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ABSTRACT 

The study of the resonant contribution to the finite mass sum rules for the 

forward Pomeron-proton scattering amplitude obtained from the pp - pX spectra 

for 0.1 < It I < 0.5 (GeV)2 suggests that: (a) local duality works nicely for a 

missing mass larger than 1450 MeV. The nucleon and the 1410 MeV enhance- 

ment cooperate in order to saturate the first moment S3-m rule, (b) there is 

evidence for a wrong signature fixed pole at J=l whose residue is exponential 

in the mass of the Pomeron, (c) the PPR triple Regge term obtained from the 

finite mass sum rules turns out to be much too small to account for the 

diffractive part of the proton spectrum at the ISR energies. Reciprocally, if 

one fits this part of the spectrum with a PPR term, the contribution of such a 

term at accelerator energies is much larger than the experimental data. These 

results tend to indicate that most of the diffraction observed at ISR is due to 

a PPP term. 

-l- 



I’ 

1. Introduction 

The purpose of this paper is to present a simple model which describes the 

missing mass spectra of the p(p,) + p(pb) -p(pJ + X inclusive reaction at small 

momentum transfer, lt I <, 1 (GeV)2. (We define s = (pa + pb)2, t = (Pa - pc)2 and 

M2 = (pa + pb - P~)~. ) The model is essentially a triple Regge model with PPP, 

PPR, RRP, and RRR terms. We proceed in the following way: First, we deter- 
--. 

mine the arbitrary quantities in the model from a fit of the proton spectrum at 

15 GeV/c < plab < 30 GeV/c. More precisely: 

(1) The PPR term is obtained from the data in the resonance region (M < 2.5 

GeV), using the finite mass sum rules (FMSR) and the Harari-Freund two-component 

duality hypothesis for the Pomeron-proton scattering amplitude. Two important re- 

sults of this analysis are: (a) the separate contribution of the nucleon pole and the 

1410 (Roper) enhancement to the PPR residue, via the FMSR (in the narrow-width 

approximation), are functions of t very rapidly varying, but the sum of these two 

contributions is a smooth function of t; (b) the FMSR is roughly independent of the 

mass cut I%, provided the cut is done after the 1410 enhancement. 

(2) The RRP and RRR terms are determined from a fit to the above data outside 
1 

the resonance region (M > 2.5 GeV) . We furthermore constrain the RRP and RRR 

residues in such a way that the sum of these two terms approximately reproduces 

(at least in an average way) the background under the resonances. This ensures 

that the complete FMSR is satisfied and, as a consequence, that the fit above ex- 

trapolates well into the resonance region. Apart from achieving this goal, an im- 

portant result of our analysis, already obtained in ref. 2, is the following: The 
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RRP term has to be replaced by the simple empirical expression: 

M2 
p(t) Jl - C2t)s 

Tr (1) 

where c 1 and c2 are constants. The physical interpretation of Eq. (1) is yet 

obscure but it is a fact of life that such a term is required by the experimental 

data for A- 
M2 

:. 5 -10 (where the validity of the triple Regge approach is, of 

course, rather dubious). M2 Since for t = 0, in the expansion of S in powers of --s- , 

the first term is a constant, one can consider that S represents approximately 

the sum of the contributions of the RRP term and its daughters. The fact that 

they pile-up in’a simple form is a mystery, together with the observation that 

nonleading contributions do not seem to be important for the RRR or PPR terms. 

It is likely that terms similar to S appear in other inclusive reactions as we11,3 

and that their presence is related to the quantum numbers of the BE channel 

alone. Thus if the BE channel is exotic (like in the p?~- -tn+ + X reaction), 

the S term does not seem to be present. 

(3) The PPP is assumed to be unimportant at the energies under consideration. 

