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ABSTRACT 

We calculate the total cross section for e+e- -+e+e-W+W-, a 

process which proceeds via two virtual photons. If the intermediate 

boson <w”) has no anomalous magnetic moment and pointlike vertices, 

this process can yield a larger cross section than the one-photon 

process e+e- -, W+W- at sufficiently high energies. Otherwise, the 

one-photon mechanism is dominant. Numerical results for several 

values of m w and the magnetic moment are presented. The effect of 

the Weinberg theory is shown to be negligible in these results. 
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I. INTRODUCTION 

In this note we consider the problem of colliding electron beam production 

of intermediate boson W-3 pairs if such bosons exist. This is an example of 

a fundamental process which canbe studied for the first time by colliding beam 

machines with high energies and luminosities that now exist or are under 

construction. ’ The lowest-order process which proceeds via annihilation into 

one virtual photon has been well studied (e’e- --) w’w-). 2 Here we examine the 

higher-order mechanism (ee - -y*Y*ee - eeW+W- ) which employs two virtual 

photons. Several groups 3-5 have studied such two-photon processes in other 

cases (e.g., pion pair production) and found that their cross sections exceeded 

the one-photon processes at reasonable colliding beam energies (at E - 1 GeV 

for pions). It is reasonable to ask whether such a circumstance of a large ratio 

of the two-photon to the one-photon process also happens in the case of vector 

bosons. Our result is that it can if the W boson has no anomalous magnetic 

moment, but not for nonzero moment. The W boson is assumed to have point- 

like form factors. The effects of the Weinberg theory6 of weak and electro- 

magnetic interactions on this process are shown to be negligible. In Section II 

the two-photon cross section is calculated and the results are displayed numeri- 

cally for different values of mw and the anomalous magnetic moment and are 

compared to the one-photon process. The modifications to the calculation due 

to the Weinberg theory are discussed in Section III. 

II. TWO-PHOTON CROSS SECTION FOR W-PAIR PRODUCTION 

In Fig. 1 are shown the diagrams which contribute to ee - eeW’W- to 

order (u4 in the cross section. One contrasts them with the lowest order 

diagrams for e+e- - w+w-, shown in Fig. 2, which proceeds via one virtual 

photon. Very simple considerations reveal the striking difference between 
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these two processes. In Fig. 2 the photon has k2 = 4E2 = 4W2 > 0, which is 

large and timelike . > however, in Fig. 1 for either photon 

-k2 G 2EE’ (1- cos 0’) -t m’2(E-E’)2/EE’ , 

where 8 t is the angle between the initial and final electrons, and E (El) is the 

initial (final) electron energy in the lab. If the electrons are detected very 

close to the forward direction, cos 0 1 z 1 and k2 s -mi, which is small and 

spacelike. In fact, the photons are essentially real (k2 G 0) and one can 

consider the calculation of these diagrams in two parts: a) study the spectrum 

of “almost real” photons emitted by the electrons, b) calculate the process 

YY - w+w-. This general approach, clearly the Weizsacker-Williams7 approxi- 

mation in the context of relativistic quantum theory, has been investigated by 

many people. 3-5 In particular, Brodsky, Kinoshita, and Terazawa3 have 

given an exhaustive discussion of the general two-photon process ee -eey*y*-eeX, 

and have compared exact calculations with calculations in this “equivalent 

photon” approximation (e. g. , for ee + ee7r”) . They have shown that the approxi- 

mation is a very good one (erring by the order of 10%) and becomes better for a 

more massive final state X. This is reasonable since the equivalent photon 

approach is, roughly speaking, an expansion in k2/mE z rnz/rng . 

Here we simply draw upon the general results of Brodsky et al. applied to -- 

the situation at hand. Their central result is that 

u ee+eeX(E) = 2 (if (an EheJ2J4E2 s uwwx(s) f ($$ (1) 
5th 

where s th is the threshold value of s and 

f(x) = (2+x2)2 !J.n l/x - (1-x2) (3+x2) . (2) 
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Our problem, then, is to determine o r/ -wtw- (s). We assume that the W 

boson obeys the standard quantum electrodynamics of massive vector bosons 

as given by Lee and Yang8 and has no strong interactions (i. e. , pointlike form 

factors). The W boson has a magnetic moment & = I+ K in units of e/2mW; 

the quadrupole moment is here not arbitrary but given by Q = -eK /m& . 

