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ABSTRACT 

It is shown that the magnetic dipole and the electric quadrupole 

moments of wf meson must be equal to e/m and -e/m2 respectively 

if we demand either that the Drell-Hearn sum rule is satisfied up to 

a2 or that the helicity of wf is conserved in the scattering from an 

arbitrary electromagnetic field at high energies and at small but 

finite scattering angles. 
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I. INTRODUCTION 

wf vector bosons, which are supposed to mediate the weak interactions, 1 

have (in addition to the charge) a magnetic dipole moment and an electric quad- 

rupole moment. 2, 3 We assume that the electromagnetic interaction of the Mf 

bosons is invariant under the time reversal and the parity operation, hence the 

4 electric dipole moment is zero. The values of these moments greatly affect 

the total production cross sections, the energy-angle distributions and the decay 

correlations in the processes such as e+e- -L w+w-,5 yz --, W+W- + anything, 6 

yPz 
- PW + anything, 7 etc. Therefore if W* bosons are discovered it is rela- 

tively easy to find these moments. It is interesting to speculate what these 

moments should be. w”b 8 osons are assumed to have no strong interactions, 

hence the observable moments are expected to be not greatly affected by the 

radiative corrections, in analogy to the magnetic moment of an electron which’ 

, is given by 
8 

Pe=&e l+& ( - $ 0.328479 + . . . = ke ge . 
) 

As is well known, this is the consequence of the quantum electrodynamics of a 

spin l/2 particle assuming no anomalous magnetic moment (Pauli term) in the 

Lagrangian. The absence of the Pauli term in the Lagrangian is commonly 

believed to be due to the fact that its presence would render the theory unrenor- 

malizable. Also the concept 10 of “principle of minimum interaction” was 

invented to describe the absence of the Pauli term in the leptons and the concept 

was widely applied to the electromagnetic interaction of spin 0 and spin l/2 

hadrons. For charged spin 1 particles, 11 the principle of minimum interaction 

does not yield a unique magnetic moment,but once the magnetic moment is given 

the electric quadrupole is determined, i. e. , if /J = e(l+ K )/(2m) then Q = -eK/m2. 
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Weinberg, 12 and many others after him, proposed a theory to unify the electro- 

magnetic and weak interactions using the Higg’s phenomena. In this theory, 

the photon-W boson coupling is of the Yang-Mill type, which implies that to 

the lowest order in Q, the magnetic moment and the electric quadrupole mo- 

ment of wf bosons are given respectively by 

p = e/m and Q = -e/m2 , (l-1) 

where e and m are the charge and the mass respectively of wf. 

In this paper we show two additional arguments which can be regarded as 

supporting the values of p and Q given by Eq. (1.1). The first is to consider 

the Drell-Hearn sum rule, 13,14 

(1.2) 

where s is the spin of the particle (s=l for W), fl,(w) (or aA( is the total 

cross section for y + ? with the spins of y and W parallel (or antiparallel) to , 
\ 

each other in the laboratory system, and w is the incident photon energy. Now 

if the sum rule is true, it must also be true for each order in cx. The right 

hand side starts with terms of order o’ because the W is assumed to have no 

strong interaction. Thus as pointed out by Weinberg, 14 the term linear in a! 

in the left hand side must vanish. This implies that to the lowest order in CL!, 

all non-strongly interacting particles have magnetic moments given by 

p. = se/m . (1.3) 

Since the magnetic moments of a particle and an antiparticle must have the 

same magnitude and be opposite in sign, we must have 

&g( 1+ ala + a2cr2+...) . (1.4) 
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Substituting (1.4) into the left hand side of (1.2), we obtain 

47r22a3s (a +aa +...) 2 
m2 1 2 , 

which does not have terms proportional to (Ye. Hence terms proportional to 

o2 in the right hand side must vanish. 15 a2 terms in the rhs of (1.2) are just 

the spin dependent part of the lowest order y+W Compton scattering cross sec- 

tion, which in general depends upon p and Q. In Section II, we show that the 

integration in the rhs of (1.2) diverges if either p #e/m or Q# -e/m2, but when 

,U = e/m and Q = -e/m2, the integration in the right hand side of (1.2) yields 

zero. 

Another argument, which we shall present in Section III, is the helicity 

conservation. 16 The argument is not very convincing but interesting. Nature 

seems to like helicity conservation at high energies. We show that the helicity 

of W’ is conserved in the scattering of W* from an arbitrary electromagnetic 

field at high energies and at small but finite angles, if and only if p = e/m and 

Q= -e/m2. This argument gives also /.L = e/2m for an electron (or muon). 

However for a spin l/2 particle, the helicity is conserved at high energies and 

at all angles if and only if ,u = e/2m, whereas for a spin 1 particle even if -- 

p = e/m and Q = -e/m2, the helicity will not be conserved unless 9 << 1. This 

fact is due to the conservation of angular momentum. Therefore we can not 

demand the helicity conservation in the electromagnetic scattering of a spin 1 

particle unless 0 << 1. 

