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ABSTRACT 

An attempt is made to apply a light cone dominance technique to the deep 

inelastic el ec troproduc tion of pions. A scaling law is derived which is in 

agreement with preliminary data. 
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The structure of current commutators near the light cone has provided 

an illuminating basis for the description of the scaling phenomena observed in 

deep inelastic electron-nucleon scattering experiments. [I] The present -paper 

is devoted to an attempt to apply such techniques to the special case where pions 

are electroproduced from nucleons. [2] Such a study is rather timely since pre- 

liminary data have already been reported and it is likely that more extensive 

data on this process will be forthcoming during the coming year. [3] Although 

this recent data is rather scant, we shall show that a naive application of light 

cone techniques gives a good description of the scaling phenomena thus far 

observed. Although it is not obvious that the structure of commutators near the 

light cone dominates such processes, we feel that it is still worth entertaining 

and investigating such a possibility in view of the rather limited application of 

such techniques to realistic experimental situations. We shall say more of this 

below. 

We begin by discussing the exclusive process where the final hadronic state 

consists of a pion and a nucleon only. The generalization to the inclusive case 

where the pion alone is detected is straightforward. In order to state our results 

in a form easily accessible to experiment we must first discuss the general 

structure of the cross section. In the center-of-mass (CM) system of the hadrons, 

the differential cross section can be expressed in terms of an equivalent virtual 

photoproduction cross section[4] 

da 
m = 
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where kP and qP are, respectively, the pion and photon four-momenta and W is 

the total CM energy; M is the nucleon mass and E represents the polarization of 

the virtual photon: 

1 _ W2-q2) 
-1 

E 
q2 

u and Be are the laboratory (LAB) frame values of the electron energy loss and 

scattering angle, respectively; the tensor T luv defined by TPV = MPMV* where 

MP’ < 
7rp’ I jP I p > and jP is the electromagnetic current operator, contains the 

interesting hadron-dynamics, and is to be expressed in the LAB system for use 

in Eq. (1). The z-axis is defined to be coincident with the direction of q, whilst 

the electrons define the xy plane. Thus all of the $ (azimuthal) dependence is 

contained in (T,-Tyy) - cos2@ and Txz- cos$. In what follows we shall limit 

ourselves to the case where the particle spins are unobserved. In terms of 

do/da, the measured electron cross section is 

d3a E’ (v2-q2+ do 
dE’dQ’dQ = -7&F 1-E ZIG2 

27f cl 
(3) 

The main result of this paper can be summarized as follows: in the deep 

inelastic limit, i.e. when q2 --c -03 with w = -2Mv/q2 fixed, the TPV become 

functions of w and t 3 (k-~r)~, only. Hence in this limit, 

w2 g r W 4 da dt - F(w, t) . (4) 

4 do 
In other words, asymptotically, the combination W dt loses all dependence 

upon q2, Q and E , and becomes predominantly transverse in character. We now 

attempt to motivate these assertions. 
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Using the standard IS2 reduction formalism together with PCAC allows 

one to express Mp in the following way 

f7r”/d = k” Cpv + El-l 

where 

C E i 
PV / 

d4x eiq'x 
< P' 1 8(X0) [j,Jx), Av(0)] I p > 

and 

Ep f 
/ 

d4x eiq’x < P’1 ~(xo)Lj~(xL AO(0)] I p > 

(5) 

(6) 

(7) 

Here, Ap represents the weak axial vector current, and f, the pion decay constant, 

and we have set k2 = 0. We now use the null-plane version of the Bjorken 

‘1 theorem”[5]; to this end we introduce light cone variables which, for an arbitrary 

vector at are defined as follows: a* = -- j2 (a0 * aZ) and g1 = (ax, ay). The 

theorem then states that, in the limit q - 00 with q,, q 1 , p and p’ fixed, 

( P’ I d(x+)[jJx),Av (0)] I P > + O(l/q )2 . (8) 

We shall refer to the commutator that governs this limit as a null-plane com- 

mutator since causality requires that x 
-1 

= 0 where x+= 0 (leaving x arbitrary 

in general). This theorem can easily be conjectured by observing that causality 

allows the step function 6 (x0) occurring in Eq. (6) to be replaced by 6 (x,). A 

straightforward application of Fourier transform techniques then leads to the 

series in Eq. (8). 

If we work in the LAB (where q. = Y and p = 0) then the limit implicit in N N 

(8) corresponds precisely to the usual Bjorken limit since q- -@v - * and 

q+ - $2/w which is to be kept fixed. Furthermore with p and p’ fixed (i. e. 

fixed t) 
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kvC - 4~cp+ - -Lp - J 
d4x e iq’x 

PV < P' 1 ++)[jJx),A+(O)] I p > 

Thus, in this limit 

f7r”p -E-L. 
P P 

Now, apart from Schwinger terms, causality requires the commutators 

to have the following form 

[j P (x) A (O)] 6(x ) = x (0) S(4)(x) ’ 0 0 P 

In the Cell-Mann current algebra x 
P 

is essentially model independent and is 

simply identified with A 
I-1 

; on the other hand, although> (x 
P 0 

) does depend upon 

the model, it can generally be decomposed in the following manner 

c& @J = AJO) We) + BJx-) - 

(9) 

(10) 

(11) 

(12) 

(13) 

This is true, for example, in the quark model where certain components of the 

psuedovector BP have the bilocal form - rnF (x ) ~5 z/ (0) where Z/(X) is the quark 

field and m its mass; using the notion of PCAC this operator can be thought of as 

the bilocal generalization of the pion field. 

