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ABSTRACT 

Assuming the Harari-Freund conjecture on duality we make use 

of a model consisting of s-channel resonances plus a diffraction, or 

Pomeron, term to fit 7r-p elastic differential cross sections and 

polarization data from 500 MeV/c to 1300 MeV/c. A fit is made to 

the observed data by varying as parameters the masses, widths, and 

elasticities of the resonances as well as the parameters associated 

with the Pomeron amplitude. A good fit to the data is obtained and 

the resulting parameters are presented. Important properties of the 

Pomeron such as its spin structure and energy dependence are 

extracted. Our results indicate a preference for spin conservation 

over helicity conservation in either the s- or the t-channel of the 

Pomeron amplitude. 
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1. Introduction 

Recently a model incorporating both resonant and diffractive effects has 

been used to fit r-p and K-p elastic differential cross sections 192) around 1 GeV/c. 

In this paper we extend a previously unpublished attempt to describe n-p scatter- 

ing in the energy range 500 MeV/c to 1300 MeV/c. With this model we can 

extract information about the Pomeron amplitude at these energies by making 
-- 

the Harari-Freund conjecture 3) associating the Pomeron amplitude with the 

diffractive, non-resonant background. Using this approach we can investigate 

the s and t dependence as well as the spin structure of the Pomeron term by 

fitting both the differential cross sections and the polarization data for 7r-p 

elastic scattering. 

In section 2 we present some motivation for our model. In section 3 we 

give our parameterization of the transition amplitudes. In sections 4 and 5 we 

give results and conclusions of this work. 

2. Motivation for the model 

In an attempt to construct a model of the pion nucleon scattering amplitude, 

we shall take for our basic assumption the Harari-Freund duality conjecture 3) . 

Thus the amplitude is taken to be composed of the crossed channel Pomeranchuk 

singularity (equivalent in the direct channel to an isospin independent non- 

resonating background) and a sum of direct channel resonances (equivalent to 

the “ordinary” Regge trajectories in the crossed channel). This conjecture has 

received some measure of support from studies of TN and KN data as repre- 

sented by phase shift analysis 495) . While these authors have established the 

usefulness of this decomposition of the amplitude, there are quantitative dif- 

ferences between their conclusions. Specifically, while Harari’s 4) analysis of 
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nN amplitudes favours s-channel helicity conservation for the Pomeron, the 

work of Meyers and Salin 5, (KN) seem to favour spin conservation. 

From these studies then, we conclude that the “Pomeron plus resonances” 

model is likely to be a constructive approach but that the details of the energy 

dependence and spin structure of the Pomeron amplitude at these energies are 

still unresolved. With this in mind, we have attempted to fit the 7rBp elastic 

differential cross section and polarization data at all angles with the amplitude: 

A= ARES+A POMERON * 

3. Transition amplitudes 

3.1 General conventions 

First we shall define the transition amplitudes quite generally. For a 

given isospin state the scattering amplitude matrix is given by: 

A1(k,6)=?(k,6) +i..igI(k,0) . 

Here k and 6 are the center-of-mass momentum and scattering angle. The terms 

fT: and g1 are respectively the spin-non-flip and spin-flip amplitudes for isospin I, 

and i is the normal to the scattering plane. 

For a particular process the physical scattering amplitude is 

A@, 0) = c q-&k, 0) , 

where CI is the appropriate isospin coupling factor. 

Next, writing 

A(k,8)=f~,e)+i~.~g(k,e) , 

one can easily get 

-3- 
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and 

P@, 6) g(k 6) = 2Imlf(k, 6) g*(k, 6) I 

Here P is the polarization and dcr/dfi the differential cross 

then perform the usual partial wave decomposition to get 

*fk, 6) = a T {(Q + 1) ai+ + 1 a~JP&cos 
-L 

. 

section. We can 

glfi, 6) =t C (aIQ+ - a~-}+os 6) , 
Q 

where 

dP w 
P,l(x) = A7 -&- . 

3.2 Resonant amplitude 

The resonant contributions will of course appear only in the specific reso- 

nance channels whereas the diffraction term will spill over into all B values. 