In Appendix A, we discuss how to identify various form factors in the 

manifestly covariant vertex functions with the charge radius, magnetic dipole 

and electric quadrupole moments commonly used in the nonrelativistic nuclear 

physics. 
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II. DRELL-HEARN SUM RULE 

In this section, we study the Drell-Hearn sum rule (1.2) for W* bosons 

with arbitrary magnetic dipole and electric quadrupole moments. We consider 

the sum rule in the order o2 , in which case the total cross sections ap and 

gA in (1.2) come from the lowest order Compton scattering. We shall show 

that the integral (1.2) converges if and only if ~1 and Q are given by (1.1) and 

when it converges the integral vanishes. 

The Feynman rules for the quantum electrodynamics of W bosons with 

arbitrary 1-1 and Q have been given by H. Aronson, 7 and are shown in Fig. 1 

and Table I. There also exists a four-W direct coupling term but this is not 

relevant in our calculation. When the W bosons represented by p and p’ in 

Fig. 1 are on the mass shell the vertex function V can be written in a simpler 

form as follows: 
I 

ie I@i-P’), \gop 

pt2=m2 

+ (l+K +h) 1 * 
J 

(2.1) 

The matrix element of a current operator J,CO) can be written as 

(2.2) 

where E’ h, (or eh) is the polarization vector of ‘i;i (or c) with a helicity h1 (or h). 

In the appendix, we show that the parameters K and A are related to the mag- 

netic dipole moment by 

j-4 = e (l+K +A)/(2m) (2.3) - 

and the electric quadrupole moment by 

Q = -e (K -h)/m2 . (2.4) 
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We note that the expression for Q given by Aronson 18 contains an error. In 

the appendix we also show that the mean square charge radius of a charged 

vector particle having a vertex function (2.1) is given by 

R2 = (K +A)/m2 . (2.5) 

It can be shown from q l? = p h’h 0, invariance under parity and time reversal 

and p* l h = p’s EL, = 0 that I’:,, has a tensor structure 

(2.6) 

where G,(q2), G2(q2) and G3(q2) are real functions of q2. Thus Eq. (2.1) can 

be regarded a particular form of (2.6) due to a specific assumption about the 

form of the Lagrangian. Since W’s are assumed to have no strong interaction, 

the only quantity which can have the dimension of q2 is m2, hence G’s 

are in general functions of q2/m2 and the dimensionless quantities such as h 

and K. For example (2.1) gives 

G,(q2) = 1 + i A q2/m2 , G2 = l+ K +h, and G3 = -A . (2.7) 

If one assumes other forms of Lagrangian, G2 and G3 may also be functions of 

q2/m2 instead of being constants. These considerations are important when 

we discuss the helicity conservation in the next section. 

The terms proportional to h in Table I can be regarded as anomalous be- 

cause they can not be derived from the principle of the minimal interaction. 

As emphasized by T. D. Lee, 11 the terms proportional to K should not be 

regarded as anomalous because the free Lagrangian, Lfree, is not uniquely 

defined for a spin 1 particle and one gets different values of K from different 

expressions by Lfree by replacing in Lfree, 8/dx Since the 
P 

- 8/8xp - ie A . 
P 
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purpose of this paper is to show that ~=l is more normal than other values, it 

is convenient to define a new parameter 

TjGK-1 . (2.8) 

In terms of q and A, the magnetic moment ,u and the quadrupole moment Q can 

be written respectively as 

and 

P = (2 + 17 + WdW-4 , 

Q = - (1 + q - A)e/m2 . 

The Feynman diagrams for the Compton scattering are shown in Fig. 2, and 

the matrix elements can be written as E o.e I* e el flp *vM 
PQVP’ 

where 

(2.9) 

Ma, Mb, and MC correspond to the diagrams a, b, and c respectively of Fig. 2 

and they can be written as follows: 

Ma = 1 [(k-p) g 
Ct@VP 2xc pw 

+nk g ---?Lg 
PI-la! m2 PQ 

- m2 kp! 1 
Wk) (P’+k’)o 

m2 h 2p: %p - @‘-k’b gvp - 2kb gvo 

+77 g ( pv k:, - gc7Y kp 1) - 3 [gpy (w-Q - m2k;) 

+ m2g lJukb - p;p;kb +p;k;kb II . (2.10) 
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+ 2k’ g a! vp - V+P)~ gVa! + r7 (g,,kZ, - gcuvk;) 

h -- 
m2 I -m2gpvkk + gva ( m2k’ 

P 
- y@+Wp) + p,k~(p+k’) 

