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I. Introduction _ 

The subject of singularity structure of opcrntor products at almost light-like distances has received 

much attention in the last several years. It is a generalization of earlier studies of short distance structure 

of operator products. There has been much activity recently in the latter subject too. The idea of “scab 

invnrianc:eV’ at short and almost light-like distances, or generalizations of this idea, are central to these 

appro3ches. 

Short distance expansions of opcratar prorluct~ were introduced by Wilson’ as an abstraction of his 

studies in model field theories. These have the form 

(x-y) ,[a] (y) (1) 

Where A, B and FLaYI are local operators and #I (x-y) singular c-number functions. The index [(Y] char- 

actcrizes Lore&z as well as internal quantum numbers. To any degree of accuracy in (x-y) it is assumed 

that only a finite number of terms appear in the expansion Eq. (1). This expansion is a generalization and 

an explicitly covariant form of the Bjorkcn-Johnson-Low expansion. 2 Its applications are in studies of high 

momentum limits. The degree of singularity of the functions C 101 is given by the “asymptotic dimensions” of 

the operators involved, namely the dynamical dimcrnsion governing short distance behavior. ’ Wilson argues, 

that such dimensionality will in general be different from the canonical value as appearing in a formal 

Lagrangian consideration, unless there are special reasons against that. Thus local current algebra yields 

dimension 3 for the SU(3) @ SlJ(3) currents. The energy-momenlum tensor has dimension 4. 

The light cone expansion is an expansion of products of operators when their space-time distance 

approaches light-like separations. It was suggcstcd as a generalization of the short distance expansion, to 

study high virtual mass’ limits in deep inelastic lepton hndron scattering. It has the form 394.5 

4x) WY) &x-y) F’“‘(x,y) (2) 

where FLayl (x,y) are bilocal operators, depending on the two points x and y and regular at (x-Y)~=O. In fact, 

it turns out that they are analytic in (y-x), as follows from the spectral conditions in deep inelastic scattering. 

The expansions of the form Eq. (2) and the existence of bilocal operators were postulated to hold in nature, 

namely for the fully interacting theories. 3,4,5 It was an abstraction from Wick’s expansion for free fields 

and from the existence of such a light cone expansion in the Thirring model. 6 In the latter case the light cone 

singularities nro not canonical, but rnthcr dcpcnd on the coupling constant, Matrix elements of the bilod 

operators are directly measurable in deep inelastic scattering experiments, which exhibit simple scaling 

phenomena and therefore imply the appearance of canonical light cone singularities, 7,fJ,fJ 

Expanding the bilocal operators in 3 Taylor series, 
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We get, for each light cone singularity, an infinite number of local terms in Wilson’s expansion Eq. (1). lo 

Inversely, if we have a Wilson expansion with an infinite ,number of terms of local operators with increasing 

spin and the same singularity function C bl, we may sum them up to one bilocal operator and obtain 

generalized scaling phenomena. ~5’ 7 

Wilson’s expansions with sums like in (3a) have been demonstrated to hold in renormalizable quantum 

field theoriesI’ to any order in the coupling constant. TO any finite order, scaling is violated by logarithmic 

terms. Summation of infinite sets of diagrams considered so far show no possibility of obtaining bilocal 

operators and scaling. 12 Instead, even when one considers sets in which only power singularities appear 

(where one considers neither self-energy nor vertex corrections), the singularities near the light cone de- 

pend both on the spin n of the local operators and the coupling constant. 12 So far there is no nontrivial model 

of quantum field theory in which canonical light cone singularities are exhibited. 13 

We should emphasize that the study of light cone singularity structure emerged from the scaling observed 

at SLAC, 8 a phenomena remarkably predicted by Bjorken. l4 An earlier approach that emerged from scaling 

is the parton model, 15 followed by cutoff field theory calculations. l6 Later, “soft field theory” 16a calcula- 

tions were developed, and duality ideas were also incorporated. l7 

A very important step in the development of the light cone approach is the quark algebra structure 

suggested by Fritzsch and Gell-Mann, l8 which is to assume i?ee quark field algebra for the SU(3) x SU(3) 

structure on the light cone. This made clear the connection with the parton approach in deep inelastic scat- 

tering, and shed light on which results of the parton model are of a general nature and which dependent on 

specific assumptions peculiar to that model. * 

This paper is organized as follows. In Section II we discuss deep inelastic electron-nucleon scattering. 

