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ABSTRACT 

It is shown that the asymptotic multiplicity distribution approaches a 

Gaussian distribution. The agreement with the experimental data indicates that 

the higher correlations should not be so strong. 
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Charged multiplicity distribution data is easily obtained in high energy 

collision experiments and has been discussed extensively in the literature. The 

existence of correlations in the pp collision data up to 300 GeV clearly excludes 

the Poisson distribution, the simplest possible distribution. Nevertheless, the 

data shows a simple form for the multiplicity distribution and suggests that 

there is some regularity behind it. In this note, we show that the form of the 

asymptotic distribution is Gaussian, and that it indicates a weak correlation 

among the produced particles. 

The basis of the analysis is a theorem[2,3] which states that if the higher 

correlations are not too strong (the precise meaning is specified later[4]), the 

asymptotic distribution approaches the normal (Gaussian) distribution. This is 

an analogue of the central limit theorem in statistics and probability theory[5]. 

More explicitly, the normalized charged multiplicity distribution can be expressed 

where all parameters are determined in terms of the cumulants ~~ or the cor- 

relation moments fr defined by[5] 

2 eintPn = exp[sl $1 = exp[gi fr’erijt-l)r], 
n=O 

(1) 

(2) 

i. e. 



1 K3 
m = K~-~T 

and 

“3&4,3Q-2,3Q = ’ ’ 
I? 3. 

The cumulants, the correlation moments, and the dispersion moments (n-x)k 

are related to each other by 

K1 = fl = 6 , K2 = fl + f2 = (n-$2 , 

K3 
-3 = fl +3f2 + f3 = (n-n) , 

K4 = fl + 7f2 + 6f3 + f4 = (n-E)4 , etc. 

The assumptions which lead to Eqs. (1) and (3) are [Z, 31 that: a) ~~ + 00, 

b) the ratio K~/K~ (Q > 2) are bounded[4], and c) I (n-5)/K, I < 7r. 

At extremely high energy, therefore, we expect to have a Gaussian dis- 

tribu tion 

‘n - 
1 

s--m fip 
exp - -t!?Id. 

[ I 2Y2 

(3) 

(4) 

(5) 
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fT 
B= 

inel 
$F “m 

- G 
d 

(n-E) 

(6) 

(7) 

where (T m stands for the maximum value of the distribution function[6]. However, 

it can be recognized immediately that the convergence to the limiting form, 

Eq. (5)-(8), is rather slow. The reason for this is that the normal distribution 

with j3 = y is normalized in the internal (- w, m) and the integral over the unphysical 

internal (- 00, 0) is not negligible at the present energy. Moreover, 

the convergence of the parameters j? and y to the asymptotic value 

not the same as is seen from Eq. (3). 

the speed of 

In order to obtain a more effective formula with predictive power, we 

impose the normalization condition[?‘, 83 on Eq. (5), 

co 00 

1 = e- t2/2 & 
0 

i. e. 

e = 
m 

The function g(x) is depicted in Figure 1. It is easily observed that 

1 < y/P < 2 

where the lower (upper) bound corresponds to the limit r/m - O(m) . 

(9) 

(10) 

(11) 



-5- 

Assuming the asymptotic form (5) and the condition (lo), we analyze the 

experimental data with the following procedures: 

1. Consider the negative charged multiplicity, n = rich-1. 
2 

2. Find the modal. multiplicity m and the maximum cross section om 

from the three largest cross sections using the Gaussian form. If the middle 

point of the three corresponds to the largest, as is the case for EL L 200 GeV, 

the parabolla approximation is good enough. (We avoid using the n- = 0 point 

because of an ambiguity due to the elastic cross section. ) Disregard the y 

obtained here. 

3. Determine p by Eq. (7) and y by Eq. (10) or Figure 1. 

4. Plot logIo(un /Cm ) against loglOe (n- -m-)2/2y2. 

5. The data points should approach the asymptotic limit, the straight line 

with the gradient - 1 . 

The last step may be replaced by: 

5’. Plot loglo(an /orn ) against (n--m-) 
2 2 . Determine y by the gradient 

- - 
of an expected straight line and compare the result with that obtained in step 4. 

The result of the analysis based on the procedures l-5 is shown in Figure 2 

and Table 1. Some discussion is in order. 

i) While the data points for 50 GeV given in Figure 2 are slightly off the 

expected asymptotic line; those for 69-300 GeV fall quite well on it. Even for 

50 GeV, the data falls on a straight line. Thus, a slight change of the slope 

parameter y within its experimental error seems to restore the agreement 

between the data and prediction. 

ii) The asymptotic relation (7) is well satisfied already at the present energy, 

while the others, Eqs. (6) and (8) are not. In order to understand the difference 
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in the speed of convergence, we estimate the parameters /3 and y using Eq. (3) 

and the experimental data for the cumulants. At 303 GeV, we obtain 

-J- = 1 + (0.07 f 0.03) 

6 and 

2-m = 1 + (0.18 zt 0.08) . 

5 

This is consistent with the values given in Table 1. 

iii) The relation (7) is asymptotically equivalent to that obtained by 

Weisberger[S], fi2 P;;; = l/G although the convergence to (7) seems faster. 

iv) The experimental values for ( y/m, P/m) are moving down on the curve 

of Fig. 1 as energy increases. This seems to indicate that the data points are 

moving towards the limit y/m - 0 and y/P --c 1. (This case may be called 

the weak two-body correlation model [4]. ) 

v) However, the possibility of having the condition 

Y ms,, aZo 

is not excluded. If that is the case, we obtain the KNO scaling law[lO] with the 

Gaussian scaling function, 

mP = 1 
n 

fig@) 

(13) 

(14) 

vi) The step 5 is preferable to 5’since the asymptotic form (1) or (5) is 

the best approximation around the modal point. Besides, the predictive power 

is more evident if step 5 is used. If the accuracy of experimental data at higher 
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energies is improved, we may be able to detect the polynomial term which we 

have neglected. In particular, the a3 term, which is of the order O(~/JK~), may 

be detected from the asymmetry of the curve. (The present accuracy does not 

permit us to detect such asymmetry. ) 
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Figure Captions 

Figure 1 

Figure 2 

The curve for B/m = g(y/m), Eq. (10). 

The negative charge multiplicity distribution. The solid line repre- 

sents the expected asymptotic limit. 

Table Caption 

Table 1 The values for the parameters. 
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