In a second step, we proceed to compare the results of our model with the 

ISR data at s = 440 and 1995 (GeV)2. We find that the agreement is good in the 

region s/M2 < 10 (x - 1 - M2/s < 0.9). In this region, the most important 

term is, by far, the term S(t, M2/s). This indicates that the parameterization 

in Eq. (1) is essentially correct. However, in the diffraction region (0.9 < x < l), 

our model gives a much too low value for the invariant cross section. Moreover, 

the energy dependence of the data in this region is such that a PPP term has to be 

introduced. It turns out that this term accounts for most of the diffraction observed 

at the ISR. 
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Let us now describe the model in a more quantitative way. We assume that 

the differential cross section has the following structure: 

T(s,t,M2) + S (2) 

where S is given in Eq. (l), and T can be expressed in terms of the leading con- 

tributions of a triple-Regge expansion: -- 

T(s, t, M2) = & c Gm 0) Gn 0) $ 

amw+qt) 
0 trn 4; A,,WY M2) (3) 

0 
m,n 

A mn is the absorptive part of the forward amplitude for Reggeon proton-Reggeon 

proton scattering, corresponding to maximum helicity flip in the crossed channel, 

and em and { n are the signature factors. For large values of M2, we have 

A = mn 

c t,n (t)~~~k(o)-Clm’f)-~n’r) 

k 

where v = I, (M) = M2 -M;-t(Mp is the proton mass). 

For simplicity, we assume that the trajectories have the standard form: 

a,(t) e 1, aR(t) = 0.5 + t, so = 1 (GeV)2. ( op( t) and oR( t) represent the 

Pomeron and the normal trajectories. 1 

We thus write (neglecting mixed terms in which czm # on): 

pp(t,M? G2,O + S2t ARRkM2) G;(t)] 

(4) 

(5) 

is the differential cross section for pp elastic 
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For large values of M2, we can use the expansion (4): 

ARR = gRR R w lJ 
-0.5 -2t 

A p PP = gPP (t) v -l + gtp(t) v -3’2 

(6) 

(7) 

In (6)) we have considered only the RRR term, since the RRP contribution was 

already included in S(t, M2). --. 

At this stage of the game, we are left with the unknown functions, P(t), 

In order to determine the function gPP R w, in Section 2 we study the finite- 

mass sum rules (FMSR) and saturate them with diffractively produced resonances. 

We discuss how duality works for Pomeron-proton scattering, as well as the pos- 

sible existence of fixed poles. 

In Section 3, we use the high missing mass (outside the resonance region) 

data at 14.2, 19.2, and 24 GeV/c of ref. 4 in order to determine the remaining 

unknown quantities with the exception of ggp (t). ’ 

In Section 4, we use the ISR data of s = 440 and 1995 (GeV)2, where the 

eventual contribution of a PPP term ought to appear. We conclude that such a 

term is indeed present and it is responsible for most of the diffraction observed 

at the ISR. 

Our model gives a simple and quantitative description of all available high- 

enera blab > 14 GeV/c) and low-momentum transfer data. 
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2. Low Missing-Mass Spectrum at p,,,, = 24 GeV/c 

The differential cross section E d3u - has the following features: in the 
’ d3pc 

small 1 t I (I t t < l(GeV)2), small M (M < 2.5 GeV), and in the incident +energy 

range (14.2 < plab < 30 GeV/c)5y6 : 

(1) A bump structure in which the N(940) and the N*(1410, 1500, 1690, and 2190) 

enhancements are observed which, when separated from the background, have a - 

cross section which is roughly energy-independent. When comparison with other 

reactions is possible (like for the N*(1690) produced in p-p, r-p, k--p, and p-p 

scattering), there is agreement with factorization suggesting that these enhance- 

ments are produced through a factorized Pomeron exchange. Thus 

= G;(t) G; (t) (i= 940, 1410, 1500, 1690, 2190) 

If the differential cross sections are fit to the exponential form: 

= Ai e 
bit 

where t t I < 0.2 (GeV)2 for N*(1410) and It I < 0.9 for the other enhancements, 

we get bg40 = 9 (GeV) -2 , b1410 z 15, b1500 M b16go z b2190 z 5. Thus the 

slope first increases with the mass M and afterward decreases. 

The single exponential fit to the data does not describe properly the very 

small ItI region (ItI < 0.1) where 
( i 

g has a higher slope, 7 da 

d u’ 
i ) 

940 i i dt and 
1500 

dt may level off. 
1690 

(2) At fixed t, the nonresonant background in the mass spectra decreases with 

the incoming energy. 