In II. A we review the light cone dominance analysis, and in II. B discuss the Regge behavior in the deep in- 

elastic limit and the relation with equal-time commutator sum rules. In Section III light cone expansions of 

operator products are considered. We review the general structure in III. A. In III. B we discuss the Thirring 

model, where anomalous dimensions appear. It also exhibits the phenomena of t’softening” for composite 

operators, namely that their dimensionably may be less than the sum of the dimension&ties of the constituent 

fields, and it may also be canonical (as is the case for the currents, but not the scalar and pseudoscalar 

densities). We then review the deep inelastic scattering (III. C) and the Cornwall-Norton sum rules (III. D), 

the latter in relation with results from summations in field theory. In Section III. E we discuss the subject 

of fixed poles and the polynomial residue in the mass variables of the “photons”. In Section IV we discuss the 

quark algebra on the light cone as suggested by Frimsch and Gell-Mann. It is the light cone singularities that 
are exhibited in lV.A as for currents constructed out of free fields. The resulting bilocal operators have 

matrix elements which include all the complexity of strong interactions, and have no resemblance to a scale 

invariant theory (mass parameters and Regge trajectories play there an important role). In IV. B we review 

the results for deep inelastic scattering and discuss the asymptotic sum rules derived. In IV. C we review 

other tests of the light cone algebra as applied to nonforward matrix elements and also tests for the algebra 

of the bilocals. In IV. D we show what extra nonleading terms are needed to ensure current conservation. 

These extra terms are interaction dependent, in contrast to the leading singularity, the structure of which is 

interaction independent (it is model dependent in the sense of the kind of constituents used). In Section V we 

discuss total e+e- annihilation into hadrons and r” - ai The relation between the two following from 

consistency considerations of operator product expansions and quark schemes are reviewed. In Section VI 

we discuss single particle inclusive annihilation, namely e+e’ annihilation with the detection of the momentum 

of a given hadron in the final state. The scaling properties are reviewed. Special attention is given to the 
question of asymptotic multiplicity. It is shown that canonical light cone singularities, scaling and logarithmic 



3 

multiplicities are consistent, as follows from the singularity structure of products of two electromagnetic 

currents and two hadronic sources at short dlstancesgl(for the difference between the space-time points of 

the electromagnetic currents). In Section VII we mention other problems and approaches. In particular, one 

photon amplitude processes (like form factors, exclusive electroproduction and pp - p+c(-X), summations of 

perturbation graphs, conformal symmetry approach (very interesting approximate bootstrap schemes were 

recently studied in that limitI”), null plane quantization and sum rules, and finite QED. 

Finally, we should emphasize that the most important issues ahead are: 

(1) Checking scaling and relations among structure functions for higher virtual mass 

and energy carried by the currents. Also checking of the various sum rules. 

(2) More studies, experimentally and theoretically,of details of final states: distri- 

butions, charge ratios, multiplicities, etc. These in both the scattering and 

annihilation regions. 
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II. Beep Inelastic Electron-Nucleon Scattering, 

A. Light Cone Dominance 

Consider deep inelastic electron nucleon scattering. For an unpolarized target and in the one photon 

exchange approximation, the differential cross section is given by 

d2c a2 cos2; 

m= 4E2M sin4 $ E w2tc12v) + 2tg 2; w1&i2v, 3 (4) 

where E and Et are initial and final electron energies and Q(8) the scattering angle in the laboratory frame, 

p and M the four-momentum and mass of the target, q the.virtual photon four monientum, and Mv =q.p. WI 

and W2 are given by 

W,,(q,p)=$ FJd4xeiqx <Islam, Jv(0)lIps>= 

=(-g,y +y+) w,tq?v)+ $(% -Jy$j(% -yqv) w,dv, 
where jti is the electromagnetic current. Bjorken’s scaling is14 

