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ABSTRACT 

An exact bound on the 7~‘-+ 2 y vertex function is derived. From it we are 

able to estimate bounds to the corrections to the vector dominance model, the 

anomalous constant S, and the asymptotic behavior of the form factor. A theorem 

is derived which states that the coefficient (K) of the axial current in the short 

distance expansion of two electromagnetic currents is finite if cese- --) l/S, but 

vanishes if (T e+e- falls faster. 

Interest in the two photon decay of the r” has intensified over the past few 

years as the focus of attention has shifted from the old vector meson dominance 

(VD) model’ to the more fashionable ideas of anomalies and light cone operator 

product expansions. 234 For example, last year Crewther2 showed that the 

anomalous constant S (whose size governs the two photon decay of a massless 

pion) can be related to R, the asymptotic ratio of oese- to that for Bhabha scat- 

tering, and K, the coefficient of the axial vector current, A’, in the short distance 

expansion of the product of the two electromagnetic currents (jk); (4s 2 KR). 5 

The power of this kind of analysis lies, of course, in the remarkable feature that 

* Supported in part by the U.S. Atomic Energy Commission 

j’ On leave from the Department of Physics, Stanford University, Stanford, 
California 94305. 

(Submitted to Phys. Rev. Letters) 



-2 - 

one can apparently glean information concerning the charge structure of the 

basic constituents of the electromagnetic current from a low energy decay process. 

For instance, in the usual quark model K = 1 and R = 2/3 so S = l/6 which differs 

for the empirical result by roughly a factor of 3. This has led Gell-Mann4 to 

extend the old quark model from the original three basic units to nine in such a 

way that R is now 2 and S = l/3 which is more in accord with experiment (K is 

still unity). In making such a comparison one is, of course, assuming a smooth 

continuation in the pion mass and this assumption has recently been questioned 

by some authors. 4 For example, Preparata4 has constructed a VD model whose 

continuum contributions are “controlled by the light cone” but which vanishes in 

the massless pion limit where only the anomaly survives. For the physical pion, 

the anomaly contributes only a small percentage of the amplitude and seems to 

be intimately connected to the corrections to the VD model. 

It is the purpose of the present paper to derive an exact inequality for the 

x0?? vertex function G from which several interesting results pertinent to these 

models can be derived. The inequality is a fairly straightforward one which 

follows from the Schwartz inequality and bounds G in terms of R and WI, one of 

the structure functions describing inelastic electron scattering from pions. These 

results can be summarized as follows: (a) an upper bound for the corrections to 

the VD model (which turns out to be relatively weak); (b) an upper bound on S, 

which depends somewhat on the extrapolation to zero pion mass; (c) a rigorous 

bound on the behavior of G as a function of the mass of. one of the photons (the 

other being held fixed), see Eq. (8) below; (d) a bound on K which is perilously 

close to 1; and (e) a theorem which, roughly speaking, states that K is finite if 

R vanishes (i. e. when Z3 for the photon is finite). 

The details of these assertions will be discussed below. First, to the derivation 

of the basic inequality. We begin by defining the form factor G(q2, k2) via the 
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equation 

G(q2, k2, E I*VpDPpqU - i d4xe”q’x < 0 I T[jCL(x)jv(0)] I rip(p)) > . (1) 

Here, q and k are the photon 4-momenta and p that of the pion (of mass p). 

When q2 < $u2 the imaginary part of G can be bounded using the Schwartz inequality; 

in the frame where p = 2 and i = g we have 

I ImG(q2,k2) I25 I < 0 I jx(0) 1 N > I20 (27r)46(4)(p N- k) 

(2) 
\\ 4 (4) X + 1 < N 1 jy(o) 1 n(P) ’ i2@‘0 6 (P,-P- 9) . 

Both sums in (2) define well-known invariant functions: the first is 2rk4 times 

the photon spectral function p(k2) whereas the second is 2n Wl (q2, k2). Often 

these functions are expressed in terms of total cross sections: for example, 

writing s = k2, 

and 

P(S) = 
Oese- (‘1 ‘- co R 
167~~~~ - 127r2s 

“Ttq2? ‘) 

(3) 

(4) 

where DT(q2, s) is the total transverse virtual photoabsorption cross section for 

pions. Note that only final states with Jp = l- contribute to both (T~+~- and aT. 