In this section, we study in detail the problem of enhancements produced by 

diffraction dissociation using finite mass sum rules (FMSR) and duality 8,g in 

(8) 

(9) 
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R order to determine the unknown residue function gpp (t). We use the notation: 

fig,(t) = g(t) (10) 

(a) First moment FMSR 

The first moment FMSR is 10. . 

App(t, M2) - g(t) v -312 =o-- 
1 

We assume that the resonances build the ok (0) = l/2 trajectory. This cor- 

responds to the usual Harari-Freund 11 hypothesis. We will also assume that the 

extrapolation of the Regge term at low values of M2 has either one of the follow- 
12 ing two expressions : 

M2--0 

lim v -3’2-(v M)-l 
2 M-O 

Using the zero-width approximation, from Eqs. (11) and (12)) we get: 

1 
2(%Mp) c 

vi G; (t) = g2 (iii, t) 

Mi < @ 

(1W 

t 12b) 

Wb) 
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where Gi (t) are defined by Eq. (8), M is the cut-off mass, and 

_ lim 
M-a 

is1 (g, t) = gl 0) 

_ lim k2 6% t) = g2 0) 
M-00 

t W 

t 14b) 

We have saturated the FMSR (13) using the 24-GeV/c data of ref. 5 for N(940) 

and N”(1400, 1520, 1690). We have left out the 2190-MeV bump because we think --. 

that the way the background was extracted gives a too small cross section (see 

Section 3). We have chosen % = 1350, 1450, 1550 and 2000 MeV each enhance- 

ment sharing a reasonable range of the M scale. 

The two functions g,(M, t) and g2(M, t) as functions of M at different fixed 

t values (0.1~ It I < 0.5) are practically independent of M for M > 1450 MeV 

although they slightly differ between themselves (see Fig. 1). 

(b) Comments on local duality as applied to Pomeron-proton scattering 

In order to check how local duality works, we have build the function g:(t) 

from each resonance separately using: 

g:(t, - 
vi G;(t) 

2KvtEj,))1’2 - (‘(hi-1) j”“] 
VW 

C Here Mi (Mi-,) denotes the value of l% immediately above (below) Mi . 1 As one 

sees from Fig. 1, the data for the 1520 and 1690 MeV resonances are very close 

to g,(t) showing that local duality works nicely. The picture is entirely different 

1400 for the 1400 enhancement in which case the function g1 is different from gl and 

accidentally coincides with it for ItI M 0.14 (GeV)2; that is why in some pictures 

of ref. 8 where values of It I around 0.1 have been considered, the 1400 enhance- 

ment looked to be averaged by the Regge curve. In the case of the nucleon the 
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function gy” (t) obta ined from (15a) differs from g,(t) obtained from (13a) in the 

small It I (It I < 0.14) region (where the 1400 enhancement is present) going 

too fast to zero as It I - 0. This seems to be again a qualitative less than a 

quantitative feature of the data. 

However summing up the contributions of the 940 and 1400 one gets a good 

approximation of g,(t) (see Fig. 1). 

We have repeated the same game with the function g,(t) using instead of 

Wa) 

vi G;(t) 

2(x$ - tii 1) 
= ggs Wb) 

The results are shown again in Fig. 1, the functions g,(t) obtained from the 

sum of 940 and 1400, from 1520 and 1690 cluster around the g,(t) function 

obtained Tom Eq. (13b). 

In order to deal with the unusual behavior of the 1400 enhancement there are, 

in our opinion, two ways: 

(1) The 1400 should not be introduced at all in the FMSR (15) attributing 

the whole interval up to l%= 1450 MeV to the nucleon alone. In this case however 

since vg40 Gg40 2 (t) = It I G;40(t) one should expect g,(t) and g,(t) to vanish at 

small It I at the same rate if local duality works at least qualitatively. Similarly 

G;500tt) and G;6g0 (t) should also vanish at 1 t I = 0 at the same rate. This does 

not seem to be experimentally the case but more careful measurements at 

It 1 < 0.1 may give such a picture. 