Using (ll), (12) and (13) in Eq. (10) then leads to the asymptotic form 

fM - s - dxe 
is+x 

= I-J 
- < p’ I BJx )I p > . (14) 

-03 

From this we immediately deduce that the scalar invariants occurring in M 
IJ 

depend asymptotically only upon the variables w and t. Note that the conserved 
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nature of jP must be reflected in the commutation relations (11) and (12) and 

these automatically ensure that (14) will be consistent with the conservation 

requirement that M, - 0. [6] From this equation we can construct T 
PV’ 

and 

deduce the result claimed above; namely, that the relevant components are 

functions of w and t only. More explicitly we expect (e. g. in a quark model) 

3 (Txx I- Tyy) - F1@, t) - F2(%t)(kz + k;) 

; (TX - Tyy) - & F2(W’t)(k; -k;) (15b) 

T zz - FIP, t) - F2(% VA; 

(1 W 

U5c) 

and 

Txz - - F2 @ , WxAz (1 W 

where A 
Z 

- kZ -4, (as expressed in the LAB) 31 - (4 t + Mw) and the Fi are 

Lorentz scalars. 

Some remarks concerning this “derivationf’ are in order: 

i) We have thus far neglected the presence of possible Schwinger terms in 

the commutation relations (11) and (12). If such terms are present in (11) then 

we make the usual assumption that they are cancelled by the presence of possible 

seagull terms in C 
ctv * 

If they are present in (12), as they are for example, even 

in a simple quark model, they can only introduce terms proportional to q+ and qL 

so that the general form of the result remains unchanged. 

ii) The extension to the inclusive case is straightforward since the state 

I p’> is now replaced by an arbitrary state I N > and (14) becomes 

frMr) -. < NI / dx-eiqix-B (x )Ip>. 
-co P - 
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The corresponding T clv (” M;N)MLN)* ) t hus retain their scaling character, the 

only difference being that they now also depend upon the invariant mass (WI) of 

the state I N > and the cross section is differential in this variable. In.other 

words, (4) is to be replaced by 

w4 d2c 

dWBdt 
- F(w, t, Wf2) . (16) 

There is recent data from Cornell[3] which gives d2a/dWr2dt ‘1 averaged” over 

angles 8 5 9.6’ for two values of W (2.14 and 2.66 GeV) at the same value of 

w (4.1). Eq. (16) says that the spectra should be identical (even including the 

llelastictl peak) except for normalizations which should be in the ratio of 

= (2.66/2.14)4 = 2.41. The experiment finds that this is indeed the case and 

that the ratio of normalizations is - 2.34. Obviously the separation of the various 

terms in Eq. (1) would be desirable and we look forward to comparing more 

detailed aspects of the data with our predictions. 

iii) Although this agreement with experiment is encouraging there are some 

serious defects to the tlderivation*l. First of all, the limit required in the asym- 

ptotic expansion forces k2 - 00 unless q, + p, - p, = 0; hence the formal limit 

must be taken rather delicately for we must always demand that (p-p’), be fixed 

at 4,. If this is done, k2 - -kF and by choice of frame we can set kl = 0 (this 

does not affect the general form of our results). It would thus appear that setting 

k2 = 0 (as we did in Eq. (5)) is consistent and probably necessary for the 

technique to work. A related problem to this is the problem of the pion pole[7], 

i. e. we know that MP must in general contain such a pole at k2= ,u2 yet it appears 

to be missing in the asymptotic form, Eq. (14). We have attempted to resolve 
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this problem by appealing to the infamous DGS representation and have been 

able to show that, at least in the massless case, Eq. (8) reproduces the correct 

asymptotic expansion of the matrix element which does contain the pole.. An 

extension to the massive case may involve an assumption which requires that 

the light cone singularity dominates some distance into the light cone charac- 

terized by the particle mass. We shall expound upon these ideas in a later paper. 

iv) Finally we present a somewhat different way of seeing the result con- 

tained in Eq. (10). Suppose we again use causality to replace 8 (x0) in Eq. (6) 

by 8 (x+) then we can derive the following result analogous to Eq. (5) 

f M’ 
* P 

= kv CPU + L 
I-1 

where 

/ 
,-J4x ,kbx 

M;1 differs from MP only by the presence of a possible seagull term IT 
P 

tracting (17) from (5) we obtain 

= E -L 
YJ P P’ 

(17) 

(18) 

Sub- 

(19) 

If we assume that in the asymptotic region only the seagull survives (i. e. 

ML 
- 0), then our previous result, Eq. (lo), immediately follows. 

Conversations with Bill Bardeen, J. D. Bjorken and Norman Dombey are 
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