W,dv) - F1b) 
B 

v W,tq?v I- F2b) 
B 

(5) 

where B is the limit of q2-- -m (space like) and v - 00 ,“with w = 2Mv /(-q2) fixed. In this limit most con- 
tributions come,from the singularities near the light cone of the current commutator in Eq. (5). 1’S lga Light- 

cone analysis of Wclv (q,p) then proceeds through the introduction of the causal functions VL(x2,p.x) and 

V2(x2, pax), defined as 

<PI [ ;W, Jv (0) IP> = 1 ( gpv o -d&,) vL(x2,&x) 

Bjorken scaling is obtained by7 

+ PccPv 0 - (P& + P,$) 
C 

tP- 4 + gpv @* c))2] V2(x2. P’X) (7) 

VL(X2,P.X) = - (2ni) 6(X0) 6(x2) fL@’ x) . 

V2(x2,p.x) = (2zi) <(X0) e(x2) f2@‘X) 
(8) 

as leading light-cone singularities. For a vanishing longitudinal cross section, 8 (as may be indicated by 
experiment) we get that fL= 0, and thus the leading singularity for VL is also a 0 (x2). In general, for fL non- 
vanishing, we obtain 

Fltw) = WI3 [gi (;) - $ gL ($)I 

F2tw) = (2703 (+) gH (i) 
where 

fL@X) =J’ dA g,(x) enPax 
-1 

f2 (p-x) =[z dh g2@) eihp” 

The h integration is limited to Ih I 5 1 by the spectral conditions, which also implies that fl and f2 are analytic 

in (p-x). In these considerations we assume that there are no strongly varying parts to the commutator inside 



the light cone, which may contribute in the scaling limit. This is certainly a reasonable physical assumption. 

Moreover, Jaffe” calculated the contribution of a 6(x2-a2) singularity, and found that it has relative to a 

6(x2) contribution, an extra factor of v -3/4 times an oscillatory factor (l- L)1’4 exp[ia a)] . Here 

g(l)=0 and g’(l){0 was assumed. In another calculation an extra factor of I/“v , with no extra osci(G.ations, 

was found. 21 Here g(l)#O was assumed, and the method of evaluation was equivalent to averaging over 

oscillations. 
E 
One can understand the connection as follows. From Jaffe’s calculation, Eq. (8) in Ref. 20, 

suppression as compared with 6(x2), times a factor 

Fki$“?kETj%$$ifor wfl and V--m130w, 

the Zscillatory factor is eq&alent to an extra v 

since&‘Qg([) (1-[y1’4expFamd z1,-3’4g(1), 
, The result can be obtained from Eq. (7) in Ref. 20 

directly integrating as above. Thus even a 6(x2-a2) ‘singularity, which is certainly too singular for any 

realistic situation, is less important than a 6(x2) in the Bjorken limit. I 
B. Regge Behaviour and Sum Rules 

It had been suggested22 that the scaling functions exhibit Regge behaviour for ~-cm, This is certainly 

an extra assumption, since Regge behaviour, which is the limit v-m for fixed q2, may be given by non- 

leading light cone singularities. 5.7 Adopting this unification of Regge and scaling limits, we get for the con- 

tribution of a Regge pole with intercept o(O), 

F (w) - w MO) 
1 w-m (11) 

F (w) - w 
(r(O)-1 

2 
w-m 

This implies 

g,m - Ii I - b(O)+lJ C,[a(O)] 
x-0 

g,tN Axo IAI L-l-cy(o)l C,[a(Ofl 

(12) 

For any a(O)? 0 ‘Eq. (12) implies that the first Fourier transform does not exist as a usual integral. It 

has to be understood, of course, as a generalized function. 5’7V23Wereplace, for h>O and l>o(O)>O, 

,hl-hw+ll 1 
-2i sin 7r o(O) I 

(-Vie) -[Q(O)4 _ (-,-i,)-[~(o)+l]] 

in the integrals. Thus 

I’ -1 
dAgL(A) eihbsx) = 2JmdA gL(A) co9 A@-x) 