(2) If g1tO) f 0 @2(o) f 0) or g,(t) (g,(t)) tends to zero in a different way than _ 

I tl Gi40(t), local duality is not verified by the nucleon, its contribution being too 

small at small It I . However adding the contribution of the 1400 which is large 

at small It I, the FMSR (11) is saturated but only after a= 1450 MeV. At larger 
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It I (It I > 0.15) the contribution of the nucleon is large enough so that the 1400 

has to disappear. Thus, the 1400 is in some sense the partner of the 

nucleon helping it to satisfy the FMSR at It I < 0.15. The fact that the nucleon 

plays a special role in the first moment sum rule should not be surprising since, 

as we shall see it has an unusual behavior in the zeroth order FMSR as well. 

One can argue that our conclusions are just a result of taking the first moment 
-. 

FMSR and of the importance of the external masses (Mi and t) in the definition 

of v. This may be true but we have however to keep in mind that the 1400 

enhancement appears only in the It I < 0.2 (GeV):! region and thus its under- 

standing should be sensitive to the values of the external masses. 

(c) Zeroth order finite mass sum rule 

We now consider the zeroth order FMSR in order to compute the R,(t) of 

the J=l wrong signature fixed pole using the Schwartz sum rule 13 for the 

diffractively produced resonances: I 

App(t, M2) - g(t) v-~‘) = R,(t) 

Using again the zero width approximation and the low M2 extrapolations of 

the Regge term, (12a) and (12b), we get respectively: 

x- G;(t) = Rr(t) + 2gl(t) [( v(M~))-~‘~ - (v(i@)-““1 
Mi<M 

c 
Mi<fi 

G;(t) = Rr (t) + 

(16) 

t1W 

U7b) 

Since the functions g,(t) and g,(t) are now known 

functions, from Eq. (17) we can compute Rr (t). Taking &i?= 1450, 1550, and 
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2000 MeV we have checked that the n/r dependence of the left-hand side of Eq. (17) 

are nicely described by the right-hand side of the same equations and got 

R,(t) = 5.4 e 4*8 t (mb)l’2(GeV)-1 (O.l<ltl<0.5) r (184 

.5.2 t Rr(t) = 7.0 e 

A more precise determination of Rr(t) is beyond our means. 14 A very interesting 
-- 

feature of the residue function is its exponential behavior in t. 

Since we have not considered the nonresonant contribution to the FMSR (16) 

the actual residue of the J=l fixed pole 

R (0 = Rr 0) + R,(t) (19) 

remains unknown (R,(t) is the contribution of the background which may be 

negative). In ref. 9 however it was pointed out that R(t) = 0 seems very unlikely. 

The function R(t) can be related to the Pomeron-Pomeron cut contribution in p-p 
15 scattering , hence the relevance of our results. 

(d) The residue function g; 
dl 

t 

The above calculations have been repeated using the experimental results 

of Ref. 5 at plab = 20 GeV/c, all the qualitative features of our analysis are 

unchanged and the functions gl and g2 are roughly the same. From now on, we 

are going to use the parametrization (12a) and therefore we take the residue 
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function g&$t) = gl(t).15 For practical calculations we note that 

0.75 Itl G2(t) 
g,(t) - (Itl > 0.2 (GeV)2) I 

(v (1. 78))1’2 - (v (940))1’2 

with 

G;(t) = 82 e8’5 t . 

(20) 

(21) 

3. High Missing Mass Spectrum at plab = 14.2, 62 and 24 GeV/c 

(a) The high missing mass spectrum 

In order to determine the yet unknown residue functions -y(t) =gRR R (t) G;(t), 

p(t) and the constants cl and c2, we have considered the experimental data of 

ref. 3 at 14.2, 19.2, and 24 GeV/c for M values outside the resonance region. 

Using (l), (4) - (7), (20), and (21) we have: 

From a best fit to the data we get 17: 
(22) 

y(t) = 79 e”* l3 t + 0.25 ell*’ t 

p(t) = 13 e 6.7 t+ 2.8 t2 

5 =7.5, c2 =0.25 . 

Equation (22) reproduces very well the data. l8 In order to give a feeling 

of the quality of the fit, we present in Fig. 2 the 37 mrad data at 24 GeV/c to- 

gether with the theoretical curve. The experimental points have a 3% error. 

Notice that at pout z 12 GeV/c one has It I M 1 (GeV)’ which is the limit where 

our parametrization is valid. For smaller angles corresponding to smaller 

values of It I, the fit is even better. 