The resonant term will be given by: 

Estk,e) =; x 
i 

IRES 

Q=QRES 
(Q + 1) ‘Q+ 

IRES 
+ Q ‘Qta- 

I 
pQ(cos e, , 

&ES(k, e, = ; c IR 
ES 

PES Pl(cos 6) 
‘=%ES 

aQi- - ‘Q- 1 Q , 

where the sum is over all resonant partial waves. Such resonant partial wave 

amplitudes can be taken to have a Breit-Wigner form 

,RES - x 
e-i ’ 
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where x = I’ elastic@)jr *) is the elasticity of the resonance. 

E = 2 tE~Es -4/J%) , 

ERES and J?(k) are the energy and (energy-dependent) width of the resonance. 

For our purposes we take 

Here R is the interaction radius and vQ(x) is the appropriate barrier pene- 

tration factor given by Blatt and Weisskopf 6) as: 

v,(x) = xjQ(x) ([ ’ 12+ ,+Qtxd2,-l 9 

with j,(x) and n Q (x) the spherical Bessel functions. 

3.3 Diffraction amplitude 

We choose to determine the form of the diffraction amplitude phenomeno- 

logically, using the data on the near-forward scattering differential cross 

section. 

For our purposes we fit the near-forward cross sections empirically by 

the form 

g(6) =$I ebt , 
e=o 

where t = -2k2(1 - cos 6 ) is the invariant momentum transfer. 

While this dependence can be explained by various models, we shall take 

it as an empirical fit. Next, working specifically with n-p elastic data we can 

examine the energy dependence of b. This is shown in fig. 1. In doing so we 

observe that b has some structure showing peaks at particular values of k. A 

closer examination shows a distinct correlation between these peaks and the 

positions of TN resonances. 
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In addition b may well level out, approaching a constant at high energies 

above the region where resonances are dominant. 

Thus, we have chosen to use an angular dependence of the form exp (ibt) 

for our Pomeron amplitude. Moreover, we shall assume that the energy 

dependence of b is quite smooth - in fact we will take b to be a constant 

7) throughout our energy range . So, the Pomeron amplitude will be of the 
- 

form iA exp (ibt). 

Next, in order to determine A(k), we can make use of the optical theorem 

and the total cross section data readily available in the literature 8) . Taking 

the diffraction amplitude to be purely imaginary one can readily show that 

% A(k) is the contribution of the diffraction term to the total cross section. 

Using this relationship we can now fit the total cross section in our energy 

range by using accepted resonance parameters 9) and a smooth function (in 

fact a polynomial in k) for the background contribution, 2 A(k). The resulting 

A(k) is a function which is very small in the lower portion of the energy range 

and which grows quite rapidly in the upper energy region. This is shown in 

Fig. 2, where the fit to the total cross section and the Pomeron contribution 

are displayed with the total cross section data. The algebraic expression used 

in this fitting procedure (with the best fit coefficients), is 

&k) = 4r(O.689 - 2.93k + 1. 38k2 + 3. 36k3 + 3. 65k4 1 , 

where k is in GeV/c and g P 
tot is in millibarns. Thus, we choose our diffrac- 

tive amplitude to be 

ApoMERoN = i CA 4) ev t%) , 

where A(k) is fixed by the fit described above. C and b are two constant 

parameters which will be varied to fit the experimental data. 
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Next, in order to write down the Pomeron amplitudes explicitly, we must 

determine the spin structure. For our purpose we shall make fits assuming 

spin conservation and assuming helicity conservation. For the case of spin 

conservation, the Pomeron amplitudes are given by: 

fDIFFo” ‘1 = ApoMERoNk ‘) ) 

gDIFF(k’e)=o ’ -- 

For the case of s-channel helicity conservation the Pomeron amplitudes 

are given by: 

fDIFF@’ e, = T ApoMERoN(lZ’ ’ ) Y 

gDIFF(k’ ‘) = F ApoMERoN(k, ’ ) Y 

which corresponds to the s-channel helicity amplitudes being given by: 

f(‘)(k, 6) = cos c A +i- 2 POMERON” ‘) 

f(‘+k e)=o . +- ’ 

And for the case of t-channel helicity conservation the Pomeron amplitudes 

are given by: 

fDIFF4y 

gDIFF(k’ 

7 where E = M 4-k , which 

being given by: 

f(Q 6) +I- ’ 

f@)(Ir 6) +- ’ 

6) = E-t M - i: ’ (E-Ml i CA (k) exp($bt) , 

*p-q sin6 iCA (k) exp(+bt) , 

corresponds to the t-channel helicity amplitudes 

.3 t. 