P 

@-k’) W-k), 
m2 )[ 

2P’ g p op - (P’+Q gpp + 2kpgp + r (gcpkp - gppkJ 

-- i2 {Ppp (m2k,-YtP’+k)u) - m2gpg k + p;kp@‘+k)g)] . (2.11) p 

MC is the seagull term U divided by ie2 in Table I. In the above equations, we 

have introduced the notations 

.x = k.p = k'.p' and y = k'.p = k.p' . (2.12) 

We have ignored the terms proportional to k p’ pas k; and pi because they yield 

zero after contractions with the polarization vectors. We have also ignored the 

terms proportional to kQ! and pF because in the Drell-Hearn sum rule we are 

interested only in the polarization vectors of the initial photon and the target 

W boson which are orthogonal to k and p. We choose the coordinate system in 

which the incoming photon direction is the z axis and the scattering takes place 

in the xz plane: 

k = (0, 0, 0, w) , 

k’ = (o’, W’ sin 8, 0, W’ cos 0) , 

P = (m, 0, 0, 0) , 

x=mo 

and y=mw’=mw/l+wm [ -l(l - cos e,3 . 

The helicity of the incident photon is chosen to be +l, 

e=--L 
Jz to, 1, i, 0) , 
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and the spin of the target W boson is either parallel or antiparallel to the inci- 

dent photon direction 

$ = 7 -L (0, 1, fi, 0) . 
h 

The relative phases between e, et- and E- do not enter into our problem, 

hence we may let E+ = e and E - = e *. The difference of the two differential 

cross sections is then (we have ignored the difference between upper and lower 

indices for simplicity) 

%- da 
&A - = e e*, (eae*,, - ezeal)- 

1/P /mvp”;‘a’v p’ l 

We have done this calculation using the algebraic computer program written 

by A. C. Hearn. 18 The results are too long to be reproduced here. However 

for the case 77 = h = 0, both the calculations and the results are fairly simple 

and we shall treat this case separately. When either hf0 or A=0 andn # 0, we 

need only to pick up the terms which are the most divergent and this can be done 

without using a computer. For this purpose, let us define 

po!vp M;‘o!‘vp’ 

and 

x = e/Je;l @&I - e&p) XpEclaac’ * 

x is dimensionless and can be written as 

x =c 
I cs 

cQcsy ’ 
Q +c+s=n 
Q-4 
c> 0 
Go, 1 

(2.14) 

(2.15) 

(2.16) 
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where 

z = le.kl12 = le*.kl12 = le.pl12 = le*.pl 12=+w12sin20 . 

C 
Qcs 

is a constant. The condition n=Q-ttis is obvious fi corn the dimensional 

consideration. The conditions Q > -4 and c> 0 can be seen easily from the - - 

matrix elements. s = 0,l can be understood in the following way: The fourth 

rank tensor x 
/.lp’cw’ can be constructed from the metric tensor g and available 

vectors p, p’, k and k1 of which only three are independent. Since p and k are 

orthogonal to e and e*, we need to consider only the matric tensor g and the 

vector kl. The tensor k1 k’ k’ k1 
/J P’ o! Q! 

, yields zero after contraction with the polari- 

zation vectors in (2.15). Hence only s=O and s=l contribute to x in (2.16). 

In order to see energy dependence of (T -(T we integrate xQ ycz ‘/m 2n 
P A’ 

with respect to the solid angle. The results are: 

and 

and 

s=o 

I 3 yC/m 2n d cos 8 w~i 

(w/rn++‘-l /(c-l) = (W/m)n-l/(c-l) 

(w/m)” Qn @u/m) = (u/r$-l Qn @w/m) 

Z(w/m)” = 2(dQn 

s=l 

s xQy ‘z /m 2n 
d ~0s 8 ,-m 

(u/m)Q+c/(c2+c) = (o/m)n-1/(c2+c) 

(dm)” h (&d/m) = (u/$-l Qn t2dm) 

- 10 - 

if c>l, 

if c=l, 

if c=O. (2.17) 

if c>O, 

if c=O . 



In general the most divergent terms are those with the maximum n and the 

minimum c. However in the following we shall show that when s=O and c=O, n 

is necessarily small, n< 0, whereas the most divergent terms are n> 2 unless - - 

A=0 and7 =O. Therefore the case represented by (2.17) can be dropped from 

the consideration. Now in all other cases the energy dependence is either 

n-l n-l w or w Q&2 
m’ and these two energy dependences can not have mutual 

cancellations. Therefore we need only to consider the terms with the maximum 

n without having to worry about the possible cancellations by terms which have 

a smaller n but with a different c. 