- 12 - 
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(b) A model for the nonresonant background at small missing masses 

Since we know that the last term in (22) gives an averaged description of 

the diffractively produced resonances, we have checked if the two first-terms 

in Eq. (22) may describe the nonresonant background in the low missing-mass 

region. In Figs. 3a and 3b we show the experimental data of ref. 5 for 

Bel= 15 mrad and 27 mrad at plab = 24 GeV/c together with the predictions of 
--. 

Eq. (22). The ‘1experimenta.l11 background which was used to separate the 

resonances is also shown; the cross sections for these resonances has been 

used in Section 2. 

As one observes, the “theoretical” background (i.e., the sum of the first 

and second term in Eq. (22)) and the l’experimental” background are very close 

to each other. However, in the region of the 2190 MeV enhancement, although 

the two backgrounds are close to each other, using the theoretical background 

to separate the enhancement would yield a substantially higher cross section 

due to the smallness of the resonance contribution (see Section 2). 

As a final check of the consistency of our model and of the zero width approx- 

imation used in Section 2, we have verified that the complete FMSR are nicely 

satisfied, i. e. , the difference of the theoretical and experimental curves (solid 

curves) in Figs. 2a and 2b multiplied by vdv and integrated from M= Mp to 

M = 2 GeV, approximately vanishes. This was to be expected from the way the 

PPR term was determined, along with the approximate equality of the theoretical 

and experimental backgrounds. 

4. The ISR Data and the PPP Coupling 

We turn now to the ISR data of ref. 19. The cross section derived from 

our model (Eqs. (22), (23)), which does not contain any PPP term, is shown in 

Fig. 4 and Fig. 5 at pL = 0.9. The agreement in the nondiffractive region 
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(x < 0.9) is quite good indicating that the scaling parametrization of the term 

S(t, M2/s), which is dominant in this region, is essentially correct. However, 

in the diffractive region 0.9 < x < 1, where the PPR (and PPP if it exists) are 

dominant, we obtain a too small cross section. It can be seen from those figures 

that in order to approximately reproduce the experimental results at s = 2000 

one should multiply the PPR term by a factor of 8. With such a factor the duality 

picture described in Section 2 would be completely destiyed. Worse than that, 

the PPR contribution alone would be much larger than the plab < 30 GeV/c data 

for M 5 2.5 GeV. (F or instance one can see from Fig. 2b that at M = 1.78 GeV 

the PPR term would be 2 - 3 times larger than the data. ) The same conclusion 

is reached from the fit to the s = 1995 (GeV2) results of ref. 19 using a triple 

Regge model with PPR and RRP terms: this model gives a too large cross sec- 

tion at plab = 24 GeV/c and M s 2.7 (see Fig. 3). Again the contribution of PPR 

alone is much larger than the data. 20 

The above results lead us to the conclusion that a sizable PPP contribution 

. 

has to be present. To support this view, we have added to Eq. (22) the following 

term: 

0.823 + Itl G;(t) ?- 
M2 

(24) 

and compared the model with the experimental data. From Figs. 4 and 5 one 

sees that the agreement is good. 21 The data are only for I tl > 0.3 (GeV)2 and 

therefore there is no support for the factor of It I in Eq. (24). 
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The contribution of such a PPP term to the small M region of the 24 GeV/c 

data is not negligible as one can see from Fig. 3. This seems to contradict the 

usually assumed duality between the PPP term and the background, since the 

first is peaked at threshold whereas the second goes to zero. It may, of course, 

happen that Eq. (24) is not valid in the resonance region (M < 2.5 GeV). 

Another possibility, suggested in ref. 22, is that the PPP term is dual to the -- 

resonances whereas the RRP term vanishes. The residue functions g E,(t) and 

gEp(t) in our model being very similar (especially in the region of It I > 0.3 (GeV)2 

where the ISR data exist), such a possibility is not excluded by our analysis. 

Finally we should like to point out that the necessity of a substantial PPP 

term has also been arrived at in ref. 23 where a measurement of the inclusive 

reaction p+p -ptX from 15 to 200 GeV/c, with both t and M2/s, kept fixed is 

presented. 