APOMERON(k’ ‘) ’ 



Note that we have applied physical constraints to impose the cos 6/2 

factor on the s-channel helicitynon-flipamplitude. Also, in keeping with its 

diffractive origin, we have chosen the Pomeron exchange term to have’no 

isospin dependence. 

4. Application to 7r-p elastic scattering 

The model was tested by fitting r-p - 7r-p differeTtia1 cross sections and 

polarization data from 500 MeV/c to 1300 MeV/c (1369 MeV to 1831 MeV 

in c. m. energy). This included 6 1 differential cross sections and 45 polari- 

zations for a total of 2083 data points, and comprised most of the world’s 

data in this momentum range 10) . 

The amplitudes were taken to be 

f@, ‘) = fDIFF (k, 6) + 2/3 [I= l/2 resonance terms] 

+ l/3 [1=3/2 resonance terms] 

gtk ‘1 = gDIFF (k, 6) + 2/3 [I= l/2 resonance terms] 

+ l/3 [I= 3/2 resonance terms] 

The initial parameters of 17 prominant resonances were taken from 

ref. 9. The best fit was obtained by minimizing X2 while varying the resonance 

width, resonance energy, the resonance coupling, and the diffraction parameters 

b and C. The parameters of five of the resonances, at the borders of our energy 

region, were held fixed. 

Below are some of the characteristics of the best fits. 

No. of data points ZZ 2083 

No. of fitting parameters = 39 

No. of degrees of freedom = 2044 

No. of resonances used = 12 + 5 fixed 
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( 5322 spin conservation 

I I 5656 t-channel helicity 
conservation 

The first comment we would like to make is about the quality of the data. 

In particular, the experiment errors used in the fittiwrocedure were those 

quoted by the authors and the normalization of the experiments was not allowed 

to vary. While the compatibility of the different experiments is questionable 

we chose to treat the data in this way in order to keep the number of fitting 

parameters to a minimum. While the confidence level resulting from our fit 

(taken at face value) is not very high, in view of the above-mentioned problems 

we feel the X2 is quite satisfactory. In any case the qualitative nature of the 

fit is extremely good as can be seen in figs. 3 and 4. These figures show a 

sample of the fits to differential cross sections and to polarizations at several 

energies. In addition, in fig. 5 we show the differential cross section at a 

fixed angle (6’ =O”, 90°, 180’) as a function of energy. The amount of scatter 

in this figure is indicative of the relative compatibility of the various experiments. 

The best fit resonance parameters are shown in table 1 compared with the 

average parameters of ref. 9. Note that some of these resonances 
[ 
P 33(1236), 

F37(1950), F17(1990), D13(2040), G17(2180d had their parameters fixed since 

their resonant energies are outside the range of our fit. The parameters of 

the other resonances were all free parameters in the fit. It is therefore quite 

significant that they agree so well with the parameters of ref. 9. 

In order to ascertain the necessity for the individual resonances, each 

resonance was removed and the data was refitted. With few exceptions 

this resulted in a rise in X2 of from a few hundred to several thousand units. 
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For example, absence of the very prominent D,,(1672) yielded a best fit 

X2 of - 30 000. On the other hand, a few resonances 
[ 
specifically the 

S,,(lSSO), D33(1674), F31(1952), F35(1972), and G17(2180) 
I 

yielded X2 in- 

creases of - 100 units. Note however that these resonances are those which 

contribute minimally to the amplitude. They occur in low partial waves, are 

only weakly coupled to the 7r-p system, or are outsidcthe energy range 

considered. 