Figure 3 gives the relevant diagrams and notation. 9 Note that with the bosons 

of momenta k k q q are associated polarization vectors E P v CL! P 
1’ 2’ 1’ 2 1’ 3’ 77lJ2 

respectively. The photon-photon center-of-mass frame is chosen for conven- 

ience; as usual, s = (kl+k2)2 = (ql+q2)2, and 6 is the angle between q1 and 

kl in this frame. E is the colliding beam energy (p; = pi = E) in the @. 

The S-matrix element is then 

-ie 2 
Sfi = o 1/2 (2~) 4 d4) b1+q2-kl-k2) +;+$ Mpvcrp 

( 2k”lzk; 2q; 2q2) 
c-9 

where 

and 

Md 
WW gaptql+k2-q2)CL - g al-l 

u 

-gp” + 
@2-q2)poi2-q2) 

Ii 

2 

-gpp oi,-s,LM- (Al-- 1) 91 C 
mW 

a! 2 2 
4,-s,) -“w I 

gp#2-2”2)v 

-g, t-k2-q2) CA+ (Jte-ml, 
C ] + gpv [q2dl+ GV(k2-q2)lu} p 

is the direct term (Fig. 3a). Also, 

(4) 
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is the crossed term (Fig. 3b) and 

MSg pvcq = 2 g&%k!p - g pa g up - g/&m! 

is the seagull contribution (Fig. 3c) required by Bose statistics and gauge 

invariance, k’M 
1 PVcLP 

=kVM 
2 WJaP 

= 0. This requirement is explicitly satisfied 

by the above tensor. 

Proceeding to the cross section in the standard way, one gets 

oyy&v+w-(s) - 2s 
-id (l-$r’~‘dcos 0 Iffi,12 (5) 

where 

l~fi12=a C p v o! p /A’ v’ a!’ 0’ 
E 1e2171n 2 E 1 e2 71 772 Mpvc2p Mp9J ‘Cl!‘@ (6) 

spins 

has been summed over final spins and averaged over initial ones. This can 

be expressed as 

(7) 
where E denotes that the supplementary conditions ql. nl= q2*n2 = 0 have been 

P used to set terms proportional to q; or q2 to zero, and also, for the photons, 

kl+ E l=k2. e2 = 0 have been used to set terms with PI and ki to zero. There is 

a subtlety here responsible for the extra term which is explained further in the 

Appendix. Essentially, the condition k. E = 0 cannot be naively applied to both 

photons in a two-photon process without some care being taken to obtain a 

correct and truly gauge-invariant result. 

To obtain an explicit expression for I mfi I 2, the algebraic computer 

program “ReduceJJ by A. C. Hearn 10 was used. The necessity of this is 

evident from the complexity of Eq. (4). The reader is referred to the work of 
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Kim and Tsai’ for the complete expression for (T yy-w+w- ’ Here it suffices 

to note that 

2 CY s 
tK # 1) , 

a2 
yyy--Mltw- - 2 (K = 1) (8) 

I”W 
yy-wtw- -2 

“W 

to illustrate the behavior of the cross section. The full result will be used in 

the numerical integration required to derive the accurate cross sections. 