We first establish the above mentioned fact that only terms with nt0 can 

have s=O and c=O. Only the matrix element Mb can give c=O. Since we are 

interested only in the terms with the largest n and the smallest s we can ignore 

all terms containing m2, y, kl p1 p, p, kh and ph in the numerators of Mb. With 

this simplification, the part of Mb which we are interested in is 

Mb -L G’+rl+N /mvp-- 2y II 
2pvkpg-ap + xgvIygpp G+rl+h)] . (2.18) 

Substituting this expression into Eq. (2.14), we note that terms contracted with 

gPP’ 
has nl0. In order to consider the terms contracted with p1 pp&,/m’, we 

note that 

which does not contribute to the s=O, c=O terms in x. This proves that only 

terms with n < 0 can have s=O and c=O. This fact assures us that the most diver- - 

gent terms in x are those with the maximum n if n,,? 2. 

Our next task is then to pick up terms with the largest n. Before doing this, 

we note the following properties of the vertex function V given in Table I. 
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where A 
WP 

is independent of n andh . The following can be easily verified: 

(a) P,C~~~ = 0 and p&Cclop = 0 . 

These relations are true even when p1 and p are off the mass shell. 

Hence the tensor pI;,pb/ m2 in the spin sum in (2.14) as well as the similar 

terms in the W boson propagators, (p+k$ (p1+k1),,/m2 in (2.10) and 

(p-kl)p (p’-k& /m2 in (2.11)) do not contribute to the h4 terms lin x . 

(b) poBpolp f 0, pbBFcrp+ 0 but p,p;3Bpap = 0 if q2=0. This means 

that in considering the most divergent n4 terms in x we may ignore ppbl/m2 

in (2.14) but have to retain (p+k’p (pl+k1)c/m2 in (2.10) and (p-kl)p @I-kb /m2 

in (2.11). 

w P A Q! pap i. 0: ppcIop # 0 but P~P@~~~ t 0 if q2=0 . 
, i’ \ . 

Case h f 0 

Using (a), we see immediately that the most divergent terms, when A# 0, 

are proportional to h4/m8 and the seagull diagram does not contribute terms 

of this order’to x . After some simple calculation we find terms which are 

proportional to h4/m8 in x and the result can be written as 

- 6x3y+9x2y2 - 

m8 
. . . . (2.20) 

After integrating with respect to the solid angle, we obtain 

2 
-A(W) ----&q A 

2m 
(2.21) 

which shows that the integration (1.2) diverges when h # 0. 
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Caseh=O, 7j#O 

Using (b) , we see immediately that the most divergent terms, when h = 0 

and n # 0, are proportional to r] 4/m4 and the seagull diagram does not contribute 

terms of this order to x. After some simple calculation we find the most 

divergent part of x and the result can be written as 

(2.22) 

After integrating with respect to the solid angle, we obtain 

o,td - a,td 
-a! 2 4 

--17 w-~ Brn2 
(2.23) 

which shows that the integration (1.2) diverges when n # 0 . 

Case h=O, q =0 

In this case, the matrix elements are very simple and the cross section can 

be expressed as follows 

(2.24) 

dcA d7 
-=-&+$$~(;-$+$+ 6-4(;+:)+2$] (2.25) dS-J 

From these two equations one can show easily by an explicit calculation that 

(2.26) 

We conclude that both 7 and h have to be zero in order that the Drell-Hearn 

sum rule is satisfied. 
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III. HELICITY CONSERVATION AT HIGH ENERGIES 

In this section we show that in the electromagnetic scattering of a charged 

spin 1 particle the necessary and sufficient conditions for the helicity conser- 

vation at high energies and at small but finite scattering angles are q = 0 and 

A = 0. This can be demonstrated by an explicit calculation for each helicity 

amplitude. In this section we shall use the coordinate system shown in Fig. 3, 

where p, p’ and q have the following components: 

q = (0, 0, 0, 2p sin:) 

p= ( E, pcos;, 0, -p sin:) 

p’ = E, p cos 9 , 

The helicity states of the incident and outgoing W’s can be represented by the 

vectors: 

IF-k> = c+ =-JL (0, sin p, 8 
& 

-i, cos - 1 2 ’ 

IF-> = Es =g 
( 0, sin:, i, cost , > 

IFo>= co= (J?-,gcos:, 0, -EsinG) , 

IF;‘+> = ET = -1 (0, sin:, i, 
+ 4 

-cos - i) , 

[St-> = ET = -L (0, sin;, -i, -cos 2 
- Ji 

) 2 ’ 

Isi;*fo>= gb= (em, g co+, 0, zsin$ 
> 

l 
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Let us define the helicity amplitudes by 

l?$h E e-l <jijih’l JP’sh> = E’* h’fj ‘ha vpacj/(ie) 