The uniqueness of these resonant parameters can be summarized as 

follows. The prominent resonances 
1 
particularly the D,,(1672) and F15(1688) 1 

are very well ‘determined. Others, such as the Pll(1470) and the D13(1520) 

are reasonably well determined, but as there are other resonances with the 

same spin-parity quantum numbers (recall that with only 7r-p data we cannot 

distinguish isospins), there could be some mixing of different resonant ampli- 

tudes. However, we feel that the results are unlikely to deviate much from 

those presented. The s-wave resonance parameters are not that well deter- 

mined by this fitting procedure, a feature shared with many models of nN 

scattering. It is also important to note that for much of our energy range the 

Pomeron term is mostly s-wave. We have also tried adding extra resonances, 

one at a time, in each possible spin parity state. This resulted in no improve- 

ment in any case and all such resonances “went away”, i.e., their resonant 

parameters varied in such a way as to make no contribution to the amplitude 

in the region of study. 

The parameters of the Pomeron term are also provided in table 1. The 

results for the diffraction slope b should be somewhat less than the observed 

values (since these are primarily due to forward resonance peaks). The 
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results b= 1.74 and 1.82 (GeV/c)-2 for the s-channel and t-channel helicity- 

non-flip fit and b = 1.39 (GeV/c)-2 for the spin non-flip fit are consistent with 

this expectation. This latter value is shown along with the experimentally 

observed slopes in fig. 1. Also note that for all our fits b’ is rather large 

(b’ M 18 (GeV/c)-2/GeV) which corresponds to b rising from 1.4 (GeV/c)-2 

at 1.24 GeV/c to 2.0 (GeV/c)-2 at 1.3 GeV/c. This seems to imply that the 
- 

slope wants to grow at higher energies. 

The parameter C provides the normalization of the Pomeron amplitude, 

with C = 1 corresponding to our fit of the total cross section data. The value for 

C obtained from the fits to the differential cross sections and polarization is: 

C = 0.86 for the spin non-flip fit, and 

C = 0.74 and 0.69 for the s- and t-channel helicity-non-flip fits. 

Our earlier experience (ref. 1) suggests that C is entirely real, i.e. , the 

diffraction term is purely imaginary. The curve shown in fig. 2, the fit to 

the total cross section data, uses C = 0.86 and seems to give a good descrip- 

tion of the data. 

The interaction radius was found to be R = 0.95 fm, which is a reasonable 

value. An additional property of our fits is the interesting feature that the 

spin non-flip parameterization of the Pomeron amplitude provides a better fit 

than the helicity-non-flip parameterizations (X2 = 5322 vs X2 = 6004, 5656). 

Thus we feel compelled to conclude that this model for the amplitude seems 

to favour a Pomeron amplitude which is spin non-flip over one which is helicity 

non-flip. 

The s-channel helicity conservation hypothesis suggested in ref. 4 is seen 

to provide a X2 significantly higher than the best fit which corresponds to spin 

conservation. The fact that the t-channel helicity conservation hypothesis, 
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as proposed for reactions 12,13) such as 7r-p + Aip or K-p - Q-p, provides 

an intermediate value of X2 need not be taken as support for that mechanism. 

This result may be due to the kinematic fact that, for these energies, E is not 

much larger than M, so that for the t-channel helicity conservation hypothesis, 

the f and g amplitudes deviate only slightly from f and g for spin conservation, 

which is seen to provide the best X2. 

In addition, in order to demonstrate the necessity of our Pomeron term, 

we have made fits with C=O, i.e., only resonances in the amplitude. The 

best fit for this amplitude has a X2 over 8400 units - a value which clearly 

implies the need for a Pomeron term. Moreover, the resonant parameters 

were drastically altered in order to get even the poor fit which was obtained. 

5. Conclusions 

We find it very satisfying that such a simple model is able to provide a 

good representation of the data over a wide range of energies. Moreover, it 

is quite encouraging that the resonance parameters obtained in our best fit 

are in such good agreement with those of ref. 9. 