Now the expression for cr yy~w+w-(s), Eq. (5)s can be put into Eq. (1) to 

give the complete expression for the cross section of ee -eeflW-. We would 

like this answer in the lab frame for convenience. This is not difficult since 

“ry +@w-ts) i even though calculated in the photon-photon center-of-mass 

frame, is a function only of s and is therefore Lorentz invariant. Thus 

CT - $ (In E/rne,ZSE2 ds ee- eeW+W-(E) = 4m2 z f (g) (l-$jI’y d cos 8 lmfi12 

W 

(9) 

where f(x) was given in Eq. (2). This is the desired result. To investigate its 

behavior, it is necessary to integrate out the complicated expression for I mfi I 2 

obtained earlier. However, to get a qualitative idea, we use the leading 

dependence given in Eq. (8). This yields (K # 1) 

a2yF) - a4 (In E/m,) 2 E2 -J- I (mW/E) + terms of lower order in E (10) 
“W 

where 

a 

1 
ItY) = x (l- Y 

2 2 l/2 
/x ) f(x) dx (11) _ 

IfE>>mW, I(mW/E) PI(O) = 0.4. Note that, except for a factor of (Qn E/me)2/m& 

this is a function only of E/mW. This should be compared with the one-photon 
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prediction of 

Uee-W+W- (E) = (TQ2p3/3y2111;) [y4K2+ (K 2+3K+l)y2+3/4] (12) 

as given by Tsai and Hearn, 2 where y = E/mW, fl z (l-y -2 l/2 ) . Note that, 

if K =o, cly - 7rcz2/3m&, a constant at high energy, whereas if K # 0, 

QY 
--a2E2 2 K /%n& From Eq. (10) it seems likely that g 

w 
would have 

no chance to overtake u 
1-Y 

unless K = 0. This surmise must be examined 

quantitatively, of tour se. The integrations were done using the multidimensional 

Monte Carlo integration routine “Shep” by G. C. Sheppey. The results are shown 

in Figs. 4 - 6 for various values of m W and K . Note that, if K = 0 and mW - 2 GeV, 

then u 
2Y 

overtakes P 
1Y 

at E - 30 GeV and is a significant fraction at lower 

energies. But for nonzero K , u 
2Y 

is always a couple of orders of magnitude 

lower than al . 

III. EFFECT OF WEINBERG THEORY 

In Fig. 7 are shown some of the diagrams contributed in lowest order, in 

addition to those of Fig. 1, by the Weinberg theory. 6 This is a gauge theory 

with spontaneously broken symmetries which renders the weak interactions 

finite and unifies them with electromagnetic interactions, but at the price of 

additional massive neutral vector (Z) and scalar (@) fields. Here only the Z 

bosons contribute since the coupling of 4 to the leptons is proportional to the 

lepton mass. A detailed calculation of the cross section is not our purpose 

here, but simply to show that these corrections are negligible. 

The point can be made with any part of the Weinberg corrections, say, 

Fig. 7a which contributes a term proportional to 

22 
y [G@g) Y, t@-+ cp+) “@2)-J L 

pl gvv’ -kiki’/mi 

kf -mg 
M 

(13) 
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where g2/8mw = G/$2, P*= (l+y5)/2, and c, d are constants (c=2(1-R), d=l-2R; 

R = mk/rni) . Evidently, if ki/rnl<< 1, this term is of order l/m: compared 

to purely electromagnetic ones. A simple estimate of the ratio of differential 

cross sections of scattered electrons forward versus at large angle shows that 

nearly all events involve electron scattering forward and so lki I s rnz; also 

mZ’mW N 40 GeV in the Weinberg theory. Thus these additional terms do 

not contribute significantly. 

The tensor M 
clvap 

has the same form for ZW+W- and yW+W- vertices, 

except in the Weinberg theory K is constrained to be 1, that is, a Yang-Mills 11 

type vertex. It should be noted that, at infinitely high energies, the additional 

diagrams will probably prevent the cross section from violating the unitarity 

bound since the ZW+W- and yW+W- vertices have opposite signs. In the one- 

photon case, Weinberg showed6 that o cc l/E2 eventually. 
1Y M 

To resolve this 

question in the present case will not be essayed her’e. 

IV. CONCLUSION 

In the experimental quest for the elusive intermediate boson the two-photon 

process here discussed may not be without significance. For the special case 

of K = 0, we have noted its role. In this case, a luminosity of 10 32 crns2 set-’ 

would give -10-l counts set -1 of these events at E - 20 GeV and m w = 2 GeV. 