= - (p+p’), [Gl$ . eh - hm -2 (q’ ‘$)&is Eh) -g (El.$t EL: - cj,$ q- Eh) 1 
(3-l) 

where 

g=l+K+h, G1 = l-2A p2m -2 sin2 $j 

and V 
l-w 

is the vertex function defined by Eq. (2.1). In our frame qo=O, hence 

from the current conservation, qoJo=q3J3, we have J3=0. Thus we need to con- 

sider only the matrix elements of Jo and J* = r (J, f iJy)/(2)1’2. Because of 

the symmetries, not all 27 helicity amplitudes are independent. From the 

invariance under the reflection, y - -y, we have 

r;,, = t--l) 
h-h’ ro 

-h’-h 

and 

r& = t-l) 
h-h’+1 ET 

-h’-h * 

(3.2) 

(3.3) 

This can be shown in the following way: Let us use Ih> and Ih’> to represent 

the spin states of the particles at rest. Then the helicity states can be written 

as: 

J2 e-igK31h, 
(3.4) 

(3.5) _ 

where 5 = sin h-‘(p/m), e 
-i[K3 

is the boost operator in the z direction which 

is the axis of quantization of the state and e 
-i (7r/2 + 8 /2) J2 

is the operator to 
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rotate the z axis to the direction of Ffor the initial state and exp [-i(:-tjJ3] is the 

similar rotation operator for the final state. Under the operation Y = pe -i rJ2 , 

where 9 is parity operator, we have 

Y JOY-’ = Jo , (3.6) 

YJ*Y-1 = -J* , (3.7) 

and 

Y I-i;h> = np(-l)s-h I Fh> , 

Y I s’h’> = qp(-l)s-h’ 1$-h’> , 

(3.8) 

(3.9) 

where 77 
P 

= -1 is the parity and s=l is the spin of the particle. The last two 

equations come from the facts that Y commutes with exp i [-.(g+ijJ2], ewitK3 

J2 
I 

, and 

Y Ih> = ?-/p(-l)S-hI-h> . (3.10) 

We note that (3.8) and (3.9) are satisfied by our polarization vectors E h and CA,. 

For example changing the sign of the y component of E+ yields -E . The desired 

relations (3.2) and (3.3) follow immediately from (3.6) through (3.9). 

From the hermiticity of the current operators Jo, Jx and Jy and the invari- 

ance under time reversal we have 

and 

$‘h = t-l) 
h-h’ o 

rhh’ (3.11) 

r;‘h = t--l) 
h-h’ + 

hht * (3.12) 

Let us derive these two relations in the following. Under the time reversal 

operation, we have 

T(J,, Jx, Jy) T-l = (Jo, -Jx, -Jy’ (3.13) 
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and 

where 

Ihz>T =TIhc>= e 
-i.lrJ2 

IhF> . 

Substituting (3.15) and (3.13) into the left hand side of (3.14) and using 

eiTJ2(J o, -Jx, -Jy) e -iTJ2 = (Jo, Jx, -Jy) , (3.16) 

(3.14) 

we obtain 

0* 
‘h’h = $‘h 9 

X* 
rh’h = r;‘h and (3.17) 

On the other hand the hermiticity, JE= JP gives the following results: If 

then 

-i[K3 
e lb , (3.18) 

7T 

rush = 
iZ+8'J 

<hle 
W3 

,2 2, 2 e J ,%- 2’ 
!t'J 2 e-iEK3 

P 
Ih,> . (3.19) 

In (3.19) the particle with the helicity h (or h’) is moving in the direction of T 

(or 3 ). In the right hand sides of the desired relations (3.11) and (3.12), the 

particle with the helicity h (or hr) is moving in the direction of 3 (or s). If 

we rotate the coordinate system around the z axis by BOO, c! becomes Tand 

vice versa. Inserting e iJ3n ,-iJ 7r 3 between all adjacent factors in (3.19) and 

using 

e 

/ 
i(K3, ei(3$J2 -i(g-$)J2, J 

,e 
J J );J3n. 

0’ x’ y 

/ 

= e 
\ 

=3 -iE+YJz 
,e , e 

WJ2, Jo, -J -J ) 
x’ y ’ 

-iJ 7r iJ 7r 
e 2 (Jo,‘-Jx, -Jy) e 2 = (Jo, Jx, -Jy) 
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and 

-iJ r 
e 3 Ih’> = (-l)h’ Ih’> 

we obtain 

rh”;h” * = C-1) 
h-h’ ro, x 

U’ and r gTh = (- qhBh’+l rY,, (3.20) 

Combining (3.17) with (3.20) we obtain the desired relations (3.11) and (3.12). 

