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Abstract 

The eikonal approximation is used to investigate the forward 

one-Fermion matrix element of the bilocal operator that appears 

in the most singular term of the canonical light cone current com- 

mutators for the Fermion-neutr\al vector gluon model. The rela- 

tionship exhibited between this matrix element of the bilocal oper- 

ator and the leading behavior of vW2 allows results to be obtained 

for vW2 in this model. A simple set of graphs contributing to the 

matrix element of the bilocal operator is calculated. This gives 

a result for vW2 in agreement with explicit calculations in pertur- 

bation theory for the corresponding set of graphs of vW2. 
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1. Introduction 

The determination of the structure functions for deep inelastic electron- 

proton scattering is of great theoretical interest. Insight may be gained by ex- 

amining simple field theoretic models. In particular, the inelastic structure 

functions have been studied for a Fermion-neutral vector gluon model in per- 

turbation theory. 1-3 

In this paper, I would like to suggest that the eikonal techniques may be used 

to investigate the bilocal operator that appears in the most singular term of the 

light-cone current commutators in the Fermion-neutral vector gluon field theory. 

Since the forward one-Fermion matrix element of this bilocal operator can be 

related to the leading behavior of vW2 (as -q2 - co, w fixed), the behavior of 

vW2 can be investigated by the method. In particular, the contribution to this 

matrix element of the bilocal operator corresponding to structureless gluon graphs 

can be easily calculated in the eikonal.approximation. The results obtained in . . . 

these approximations for vW2 agree with the explicit calculations in perturbation 

theory made for the relevant graphs of vW2 by P. M. Fishbane and J. D. Sullivan3 

In Section 2, the form of the bilocal operator will be obtained and the rela- 

tionship between the forward one-Fermion matrix element of this bilocal operator 

and vW2 will be derived. In Section 3, the eikonal approximation to the bilocal 

operator matrix element will be obtained and various approximations made to ob- 

tain numerical results. The relationship between the matrix element of the bi- 

local operator and vW2 is used to obtain a result for vW2 within these approxima- 

tions. In Section 4, the approximations are discussed and further calculations 

sugge sted. 

-2- 



2. The Bilocal Vertex Function and Its Relation to vW2 

The electromagnetic current commutators at equal x+ have been computed 

canonically for the Fermion-neutral vector gluon theory. 4 The results are 

Now the leading term in the operator expansions as x2- 0 of the unordered 

product of.currents can be obtained from these light-cone commutators, and can 

be written 

J’(x) J” (0) 2 0 
x-o 

+ less singular terms 

where A(-) (x) is th e negative frequency part of the Pauli-Jordan commutator 

function. The most singular part of A(-) is 

OwJa 
(x 

\ 
-i 1 I’ 

47r2 x2-iex- * 

0) is determined by the light-cone commutators to be 

Opv O(x 10) = -1 (- (i.,jaq*i’“‘~~(0)-h.c~~g’ogvo+gvcg’o $J (x) Yoexp 

The connected spin-averaged one-Fermion forward matrix element of the un- 

ordered product of the electromagnetic currents is therefore 
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<plJ’ (X) Jv (“)b>csA~ 
(-1) (gl.lcgva + gpa g”“- gpv g”” > 

x =o 

R. Jackiw and R. E. Waltz have shown5 that for the one-Fermion forward matrix 

element, the T product and the unordered product coincide as x2 -0; thus we 

may write 

_o(-q (g” Cg” a + g" agpa - gl-lv g"" ) 

(2-l) 
X 

dzpA’(z) e(O) -h.c.Ip>CSA azA(-)(x) 

“0 t ) 

The bilocal vertex function is defined by 

I’ 

&x2. 

and defining D(x2, x . p) and c(x2, x. p) by 

Irn? (x2, x. p) =&D (x2, x*P)+ +c(x2, x-p) , (2.3) 

(2.2) 

the leading behavior of <p\J’ (x)J’ (O)\P>~S~ is given by 

<p(JI*W Jv t”)(p>cSAy- &0(x2, X- 3.3 (PP$ + pv ap - gpv P. a)A(x) (-) (2.4) 
x--o 

+ less singular terms 

Since this matrix element of the unordered product of currents is just the 

Fourier transform of W’” for q2 < 0, we have 
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(2~)~ $ 
/ 

d4xeiq.X<p)J’(x) J’(O)lp> pv -d-Y /c12)WL(42, 4 * P) 

(2.5) 

+ 1 M2 
I 

pppv - - 9921) (ppqv+pvqp +g 1 lJv tq * P)2/q2 
I 

W2(q29 4 * P) 

Comparison of Eq. 2.4 and 2.5 for <plJ’ (x) J’ (0)Ip>CsA gives the rela- 

tion to leading order as x2-O 

27r2G A(-)(x)D(x2, x. p)ieading * 

singularity 

(2.6a) 

Or in momentum space, the leading behavior of vW2(q2, q . p) as -q2- co, w fixed, 

is (w = -q2/2q. p)(v = q. p/M) 

v W2(q2,q.p) -qG 

w fixed 

This relation allows the determination of the leading behavior of 

&q. p W,(q2, q. p) from the behavior of the bilocal vertex function r’ as 
2 x -0. 