We regard the quality of this fit as indicating good support for the Harari- 

Freund hypothesis. In particular, since the hypothesis seems to work quite 

well, we believe this work has allowed us to investigate the structure of the 

Pomeron amplitude at these energies. In this way we have concluded that the 

amplitude is predominantly a spin non-flip term which is purely imaginary. Its 

energy and angular dependence are described above. 

A further point is that this model can be a successful means of extending 

elastic phase shift analyses to higher energies, in order to provide useful 

information about higher energy resonances. The only problem with this 
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approach can come from uncertainties about the nature of the Pomeron ampli- 

tude at the energies concerned, while the advantages come from the parameter- 

izing the amplitude in a physically interesting manner. 

- 
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Table 1 

Best fit parameters (see text). Units of energy and width are GeV. For 

Pomeron parameters b is in units of (GeV/c)-2 and b is in units of (GeV/c)-‘/GeV. 

Other parameters are dimensionless, 

Resonance 
Spin 

Conservation 

s - Channel t-Channel 
Helicity Helicity 

Conservation Conservation 

Particle Data 

(x=) 1.00 
(E=) 1.236 
(I?=) 0.120 

0.109 
1.989 
0.238 

0.350 
2.180 
0.299 

These resonant parameters were fixed at 
these values in all fits (see text). 

0.520 
1.952 
0.202 

0.300 
2.039 
0.274 

0.675 0.84 0.406 0.25 
2.059 2.027 2.090 1.908’ 
0.175 0.150 0.238 0.325 

0.76 0.78 0.158 0.13 
1.547 1.561 1.581 1.674 
0.120 0.129 0.156 0.240 

0.295 0.159 0.157 0.17 
1.848 1.821 1.828 1.885 
0.099 0.046 0.055 0.273 

0.36 0.357 0.366 0.39 
1.510 1.495 1.507 1.535 
0.143 0.159 0.138 0.118 

0.472 0.585 0.480 0.69 
1.691 1.727 1.684 1.706 
0.140 0.282 0.142 0.250 
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Table 1 (cont'd) 

Resonance 

pll 

pll 

p13 

D13 

D15 

F15 

S 31 

POMERON 

X2 

Spin 
Conservation 

s-Channel t-Channel Particle Data 
Helicity Helicity Group Param- 

Conservation Conservation eters (ref. 9) 

0.690 0.715 0.740 0.61 
1.476 1.492 1.487 1.468 
0.274 0.278 0.294 0.240 

0.135 0.013 0.016 0.34 
1.636 1.653 ~I.706 1.783 
0.307 0.371 0.376 0.350 

0.232 0.185 0.094 0.27 
2.124 2.045 1.838 1.864 
0.203 0.210 0.297 0.335 

0.394 0.414 0.645 0.53 
1.510 1.511 1.521 1.520 
0.075 0.066 0.099 0.120 

0.390 0.395 0.384 0.42 
1.672 1.674 1.672 1.672 
0.145 0.138 0.154 0.142 

0.715 0.730 0.730 0.62 
1.681 1.684 1.679 1.688 
0.130 0.129 0.133 0.127 

0.27 0.39 0.25 0.27 
1.667 1.670 1.672 1.650 
0.114 0.074 0.139 0.151 

(C=) 0.861 0.74 0.693 
(b=) 1.39 1.74 1.82 
(b'=) 16.78 20.89 18.63 

5322 6004 5656 
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FIGURE CAPTIONS 

1) Behaviour of the diffraction slope b as a function of energy. The param- 

eter, b, is obtained from fits to the near forward differential cross section 

of the form 

g+l) = -&-(O=O) ebt . 

The solid line is the value of b used in the Pomer%n amplitude. 

2) r-p total cross section as a function of energy. The data points are from 

ref. 8; the solid curve is the result of our fit; the dashed line is the 

Pomeron contribution. 

3) r-p differential cross sections. The experimental points are taken from 

ref. 10; the solid curves represent the best fit of our model. 

4) - r p polarization. The experimental points are taken from ref. 10; the 

solid curves represent the best fit of our model. 

5) x-p differential cross sections at fixed angle vs energy. The experimental 

points are taken from ref. 10; the solid curves represent the best fit of 

our model. 
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