The consequence of the four symmetry relations given by (3.2), (3.3), (3.11) 

and (3.12) is that we need to consider only 10 amplitudes instead of 27; the 

relations between various amplitudes and the expression for all amplitudes are 

given below: 

Helicity conserving amplitudes @=h’) 

rk=r” = 2E 
1 

cos2 1 + A 
2- 2m2 

p2 sin2 6 
-- 1 

$0 
-2E2mw2 sin2 -? 2y- 4kE2p2m -4 1 sin4 a * 

2J 

rL=-r- 
-- 

= -zip COS S & 
2L1 

(aos2 i + hp2 sin2 0 
2m2 I 

-2+gp sin8 ,sini+ 1 ( 
1 

c 

r+ -- 
= _ ri+ = -2s~ ~0s $ 

2 
cos2 i + hp sin2 6 

2m2 1 -2-i gp sin 19 1 
\ 
sin i - 

1 
+ - 1 

’ roe = -roe = -2”~ cos 2 l- 2E 
\ 

f sin - 9 sin-$ sin8 

Helicity nonconserving amplitudes (h-h’ # 0) 

Double helicity flip Ih-h1 I= 2 

C- 
= ry+ = 

1 sin2 8 1 
C- =r+_+=-r; =-rI+= sin2i-ihp2 mm2 sin2 8 1 +2-$gp sin ,9 sin-$ 
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Single helicity flip Ih-h’ I = 1 

0 ri+ = -ri- = -rzo = rso 

= 2E C GI2-‘E -1 m sin 0 + hZsEp m 2 -3 sin 9 28 -$ sin z-2 1 2 gpm -lsinB 

rzo = -ri+ = -r; = Co 

= 2+p cos $ GI2-‘E m 
II 

-1 1 

sin 0 + 2%Ep 
2 -3 m sin 8 sin2 s 2 1 

-1 - @pm sini - 2 1 - sin i 2sin2 i 

+ 
r-0 = - -rd. = r;, = -r;+ 

-2%~ -1 = cos 4 sin 8 + 1 2 22AEp -3 m sin 8 sin2 $1 

+gEpm -1 sin i (1+ sin t - 2sin2 4 

From these amplitudes we observe the following: 

1. When 8 << m/E, all the helicity nonconserving amplitudes become 

negligible compared with the helicity conserving ones independent of values of 

g and A. Hence no conditions on g and A can be obtained under this condition. 

2. If we demand that the helicity is conserved even when 8 M m/E << 1, 

then we obtain g-=2 and h=O. We note that the amplitudes with double helicity 

flip yield only the condition h=O, because the terms proportional to GI and g 

are small as long as 8 << 1. 

3. When g=2 and h=O, the helicity is conserved as long as 0 -=K 1 and 

m/E << 1. 

This concludes the demonstration of the fact mentioned at the beginning of 

this section. We have considered the scattering of wf by an electromagnetic 

field in the lowest order in 0~. In the actual scattering, an infinite number of 
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photons are exchanged. However in the electromagnetic scattering of a charged 

particle at a finite angle, it is most probable (because of l/G for each photon 

propagator and qI+q2f.. . +qn+ . . . = q) that practically all the momentum 

transfer is carried by a single photon and the rest of the photons (an infinite 

number of them) are soft (i. e. , small angle scattering). Now the small angle 

scattering does not flip helicity as observed in 1 above. Thus we expect our 

result to be true even if an infinite number of photons are exchanged. The 

restriction 0 << 1 comes from the angular momentum conservation. In order 

to see this, let us consider the extreme case 0 = r, which corresponds to the 

brick wall system discussed in the appendix. In the brick wall system the con- 

servation of angular momentum in the helicity amplitude TL,h (i= 0, *l) gives 

i+h+h’ = 0. Hence in order for the helicity to be conserved in the 180’ scat- 

tering we must have i= -2h, which is impossible if h=&l. In the electromag- 

netic scattering of a charged spin l/2 particle, the helicity is conserved at 

high energies even at 8 = 180’ if p = e/2m. 
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IV. CONCLUDING REMARKS 

We have shown that the special values of the magnetic dipole moment and 

the electric quadrupole moment given by (1.1) for the charged W boson have 

two desirable features: (1) satisfaction of the Drell-Hearn sum rule in the 

orders Q! and ~2 and (2) the helicity conservation at high energies in the electro- 

magnetic scattering. These two features are also shared by the only known 

charged nonstrongly-interacting particles: the electron and the muon. How- 

ever it is quite possible that nature is more complicated than what we think it 

might be. For example vrf bosons may have an electric dipole moment which 

violates both F and T in-variances, or they may interact strongly among them- 

selves. Indeed Salzman and Salzmann’ suggested that the small CP violation 

in the decay of K2 may be due to the existence of the electric dipole moment 

ofVC+ d an many people8 have considered the possibility of strong interactions 

among W’s in order to overcome the.divergence difficulties of the weak inter- 

action. If P and T invariances are violated, the Drell-Hearn sum rule has to 

be rederived. If W has strong interactions among themselves, then the right 

hand side of Eq. (1.1) will be dominated by the terms of order a, and in this 

case the magnetic dipole moment is no longer p= e/m. A large deviation from 

this value will indicate the existence of the strong interaction of W. The values 

of p and Q given by (1.1) are of course what the unified theory of weak and elec- 