3. The Eikonal Approximation for the Bilocal Vertex Function 

It is convenient to use functional techniques to rewrite T’(x2, x . p) in a 

manner amenable to the eikonal approximation. For this purpose, additional 

external potential interactions are introduced. 

(2/6b) 

+ dm $(x)&x)+ %xY,4x) +pW v(x) + A’(x) BP W 
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Ii 

Then the vacuum-vacuum transition amplitude is 

z(qjj,~) 5 <oout10in>17riB = <O/T ein (x) 

A;(x)+ a,@(x)dn(x) + ~(x)@~(x)+ q(x)qin(x)+Apin 

The L. S. Z. reduction formula and functional techniques can now be used 

to rewrite T’ as 

P 

/ ,x, O;igo J/T B p’ rs , 1 L Fcrw* ,‘z’, z;igo 

C.S.A. 

where SF(x, O;igo d/b B”) is the Feynman propagator for a Fermion interacting 

with an external potential igod/dBp, i.e. , 

Finally the L. S. Z. reduction formula for a Fermion in an external potential 

i go d/b B’(x) can be used to rewrite r’ as 
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Ii 
, 

rp(x2 ,x.p)+(x2,x.p)+ f$X2,X.P) 

rz(x2j x’ P) =+2 $(X;P, A; igod/dBP)yPfi(O;p, A; igOd/dBP) 

(3.1) 

P (x2 b 2x-p ) = +tr ypS 
<P, 1 outlp, hin>d/6B 

2 [ F Cxy " igOd'dBpj] <0 out10 in>6,dB 

where 

w(:o;p, A; ig,a/aB’ > -- TO out(:j(O),p, h in’ dIbB /<O out\0 in b/N3 

and 

F(x p, 1; i g,a/dB’l) = <p, h out)p (x)10 in>d,dB /<O out10 in>alaB 

are the wave functions (for a Fermion interacting with an external potential 

ig,a/aB, (x)) that represent a free Fermion of momentum p and spin h at time 

t - - cc and t - + 00 , respectively. Also 

<p, h 0qp, h in> d/dB 

<’ outlo in>a/&Zj 

is the forward one Fermion to one Fermion transition amplitude in the external 

potential i go b/bB’ (x). 

Equation 3.1 is an exact formal expression for r’ (x2, x. p). The contribu- 

tions f”, and f L to I-” are separately gauge-invariant so it is meaningful to 
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discuss these terms separately. The Feynman graphs that contribute to r”, 

and r; in lowest order are shown in Fig. 1. 

In order to apply the eikonal approximation to r’, the frame p+-o~, 

sl = 0 (p2 = m2) is chosen and TcL (x2, x * p) is considered in the region x+ = 0 

(so x2 < 0). The eikonal approximation is now made by simply replacing 

$(x;p, h;g06/6BC1), &O;p, h;g06/6BC1) and <p, houtlp, hin>d,6B/<Oout10in>d,6B 

by their eikonal approximations. ’ 

(3.2a) 

(3.2b) 

(p’,h’ out p,hin’ ,, B 
0 out 0 in ’ 6/6B 

(3.2~) 

where ?J 6 = (O,O,l,l). 

NowI-: is more easily calculated than ri in the eikonal approximation. 

For f’ (x2 x. p) +- a ’ x -0 , x-p’ the eikonal approximation gives 
+ P -+& 

q =o 
Ccl *- 

E.A. ,ip. x 
r”, (-32; , x-p+) - - dt 

Z2W) 
3 m -$- exp (480 

P i j 0 

0 

d u ‘! 6B&q$ 
dw b 

%cl 
v dB,W 
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Using the definition of Z, 

Z(O,O, BP) = pin(x) A: (x) +dmGin(x)Gin(x) 

Rewriting Z(0, 0, BP) in terms of one-particle connected amplitudes and assuming 

that under charge conjugation, C,A(x) transforms as CA’(x) C-l = -A’(x), we have 

00 

Z(O,O,BP)=exp 
c 

@ g2” 
1 

I 
n. 0 i BPi(x) (0 i AC1 (xl) - - - 

n=O 1 J 

A 

Therefore, using this form for Z(O,O, BP) and evaluating the shift operators and 

then setting BP = 0, Eq. (3.3) becomes 

ri(-;z”L, x-p’)-E&- is < -f$ exp 

2 

2 & (gO)2n ~l[~d4xi~,~Ti 

n=O 0 

‘$d4(xi-x-y)- [d,ii”4(.i-ci~4~ - ’ d/y+4ixi - 
0 

(3.4) 

In order to obtain a numerical result, the further simplification is made 

that gluon structure is neglected so 

<ooutp (Apl (x1) * * * A/J2n (X2n)) 1 oin>-dnl(Sig~l~2,JDF(xl - x2) 
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where the representation 

-i ‘12 1 

I 
x -+ p2A- ie 

4h 1 
is used for the propagator and p2 is a gluon mass introduced to eliminate infra- 

red divergences. The contribution to rt obtained by neglecting gluon structure 

is denoted by F”,. 