Conclusion 

We have presented a model for pp--c pX inclusive reaction, summarized by 

Eqs. (22) - (24). Our model is essentially a triple-Regge description containing 

the PPP, PPR and RRR terms. However, following ef. , an exponential term 

in M2/s is introduced instead of anRRP term. It is possible that confining our- 

selves to the region s/M2 > 5 - 10, we could have had a normal RRP term; 

however such an exponential form, while reducing to a normal RRP term for 

s/M2 -OC, and t &O, allows a complete description of the data. We find that 

the duality sum rules relating the PPR term and the diffractively produced reso- 

nances works quite well and allows to determine the g:,(t) coupling. However - 

the scheme proposed in ref. 22, with the resonances dual to the PPP term and 

a vanishing PPR term, is not excluded by the data. 
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We conclude that a PPP term has to be present which accounts for most of the 

ISR proton spectrum in the diffractive region. Due to a lack of ISR data for 

It I < 0.3 (GeV)2 it is not possible to obtain the value of the triple Pomeron 

coupling at t=O, 

Although a different description of the proton inclusive spectrum cannot be 

excluded, we consider that our model gives a simple and quantitative description 

of the available high energy @lab > 14 GeV/c) and low%iomentum transfer data, 

ItI < 1 (GeV)2. 
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LIST OF FIGURES 

1. The residue function gl (t) computed from the FMSR (Eq. (13a)). The 

contribution g;(t) of the various resonances computed from local duality 

Eq. (Isa): the nucleon contribution (dashed line), the 1410 enhancement 

contribution (dashed-dotted line), the sum of the nucleon and the 19 10 

contributions (t-), the 1520 resonance contribution-~) and the 1690 one 

(m). The function g,(t) (Eq. (13b)) as well as g:(t) (Eq. (15b)) are also 

940 shown: the sum g2 + g2 1410 (CD), gF2’(@) and gi6” ( Q ). 

2. The proton spectrum at 24 GeV/c and elab = 37 mrad, against the 

momentum of the outgoing proton. The data points are from ref. 4. The 

curve is computed from Eqs. (22) and (23). The contribution of the PPR 

term is shown. The dashed line is the result obtained with the triple 

Regge model of ref. 19, and the line labelled o!(O) = 0.45 is the contribution 

of the PPR term of the same reference. The line labelled a(O) = 0.7 is the 

contribution of the same term multiplied by (s~/~OO)~* 25. (This amount 

changes the intercept from a(O) = 0.45 to o(O) = 0.7 keeping the normaliza- 

tion at s = 2000 (GeV)2 and x= 0.95 unchanged. ) Finally the line o(O) = 1 

is the contribution of the PPP term of Eq. (24). 

3. The cross section da/dtdM computed from Eqs. (22) and (23) (dotted line) 

and from the parametrization in footnote 17 (solid line) as compared to the 

experimental data of ref. 5 : (a) at eel = 15 mrad, and (b) eel = 27 mrad. 

The dashed-dotted line is the experimental background and the dashed line 

the theoretical one (sum of the first two terms in Eq. (22) with the param- 

etrization in footnote 17 ). The theoretical curves as determined by the 

high M fit of the data of ref. 3 , have been multiplied by 0.9 to match the 

data of refs. 4 and 5. 
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4. The ISR results of ref. 19 compared with the theoretical curve obtained 

from Eqs . (22) and (23) (curve B) and with the one obtained from adding to curve 

B the contribution of the PPP term of Eq. (24). Curve D is the contribu- 

tion of the second term of Eq. (22) and curve C the sum of the first to terms in 

Eq. (22) (with the parameters of Eq. (23)). Curve E is the result 

obtained with the triple Regge model of ref. 22. 
-- 

5. The ISR results of ref. 19 at p 
1 

= 0.7, 0.8, and 0.9 GeV/c compared with 

the theoretical curve (B) obtained from Eqs. (22) and (23)) and with the one 

obtained by adding to curve B the contribution of the PPP term in Eq. (24) 

(curve A). Curve D is the contribution of the second term in Eq. (22) and 

C the sum of the first two terms in Eq. (22) (with the parameters of 

Eq. (23)). 
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