tromagnetic interaction of Weinberg et al. 12 
-- gives. The arguments given in 

this paper can therefore be regarded as rendering some extra supports for 

such a theory. 
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APPENDIX A 

MAGNETIC DIPOLE AND ELECTRIC QUADRUPOLE MOMENTS 

AND MEAN SQUARE CHARGE RADIUS 

In this appendix we discuss the problem of identifying various form factors 

in a relativistically covariant vertex function with the electric and magnetic 

multipole moments defined in the nonrelativistic nuclear physics. Fully rela- 

tivistic multipole expansion of an electromagnetic vertex function has been 

treated by Durand, DeCelles and Marr3 (hereafter referred to as DDM) in the 

helicity formalism. However it is not immediately obvious how the multipole 

moments defined by DDM are related to the multipole moments commonly used 

in the nonrelativistic nuclear physics. Of course there is a one to one corre- 

spondence between the two, because in both cases the multipole moments are 

defined by the, rotational properties of various irreducible tensor operators. 

Therefore in principle we need to know only the proportionality constants be- 

tween the two conventions. In the nonrelativistic nuclear physics the electric 

quadrupole moment Q is defined as 

Q = $<ss I (3z2-r2) p(7) ISS> d3x = 21 <ss lr2p(‘i?) p2(cos 0) Iss> d3x 

(A. 1) 

where I ss> represents the E &ate with spin s and sz=s, and p(z) = Jo(O, y) is 

the charge density operators normalized such that 

I <ssz Ip(z) I ssz> d3x = e . (A. 2) 

The mean square charge radius is given by 

R2= J <ssz lr2p(i?) I ssz> d3x/e . (A.3) 
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The magnetic dipole moment F is defined classically by its energy in the mag- 

netic field 2, 

Energy = - F. g . (A. 4) 

In quantum mechanics, the interaction energy between a current J,(O, y) and 

an electromagnetic field AP(O, y) is given by 

/ J+O,‘i;) A,(O, 2) d3x . 

Let the electromagnetic potential AP(O, 2) in (A. 5) be 

(A. 5) 

Ao=O and T = (&x-i&y) e -ic. F,2& 
(A- 6) 

where q= hzq . Then the magnetic field is 

gz ~x~=-i~X~ . (A. 7) 

Substituting (A. 7) into (A. 4) and (A. 6) into (A. 5) and equating the two expressions, 

we obtain 

p = lim L 
.--f - 

_ q-o q) Jym e -1q’rd3x . 

Applying the Wigner-Eckart theorem, we have 

p = <sslp,lss> = <ss I10 ss> 
<ssp 1 ssz> lim L <ss;/J (O,~)lssz> e -iq. Fd3x . 

q--o qd - 

Equations (A. 1, A. 2, A. 3, A. 8) define the quantities e, QK2 and 1-1 in terms 

of matrix elements of nonrelativistic quantum mechanics in which the particle 

is assumed to be infinitely heavy. 

Our next task is to find out the relationship between these nonrelativistic 

matrix elements and the relativistic vertex functions. Let us choose the helicity 

amplitudes in the brick wall system for this comparison. The desired relation 
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is then 

eI’$h/(BE) E < -zhl IJ~(o) I Fh>/(2E) 

s+s’ 
- (-1) z / as; IJP(O, 2) Issz> e 

-iTa 2 d3x 

q/m- 0 
(A. 9) 

where 

s = spin, sz=h, s’ z-h’ 
Z , z= 2F, 

and 

E = (p2+m2)’ o 

s+s ’ 
The factor (-1) ’ comes from the fact that in the nonrelativistic quantum 

mechanics, we have quantized the spin states of both the initial and final states 

along the direction of c, whereas in the helicity representation the final state 

is quantized along the direction opposite to q, thus 

-iJ2r 
Ih’> = (-l)S-h’l-h’> = (-1) 

s+s’ 
e ‘Is;:, . (A. 10) 

In this appendix we have chosen qP=(p -P’)~ which is opposite to the convention 

used in Fig. 1, because we want to use the convention of DDM in the definitions 

of the helicity amplitudes. Throughout this appendix we shall use q to represent 

I ;I. The over all normalization and the sign of the left hand side of Eq. (A. 9) 

can be checked by using (A. 2). The factor 2E is put there so that when the 

form factor for a spin 0 particle is unity we obtain R2=0. The brick wall system 

was chosen because (1) in this frame qo=O for the elastic scattering, hence from 

the gauge invariance (q. Jo=qJz) we have Jz=O, (2) the selection rule due to the 

conservation of the angular momentum is very simple, namely, if we write 

r* h,h where A=&l,O, we have A+h’+h=O. 

The magnetic moment p can be calculated readily from (A. 9) and (A. 8). 