With these definitions we can express (2) in the form 

I ImG(q2, s) I 2 5 
4T2S2P (s)W, (s2, s) 

(s-p2-q2)2- N2p2 . 
(5) 

This inequality can best be exploited by writing dispersion relations for G(q2, k2) 
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in the variable k2 keeping q2 fixed. Below, we shall show that an unsubtracted 

form rigorously converges for q2 = 0 and almost certainly converges for q2 # 0, 

so, if there are no “arbitrary*! real parts to G, we conclude that 

03 
I G(q2,k2 15 2 s SP’ (s)wl’ (q2, s) ds 

4P2 
1 

(s-k2) [(s-/L~- q2)2- 4q2p2], 
(6) 

(a) Corrections to the VD model (lower bound for R): First consider the 

case where q2 = k2 = 0. G(0, 0) is directly related to the n” - 2y decay width (and 

thus, for massless pions, to the anomaly, S). The inequality (6) reduces to 

I G(O,O) I 5 1 

4n5/2,3/2 

ae+e- (‘) %$‘, ‘1 

I 

1’2 

S-/-i2 

ds . (7) 

Because only J =1 states contribute, neither of the cross sections can fall slower 

than l/s as s - 00, so the convergence of the integral is ensured. Now, for 

szs 0 f3? 1 Gev2, the spectrum of intermediate states is dominated by the vector 

mesons. Furthermore, isospin conservation allows us to restrict these states to 

be isoscalar only (thus raising the threshold to 9p2), the u external” photon being 

purely isovector (or vice-versa). Identifying these contributions as a generalization 

of the VD model allows us to express (7) in the form of a bound for the corrections 

to this model: 

(8) 

For simplicity (and in accord with current theoretical prejudices6) we have taken 

R to be a constant for s > so. We can estimate ~~(0, s) by projecting out the J = 1 

contribution from the total r7r” cross section, co. This is best done in terms of 
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W, ; for example, the contribution to the Jth partial wave is 

2 

w&J2, s) = y 
-4qCM 

/ 
4qCM ' 

W1 ts2, s , t) dJ,(t) dt (9) 

where W,(q2, s, t) is the imaginary part of the non-forward Compton scattering 

amplitude at momentum transfer Jt. Experimentally it is known that for the 

proton WI(0, s, t) behaves asymptotically like Wl(0, s) e bt where b is a constant. 

We can use the factorization of Regge amplitudes to estimate that W,(O, s) (a ao) 

is roughly 3/5 that for the proton and that b - 4 GeV/c -2 . Putting all this together 

we find that I G(0, 0)-GVl,(O, 0) I 5 0.19 R m(-&& . To see what this means we 

note that straightforward calculations give I G(0, 0 I = 0.27 GeV-’ and 

I GmtO, 0) I = 0.35 Gev-1 so the inequality is safely satisfied provided R 2 l/8, 

a condition met by both quark models as well as by experiment. Note that if 

R - mi/s rather than like a constant the inequality is satisfied provided 

m. 2 700 MeV. 

(b) Possible bounds for S: consider the inequality (7) in the limit where 

the “target” pion mass vanishes. We shall assume that ~~(0, s) does not change 

drastically in this limit, an assumption analogous to the one involved in the Adler- 

Weisberger sum rule. It is possible that such a continuation is smooth even though 

the continuation for G is not (as in ref. 4). In that case a useful bound on S can be 

obtained; we find I S I 5 0.6 + 0.3 l/2 R which is well satisfied by both quark 

models. If we were to take the somewhat unconventional viewpoint that S is to be 

identified with the high energy continuum contributions only (as suggested by the 

.work of ref. 4) then the inequality is more stringent, viz. I S I < 0.3 R1'2 which 

comes close to ruling out coloured quarks (e. g. for R = 2, I S I <, 0.42). 

(c) Bound on G(0,k2): Setting only q2 equal to zero in (6) leads to a bound 
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for G(0, k2): 

I G(0,k2)Is ,l 
4n5 2ck!3’2 

& 
-. 
s-k2 

(10) 

If we were to integrate only up to a finite value of s then it is clear that the 

integral behaves asymptotically like 1/k2. The asymptotic form of the integrand, 

however, is s -1/2 (&k2)-l which can be trivially integrated to give a l/,/ii2 

behavior for large k2. Thus G(0,k2) must fall at least as fast as 1/Jk2. A 

straightforward calculation along the lines used in (b) above leads to 

k2 
lim 0.3 (R/- k2)1’2GeV-1 . 
-c--to 

I G(0, k2) - G&O, k2) Is 

The inequality can also be exploited the other way around, i. e. by setting 

k2 = 0 in (6) rather than q2. The low-lying states now contain the form factors of 

the Vny vertex functions which are, of course, unknowns. However, by an argu- 

ment similar to the previous one, they certainly fall at least as fast as 1/Jk2. 