The remaining integrations can be done’ to obtain the eikonal approximation 

for the leading behavior* of F”, L2 0 as xl- . 

or for the renormalized vertex function 

(3.5) 

E ikonal 
Now the contribution to D(x2, x0 p) fromFka is given by Eq. (2.3), 

(2~)~ 2 D(x2,x.p)~ 21m elpax 
x +o 

Using the relation (2.6b) between D(x2, x . p) and W2 (q2, q . p), the contribution 

to v W2 fromPpLaR can be calculated 

-i 

v W2(q2,w) iq.x 4n2 (3 
2 x -icx- 

-g2/2n2 

w fixed 

e-ix. pal 

0 
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Within the approximation of keeping only leading order terms in each order 

of perturbation theory, the Fourier transform can be reduced to 

v W2(s2, a) -f e(q- P) 
i(x- p)(l- w) -,-i(x* p)(l+w) 

2 1 
-q +oo 
w fixed -a0 

(3.6) 

The remaining integration does not give any elementary function. However, 

asl-w -O+) the leading behavior in 1 - w may be calculated. The result then 

becomes 

v w2ts2s 0) 
(1-cd)"o+ 

- g2/47 
2 1 

-q2+, 
l-w Qn (-s2h2) 

f 
(3.7) 

The structure of v W2 has been investigated in perturbation theory by making 

use of the optical theorem to relate W” to the imaginary part of the forward spin- 

averaged Compton amplitude for virtual photon-Fermion scattering. P. M. Fishbane 

and J. D. Sullivan3 have calculated, by this method, the graphs corresponding to 

the contribution from f iR due to the graphs with no gluon “structure” ( i. e. , ? tR). 

Their results are exactly the same as Eq. (3.7) near w = 1. 

4. Discussion of the Assumptions and Results 

The eikonal approximation for rt was made by eikonally approximating the 

wave functions $ and $J in a frame-dependent way, since the eikonal approximation 

keeps only the leading terms in p’ in the frame ~‘~-00, FL = 0, (p2 = m2). Since 

r “, depends only on x2 and x . p, dropping terms non-leading in p’ may not be 

justified as p’ comes into r’ only through x-p’. For x - p large, however, this 
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approximation is meaningful. Since the region x. p large can be seen by Eq. (3.6) 

to be related to the leading behavior in 1 - w of v W2 as 1 - w approaches zero, the 

results of the eikonal approximation should agree with explicit calculations of 

v W2 in the region -q2-co, 1 -w-o +. This is seen to be the case in Section 3. 

If all the graphs of v W2 are considered, three types may be distinguished: 

graphs in which the two currents act on different Fermion lines; graphs in which 

the two currents both act on the initial Fermion line (this is, of course, also the 

final Fermion line); and graphs in which the two currents act on the same line of 

Fermion propagators but this line does not connect to the initial or final Fermion 

line. Graphs of v W2 in which the currents JP (x) and Jv (0) act on different Fermion 

lines, as illustrated in Fig. 2, have no corresponding contributions in T’ (x2, x*p). 

When graphs of this type contribute to the leading behavior of v W2 in the Bjorken 

limit, the relation 2.6 between the leading behavior of v W2 and the behavior of 

.-‘c1 2 near x = 0 will fail in perturbation theory since TP has no contributions 

corresponding to this type of graph in v W2. Graphs of vW2 in which the two currents 

act on the line of propagators connecting the initial and final Fermion correspond 

to the graphs of rP contained in r “,. The relation is illustrated in Fig. 3. It is 

found in perturbation theory 193 that of these graphs, the leading behavior comes 

from the graphs in which the gluons have no structure. These are just the graphs 

calculated in F “, . 

Finally there are the graphs of v W2 in which the two currents act on the same 

line of Fermion propagators, but this line does not connect to the initial or final 

Fermion. These “pair production” graphs correspond to the graphs of rP con- 

tained in r:. The relation is illustrated in Fig. 4. The explicit calculations of 

V. N. Gribov and L. N. Lipatov’ for v W2 show that these pair production graphs 

do contribute to the leading behavior of v W2 in the Bjorken limit, so I-‘: must 
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also be calculated. A simple method to apply the eikonal approximation to cal- 

culate the leading behavior of r: (as x2- 0) has not yet been found. 
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Figure Captions 

Fig. 1. Figure la represents the graphs of r “, in order gi. Figure lb rep- 

resents the graphs of ri in order gt. 

Fig. 2. Examples of unitarity graphs contributing to WPv in a Fermion-neutral 

vector gluon model where the two currents, JP and Jv , act on different 

Fermion lines. 

Fig. 3. The correspondence between graphs of r”a and graphs of WPv . Figure 

3a represents two graphs contributing to roa and Fig. 3b represents 

the corresponding unitarity graphs of WV’. 

Fig. 4. The correspondence between graphs of ri and graphs of WPv . Figure 

4a represents a graph contributing to r; and Fig. 4b represents the 

corresponding unitarity graphs of WPv . 
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