In order to calculate Q and R2 we perform a multipole analysis of the left hand 
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side a la DDM, and compare the results with the multipole analysis of the right 

hand side using the nonrelativistic quantum mechanics. The helicity amplitude 

r@) hlh can be obtained from the vertex function given by Eq. (3.1) except that 

the sign of q is changed and the helicity states now have the following repre- 

sentations: 

E+ = -2-+(O, 1, i, 0) 

E _ = 2-%(O, 1, -i, 0) 

eO = (P/m, 0, 0, E/m) 
(A. 11) 

E’=E 
+ - 

E’ = E + 

cb = (p/m, 0, 0, -E/m) 

After straight forward calculations we obtain 

ro+= -2pEg/m , (A. 12) 

0 

roe = 
-2 Gl-g+%E2/m2 , i3 

(A. 13) 

and 

f+ = 2EGl . (A. 14) 

From (A. 8), (A. 9) and (A. 12)) we obtain 

<ll(lOll> 1 
P = <lO( l-111> q - t-11 2 G+ 

= eg/@m) = e(l+K +h)/(kI) . (A. 15) 

To obtain R2 and Q we first decompose I’:,, into multipole moments using 

Eq. (109) of DDM: 

%‘h = 

1 0 

h1 o :‘Qo+(;, 1 3Q2 ’ (A. 16) 
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Using (A. 13), (A. 14) and (A. 16), we may write Q. and Q2 in terms of lYio 

and 1’~-1: 

&o = (-rio+2ro+ /(3)li2 

2p2/(3m2) (Gl - g + 2hE2/m2 )I . (A. 17) 

Q2 = (ri, + r”+j (3110) 
-l/2 

= -4Ep2mT2 (Gl -g + 2A E2/m2) (3/lO)-1’2 . (A. 18) 

The right hand side of Eq. (A. 9) can also be expanded in terms of multipole 

moments in the following way: We first expand the exponential factor 

exp (-iTo F) by 

e-i<* F= e -iqr cos e = y (-i)J (2J+l) j,(qr) P J(cos 0) (A. 19) 
J=O 

From (A. 19) we may write the right hand side of (A. 9) as 

(-l)l+sh $ <ls~IJo(O,~)I1sz> e -ic. Y d3x 

/ 1 0 l\ 
ZC 

\ h 0 h/ 
Qy+ (A. 20) 

where 

Qy(q2) = '2T1i(;) 
J 

1 
s 

< ss i p(Z) P J (COS 8) I SS> jJtw) d3x . (A.21) 
\-s 0 s 

Expanding the spherical Bessel functions up to q2, we obtain 

and 

j,(qr) = 1 - < 2r2/6 (A.22) - 

j2(qr) = z2r2/15 . (A. 23) 
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From (A. 9, A. 16, A. 20, A. 21 and A. 22), we obtain 

eQO/W) = Qy = 3; (1 - <2~2/6) e (A. 24) 

From (A. 9, A. 16, A. 20, A. 21 and A. 23), we obtain 

e&,/W9 = QF = -(5/6)1’2 Qq2 . (A. 25) 

From (A. 24 and A. 17), we obtain 

R2 = (K + A)/m2 . 

From (A. 25 and A. 18), we obtain 

(A. 26) 

Q = -e(K-h)/m 
2 

. (A. 27) 
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TABLE I 

The Values of V and U (1’ = h/m2, K=7j+l) 

V 
PQ@ 

= ie g,p(p+p’ + A’p’. qp-A’ pa q~‘)~ 
C 

- ga,$?-K q+A’P’*qP-h’P’*Pq$ 

- gplL@‘fKq-h’P’qP’~~‘p’*ps), 

- h’PpP;qp + A’PhqaPp 1 
= ie [ gapb-Wp - g,,@-4)p - gpp@W, 

+Tk q a/A p - QLqcJ 1 
f hm -2 

[ 
gapW*qP/yP.qP’J - g,,@‘*qPp-P’*Pq& 

+ g@JP* qP;-P’*Pqa) - PclP;q~+P;qoLPp 1 
U 

PVW 
= -ie2(2g pv g o!p - %/Fpv - %vy3J 

-ie2 A’ gClvq$.k-4’)~ W-P) - gappv WP’+q’*P) 
{ 

-+g avgpEr(q*P+q’*P’) - g+ [qv W-P), - q/‘&P’-P&j 

+ gpv 
[ 
pp(q-q’Ja! - Pk(q-q’$ 1 + gpv (q,P;+ qhPp+ q;PL - q;p;, 

-g,v(q~cI-q~Pp+qpp~+q;3pp ‘) - gpp”:qa -p;qv +P,q,+P;q;) 

+gpo! v p pv @ q -P q +qpp:+q&pu)) 
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1. Feynman rules for the quantum electrodynamics of wf bosons. 

2. Lowest order Feynman diagrams for the Compton scattering. 

3. The coordinate system used in the discussion of helicity conservation. 
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