Using the scaling property of W1 (i. e. that, for s 2 so, 21im Wl(k2, s) = F+w) 
-k -LOO 

where W= 1-s/k2),6 we find that I G(0,k2) I 5 c I fvGv&0,k2) I + 0.045 R112/-k2. 
V 

The bound on the continuum contribution here is to be compared with a value of 

0.2/k2 for the VD model. 

Finally we note that if ae+,-(s) ‘s l/s2 rather than l/s then these bounds 

are improved by a factor l/&k2 (up to logarithms). 

(d) Bound on K: The constant K can be defined via the equal time commutator 2,7 

[j:(x), jjb(O;] = iKdabc l ijkAt6(3)(xJ + . . . (11) 

where a, b, c refer to SU(3) indices. The extra terms in (11) contain operators 

with quantum numbers differing from those of the pion. We can use Bjorken’s 

asymptotic I1 theorem” ’ to relate this commutator to the behavior of G(q2, k2) in 

the limit where q2 = k2 - 00: this lltheoreml’ requires that 
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lim 2 f7rK 

q2=k2-ca 

G(q2, k2) = T - 
q2 

(12) 

A bound on K can thus be obtained by taking the corresponding limit of (6). We 

first note that states with finite s (< so, say) give a contribution to the bound 

which behaves like l/q4 and so are not relevant. All that is required for the 

bound is the asymptotic behavior of the integrand; thus 

co 

f s2 f 

S/Y2 

IKII 2 lim 
(s) wy2 (s2, s) 

ds . 
q --L-co yT 

sO (s - s2J2 
(13) 

Recall that we only require the J= 1 contributions to WI and that these can be 

calculated from Eq. (9) provided we know W,(s, q2, t). For simplicity we again 

characterize its t-dependence by e bt , where now b can depend upon both q2 and s, 

although for small values of q2 (and s z so) it is known to be essentially s inde- 

pendent. We shall assume that when q2 - - ~0, b(q2) reaches some finite non-zero 

limit, bo. Such a behavior seems to be a consequence of both parton and light 

89 cone dominance models ‘where, for example, we find that Wl(q2, s, t) scales to a 

function FI(w, t) which has a non-trivial t-dependence (i. e. b. # 0). This is, of 

course, strongly supported by the existence of Fubini-type sum rules. Further 

support for the non-vanishing of b. can be found in ref. 9. With these assumptions 
a 

(13) can be expressed as 

IK’ 5 2x f7f 3 L (+‘)1’2 1 (l-x) FIi’2(x) dx . (14) 

It is clear that the integral is mostly sensitive to the behavior of Fl(x) near x = 0 

(i. e. the I1 Regge” region) so it is reasonable to use factorization to estimate that 
x small 

F; 64 --+ 3/5 F;(s). We thus find that5 I K I 5 1.3 (R/bo)1’2 where b. is to 

be expressed in GeVv2. Taking R=2 and b. = 4 (as in real yp scattering) leads to 
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I K I 2 0.92 which, if taken seriously, would rule out the usual kinds of quark 

models. In fact several authors’ believe that b. < b (q2 = 0). Adapting their 

arguments we can estimate b. from rp and pp scattering; we find b. = 3 so that 

the bound becomes I K I 5 0.75 R l/2 which is satisfied (just!) by the new quark 

model (but not by the old one). 
0 

(e) Theorem for K: If $ w,ts2, s, t) dt scales to a finite function F(w) 
.-a0 

whose growth at large o is less than w2, and if p(s) falls asymptotically like l/s,l’ 

then K is finite. However, if P(S) falls faster than l/s then K vanishes. 

The proof of this theorem follows almost immediately from Eqs. (9) and 

(13), for, together these give 

03 
IKI< C lim q2, s ~1/2p) s1/2 (3-P) 

ds 
q2~~~ “so ts -q2j3 

(15) 

where C is a constant and p(s) is taken to behave like l/s’ for s - *. Trans- 

forming (15) to the scaling variable w leads to 

ccl 

IKII C lim (q2J1i2t1-P) 
/ 

&2 (w)(~~~)m-8) 

l-so/q2 cd3 
dw (16) 

-q2- 

When /3 = 1 the right hand side is a well-defined constant (whose size we attempted 

to estimate in (d) above) whereas if @ < 1, it clearly vanishes l3 QED. 

Note that if the conditions of this theorem are met then according to the 

Crewther relation2, when /3 < 1, S vanishes. Such a case has been examined by 

Adler et al. 7 who investigated the Crewther analysis in the Gell-Mann-Low limit 

of QED (where Z3 is finite, so @ < 1) and found the situation inconsistent. It 
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would appear from our work that if a theory has a finite Z3 and an anomaly 

then the Crewther analysis will break down unless that theory implies a remark- 

able behavior in the large t non-forward Compton scattering of massive photons. 
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