
EVALUATION OF SYNCHROTRON RADIATION INTEGRALS* 
R. H. Helm, M. J. Lee, and P. L. Morton 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94305 

M. Sands 

University of California, Santa Cruz, California 95060 

Introduction 

Many of the important properties of the stored beam in 
an electron storage ring are determined by integrals, 1 taken 
around the whole ring, of various characteristic functions of 
the guide field. Some of the integrals are handled easily, but 
a few are usually estimated graphically - particularly for 
alternating-gradient guide fields. This report describes a 
convenient method for evaluating numerically these recalci- 
trant integrals. 

In the usual linear approximation, the integrals we wish 
to!consider arc most conveniently expressed in terms of four 
(somewhat redundant) functions of the azimuthal coordinates: 
p(s) the radius of curvature of the design orbit, n the field in- 
dex, p(s) the radial betatro2 function and q(s) the off-energy 
(or “dispersion”) function. 

The Integrals 

We restrict our attention to guide fields made up of a 
number of magnetic segments - magnets or straight sections. 
The functions p and n are assumed to have constant values 
within a given magnet, but vary abruptly at the entrance and 
exit boundaries. The integrals of interest are given by: 

11= $(?h’)ds = &+ <‘II>. 
1 

1 
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We have used the notation <f>. for the mean value off in the 
ith segment whose length is ii? The function H(s) is defined 
by 

(6) 

with PI = d@/ds, and T’ = dT/ds. It should be noted rightaway 
that at least one factor of l/p appears in each integral; so the 
straight sections or pure quadrupoles make no contribution. 

The integrals I2 and I3 are, evidently, simple sums. 
Our purpose is to show that the factors <T>i, <nv/p3>i, and 
<H>l that appear in the remaining integrals can be expressed 
as relatively simple algebraic expressions involving the 
values of P and 77 together with their derivatives only at the 
segment boundaries. 

The Beam Parameters 

The various performance parameters of storage rings that 
can be expressed in terms of these integrals are as follows. 1 

1. The dilation factor 01, also known as the f’momentum 
compaction, ” is (Y = II/L where L is the length of the design 
orbit. 
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2. The energy loss Uo in one revolution irom synchrotron 
radiation is 

U. = 

where E. is the nominal energy of the stored electrons, re is 
the classical electron radius, and mc2 is the electron rest 
energy. 
3. The damping of radial betatron oscillation and of energy 
oscillations are proportional to the damping partition factors 
Jx and JE . In terms of our integrals: ., 

‘4 Jx=l- -; 
‘2 

Je=2+4. 
‘2 

Alternatively, we may write the exponential damping coeffi- 
cients 01~’ c~v and oe as 0 
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where c is the velocity of light. 

4. The distribution of energies induced by quantum emission 
in a stored beam is - under stationary ccmditions - charac- 
terized by the root-mean-square energy spread we. We may 

where fi/mc is the reduced Compton wavelength. 

5. The quantum excited radial betatron oscillations will, 
under stationary conditions, have a local root-mean-square 
displacement ofi given by 

(11) 

Normal Boundary Magnet 

We consider now the evaluation of <T>, <nT/p3> and <H> 
for a particular magnet of length 1. For this section we as- 
sume that the fringe field boundaries are normal to 6, and that 
within the magnet p and n are constant. Under these assump- 
tions the values of 7) and p inside the magnet may be expressed 
in terms of the values of these functions and their derivatives 
at the magnet entrance: 

T=770C+r)b T; S+-l_(l 
ok2 

- C) (12) 

P = PoC2 cs S2 

-2aok+ ‘O-2 
(13) 

where k2 = (l-n)/p2, C = cos ks, S = sin ks, and s is the dis- 
tance from the entrance edge of the magnet. The quantity k2 
ic the “restoring force” constant of the par? 
A magnet is focusing if k2 > 0 and k = (l-n)l P 

le oscillations. 
2/p, and is de- 

focusing if k2<0andk= i(n-1)1/2/p. 
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The value of <rj> can be found by integrating Eq. 
ret tly which yields 

sinkQ 1-cos ke 1 ke-sink0. 
<rl(r10~77~)> = 770 --g-- ‘T(f) --&-’ F k3n 

(12) di- APPENDIX 

Calculation of Effects of Non-Normal Boundaries 

(14) The local gradients which arise from the non-normal 
boundaries perturb the slopes of the TJ and P functions and also 
contribute to the <nT/P3> integral through its explicit depen- 
dence of n(s). To calculate these effects, consider an en- 
trance boundary and assume that the fringe field varies from 
B = 0 to B = BO in a very short distance, 2~; i.e., B(sI- e)=O, 
B(sl+ e) = Bo. The gradient index associated with the bound- 
ary rotation $ is approximated by 

For a normal boundary magnet the variation of n in the fringe 
field boundary does not contribute to the value of <n?/p3> 
(see Appendix). Thus 

(3) = J$ <77> 

To find the value of <H> first we rewrite Eq. (6), the defini- 
tion of H, in a more convenient form: 

H = yrj2 + 2~0717’ + p7)12 (16) 
where cy, y and 7’ are given by2 

Cy = - + = BOkCS + (uo(C2 - S2) - yo$- 

1 y= $1+a2) = pok2s2 + 2oOkCS + yoC2 

(19) 

These expressions, together with Eqs. (12) and (13) for r) 
and p, can now be substituted into Eq. (16) for H to give a 
form that can be straight-forwardly integrated. After some 
manipulations, the result becomes: 

n2 
+?i 70 

3k.Q-4sink!+sinkecoske 

PU i 2k5m3 

( 

2 

-cx 0 

1-c0sk.e) +p ke-coskesinti 

k413 0 2k3m3 J 
P-J) 

Non-Normal Boundary Magnet 

If the magnet boundaries are not normal to the direction 
of the design orbit, the above results are modified by the 
local gradients seen by a particle in passing through the fringe 
field at an angle (see Appendix): 

<77)= <T (7704 i)> 

<y> =-$ <V(1(770971i)> + *P70tan@li~2 tan@2) 

<H>= (H(?o,?i,Po,Pi)> 
where 

To “;=‘7b+ p tan ql; 

7)~ = 70 cos M+qi 
sinke 1 -+-+1-coskq; k 

pk 

(21) 

(22) 

(23) 

The boundary rotation at the magnet entrance is +I, and at 
the exit I#J~. Positive $J means radial defocusing at either 
entrance or exit of the magnet. 
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(A-1) 

In the familiar impulse approximation for edge focusing, we 
assume that 11 and P are unchanged in going through the fringe 
field. The changes in 7’ and PI are 

7; = Vb+ P?,/P,) tan 9, (A-2) 

Pi = Pb f 2(Po/Po) Ian @1 (A-3) 

where p. is the bending radius in the interior of the magnet. 

The increment of the integral <nT/p3> in the same im- 
pulse approximation is 

S<nq/P3> = 
To tan$ 
____ 

/ P(Bp12 -E 

e&i ds = To ‘nn$1 
ds 2Pp; 

(A-4) 

We employ the usual convention for the signs of the entrance 
and exit boundary ang!es;(positive + means radial defocusing 
at either entrance or exit). See Fig. A-l. The results for 
the exit boundary are completely analogous. 
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FIG. A-l--Field Boundaries for a bending magnet. 
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