Admittedly, for a particle with such a large mass (if, that is, it exists) not to 

have an anomalous moment is hard to believe. Indeed, as Weinberg and Kim 

and Tsai have remarked, 6,13 
K = 1 would assure that the W Compton scattering 

would satisfy a Drell-Hearn 12 sum rule. This leads to an interesting point. If 

the W indeed does have strong interactions and is described by form factors 

that decrease rapidly with q2, the two-photon process might indeed dominate 

the one-photon by virtue of its soft photons. On the other hand, one would expect 
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such W’s to be, for instance, electroproduced off protons; Kogut 14 has shown 

that one could probe in this way up to mW - 5 GeV at SLAC energies. If these 

W’s are more massive still, the two-photon process would play a useful role 

in searching for them and in setting limits on their mass and strong interactions. 
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APPENDIX 

Consider, for simplicity, the case of the production of a pair of spin 0 

bosons. 15 The amplitude is proportional to e’ E ’ M 1 2 /!Lv’ where 

M =- 
t2ql-kl) t&,-2s,), (2ql-k2), (kl-2q2& 

PV 2k2 - q2 2kl- q2 - 2g P (A. 1) 

which satisfies k! M 
1 PV 

= k” M 
2 PV 

= 0 explicitly. Now apply the subsidiary con- 

ditions kl. E 1 = k2. E 2 = 0; then (dropping an overall factor of 2) 

ti pv~~+T!g!$.E 
2’ 2 1’ 2 - g/..lv (A. 2) 

and 

M =G ‘k 
w PV - ‘z 2v 

(A* 3) 

so that 

k”l’i;I,, = k2v , k”%i =k 
2w W’ (A. 4) 

which is, by itself, “pseudo-gauge-invariant” even though E’k’% 12 /.lv 
= eVk%% 

2 1 c”v=O* 

NOW M 
PV 

M” = %IpV%” - 2, so dropping both k 
- w 

and k 2v (i.e., using both 

subsidiary conditions) results in an error in the cross section. It is easily 

verified that setting either k 
l/.Zk2v to zero will give the correct answer. 
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Alternatively, use the full expression for the summation 

VU’ 
k;k; ’ 

2+ 

k;‘-,” ’ + k;‘$ 

05*77) 
k2’77 

MM 
pv p’v’ 

(A. 5) 

where r] = (1, 0, 0,O) is a unit timelike vector. On the rhs, tedious calculation 

verifies that 

(A. 6) 

so that the gauge terms in Z C?C” ” compensate” for the “gauge terms” omitted 

in I%. It is precisely the conservation of the current that enforces this. No 

such problem exists for the massive vector field since the gauge freedom has 

been removed. Precisely analogous results to the above are found for M 
WV 

where now p%I 
1 WQP 

=-2k g 2v crp and k” G 
2 WQP = -2kwgap are the analogous of 

the J’pseudo-gauge-invarianceJJ statements in Eq. (A. 4). Then follows 
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1. Diagrams for the two-photon process ee + eeW+W-: (a) direct, (b) crossed, 

(c) seagull. 

2. 

3. 

4. 

5. 

6. 

7. 

Diagram for the one-photon process e’e- - w+w-. 

Diagrams for the process my -L W’ W-: (a) direct, (b) crossed,(c) seagull. 

Total cross sections for c 
W 

and g 
2Y 

when K = 0: (a) mW=2 GeV, 

(b) mw= 5 GeV, (c) mW= 10 GeV. Note: in (c) the scale on the left refers 

to o1y and the scale on the right refers to @ 
2Y’ 

Total cross sections for g 
1Y 

and o 2y when K = 1: (a) mW = 2 GeV, 

03 mW =5 GeV, (c) mW = 10 GeV. Note: the scale on the left refers to 

% 
and the scale on the right refers to (T . 

Total cross sections for CT 
2.Y 

when mW=;h/GeV and K =0, I, 2. 

Some of the diagrams contributed to the two-photon process by the 

FIGURE CAPTIONS 

Weinberg theory. 
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