween a Goldstone 

and normal symmetry, namely, in the Goldstone case vector current conservation 

relates low energy Goldstone boson amplitudes to mass differences, while axial- 

vector current conservation gives formulae analogous to the famous Goldberger- 

Treiman relation. (Note: these “low-energy theorems” replace conventional 

statements about the existence of multiplets which are degenerate in mass.) 

(A. 6’) 



C. Non-Abel&n Algebra of Currents -Normal Symmetry 

One can readily extend this discussion to the situation in which we have a set 

of conserved vector currents j L(x) ((I! = 1, . . . , n) and a corresponding number 

of axial-vector currents j: (x) . Following Gell-Mann, we could assume that 

these currents satisfy the following equal-time algebra: 

3(X?-3) + S.T. 

t), j5’(y, t) = if 
P 1 olPr jtp (fi,t) “(2 -3 + S.T. 

$‘tT,t) 1 = if 
3 

ap (2 -3) + S.T. 

where the constants f 
“PY 

are the structure constants of some Lie algebra G. 

These assumptions amount to defining a very general kind of chiral symmetry 

scheme corresponding to having a chiral algebra G @ G. The easiest way to see 

this is to form the conventional even-and-odd parity combinations of currents 

It is then simple to see that 

(A- 8) 

(A-9) 

(A. 10) 

and 

C ***‘(?,t), 
Jo! 

$” (J,t) 1 = +ifapy j:‘(z,t) “(2-T) + S.T. 

As noted, these currents close to two commuting algebras G and so they generate 

the product algebra G@ G. 

Paralleling our discussion of the one-current case, we begin by considering 

the single fermion matrix element 

(A. 11) 

(A. 12) 
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Taking the divergence of this expression yields 

uA(p’)[\mA - ‘,B) g”AJ-3 (q2) + q2hzB tq2q u,tp) = ’ (A. 15) 

and setting q2 = 0, implies for the normal symmetry case (i. e. , 2a! 

q2- 
lirn oq hABtq2) = O) 

“A - mB, AB \ga (O)=O (A. 16) 

What this says, of course, is that in the case of a normal symmetry the charge 

matrices giB(0) vanish except between states of equal mass, The corresponding 

equations for axial-vector currents between states of the same intrinsic parity are 

“A * mB, ) 5a! (0) = 0 gAB 
(A. 17) 

In order to present a simple derivation-for the case of a normal symmetry- 

that particle states belong to irreducible representations of the group (or algebra) 

in question, we shall restrict ourselves to the case of a set of vector currents 

closing to a semi-simple Lie algebra G. This amounts to ignoring the axial-vector 

currents in the G @ G algebra defined in Eq. (A. 8)) (A 0 9)) (A. 10) ; however, the re- 

sults are easily extendable. 

We begin by studying the time-ordered product 

<AIT(ji(q) ji(-k)) IB> = ~d4xd4ye+iq’xSik0y<A(T(j~(x) j L(y)) 1 B) (A. 18) 

The most general form this expression can take is where we have explicitly 

separated in covariant form the contribution of single fermion intermediate states: 

‘At@) g;c(q2) + cfh~,ts2) + q/’ “s;,tq2) > pf2+q2+2p’*q-m,” 
X 
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(&$B(k2) -kv hcB(k2) - k FPV,PCB (k2)) + 
V 

ci 2 yv AC (k2) -kvhic(k2) -kV upvs;c (k2)} 
ti-d+m, 

( 
p2+q2-2p-q-m: 

X (A. 19) 

I-la! 
y gCBtq2) + qph;,(s2) + qv Up’ ‘;B tq2)} 

I 

u,tP) + x;; tp’ , q; k, p) 

where XPv alp (p’ , q; k, p), defined in the obvious manner, amounts to the continuum 

contribution. Taking the divergence on 1-1, we have -in the usual way- 

(A. 20) 

If we substitute in Eq. (A. 20)) Eq. (A. 14) and (A. 19), set q2 = 0, and use the 

fact that at q2 = 0 (assuming no parity doubling of fermions) gic(0) is non- 

vanishing if and only if mA = mC, we finally obtain for qP = 0 = kV 

u,(p’) -)“(gtc( 0) $cB(k2) -&ctk2) $&to)) - kv(i&-$o) h;B(k2) r 
- hpA,(k2) g;BtO)) -kfvh(g&tO) s$Btk2) - $Ctk2) g&t”)il u,tp) 

” 

hV + lim q X c@(AB) =if,@yrA(p’) qp”.-o h ’ y ) -k hAB (k2) 

-k 
h 

ovh siB(k2) u,(p) 1 (A. 21) 

where p’ = p+ k. If, in addition, one takes kv=O, we see that if lim q Xhv 
q vwo h QNAB)=~ 

(or, in other words, if one-particle states saturate the commutator), then 

!$cBto) 
I 

= ifaprgLB to) (A. 22) 
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and so the charge matrices link only single-particle states which belong to the 

same irreducible representation of the charge algebra G. 

Summarizing, we have seen that the non-trivial normal symmetry case is 

equivalent to assumptions of the general form lim q2hiB(q2) = 0 and 

AV 
q2-+0 

lim q X 
qp-o A @,tAW = On 

Obviously similar arguments can be carried through 

for boson states with similar results. 

D. Non-Abelian Current Algebra-Goldstone Symmetry 

It is easy to see why the statement that particles fall into degenerate multi- 

plets corresponding irreducible representations of G must fail in the Goldstone 

case. If, as before, we define the Goldstone case by the assumption ” that 

there exist scalar mesons I$: > (or pseudo-scalar mesons legs > ) such that 

<@i ,ji(O)lO) = -iq’f S CYap ’ 

Eq. (A. 14) and Eq. (23) imply 

“A gzBto) = faG@ AB l 

a! 

(Similar results involving sums of masses follow for the axial-vector currents. ) 

The appropriate versions of Eq. (A. 19), (A.20), (A.21), and (A. 24), plus 

the assumption that the fermions of our theory have non-zero mass, tell us that 

one cannot require the charge matrices g :B (0) to satisfy the commutation rela- 

tions given in Eq. (A 0 22) o Hence, we have another important way in which the 

Goldstone case is quite different from the normal case. 

Obviously, in the general case for which a subalgebra H C G is of normal 

symmetry type and the remainder is of Goldstone type, then the usual symmetry 

statements hold only for H. 

(A. 23) 

(A. 24) 
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