0 

and the contribution of a given Regge pole with 11 LY z 0 may be evaluated as 

1 v 
lSln7r[Y f=[ 

&+ (-h-i$-(a+l) _ (-h-i~~j-(a+l) cos h(p.x) = 
0 

I 
_ (-h-iE$(a+l) I cos h(pex) = 

= * 
f [ 

O” dA (-A+icio - (-Lip! I sin A&x) 
-m 

= 2P.X Odhx-Q 
a J 0 

sin AtP-x) = a(()) - -2 1 (psx) I ““‘Jm dA A-@ sin h = 

= --& I(p~x)l"(")~[l-a(0)] sin+rr[l-o(O)] = 2l@.x)l “(“)r[-ct(0)] COB f ?l (Y(0) 



Thus, 

f 

1 
f#x) = 

-1 
dA g,(k) eihbsx) -Jo a gL(h) eiA@sX) = 

-no 

=lmdA[gL@) -c C,(a) lAleta’l))eiA pex +c DL(cr) 1,&x) I* 

COO a>0 
(13) 

For a=1 we can take ,a limit CX~ 1, or take $ 
C 
&II + & I , from the start in gL(h).5 As for o=O, making 

C,(a) a (Y we see that in the limit cy -0 we get a constant contribution to f,(O) and a part CC 6(A) in g,@). 

Such a part does not contribute to FI( w), but contributes a subtraction term to TI. Since fL(0) = S gives the 

matrix element of the operator Schwinger term, we have the sum rule 24,25 

s= tL+p[gL(h, - g C,(a) lAP+1)] (14) 

where we exclude a J=O singularity in gL, tL is a kronecker delta singularity at J=O in the real part. If 
present, it will show up also in photoproduction processes (see discussion in III. E). Whenever spin 0 or field 

algebra spin-l couplings are present, we have a longitudinal cross section. 26 In the first case we have a non- 
vanishing S, while in the latter S=O. 27 

Note that Regge contributions influence the high (pax) behaviour of matrix elements of bilocal operators. 

As is clear from Eq. (13), the contribution of a Regge pole is a I (p-x) I a to I @.‘x) I -. 00 (the integral in 

Eq. (13) gives a vanishing contribution in that limit). Similarly, f2@.x) -- I (p-x) I Q(O)-2 . 

Another way to take into account the Regge singularities, including cu=O in gL, is the following. Define 

T,=f,-{ , * EL=& -g; 

where gL, L RP are the Regge contributions. Take 

&LR= ,c, pL(ol) Ii,-(I+“) + d,(O) 0(1-JAI) &] 

Then, 

TL@x) =fm dA ZL(h) eihbsx) =fdA itLO +fmdA EL(h) [cos x&x) - l] 
-m -m -m 

Now we take, 

It is easy to show that 

I 
CL@) Ipxl 

pL@.x) = C (-2jy I@x)lQI r(l-CY) sin$a(l-a)- 2CL(0)[ 
a>0 0 

Jf (l-cost) . 
I 

Thus the. J=O singularity has a In I @.x) I as I@x) I-m, while its contribution for p-x=0 is zero as for the 

cu>O poles. We finally have 

fL@.x) =LmgL@) +I;‘dh gLQ(eih p-x - I) (15) 

This gives, for p-x=0, the same result as (14) when we separate a t a(&) term from gL. ‘Comparing Eq. (15) 

with Eq. (10) we see that we have effectively set 1-1 dh gE@) = 0. 2sL 
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III. Light Cone Expansions of Operator Products 

A. General Structure and Examples 

In the previous section we were concerned with the singularity structure for one matrix element. In 

order to get relations among various experiments we need an operator statement. This is provided, for deep 

inelastic processes, by the light cone expansion 4s5 as in Eq. (2), 

A(x) B(y) = c &+x-y) F@](x,y) (16) 
PI 

To be specific about the Lorents structure, we write 

A(x) W) = 6 $%-Y, c (X-Y) 
9 

. . . (X-Y, an FbI 
o! n 

“l.. . ,n(x,y) 

where Spl (x-y) is a scalar singular function, 

spl (x) = (-x2 + in x~)~‘~’ J.&+]) 

The value of dtol is given by the dimensions of the operators as 

-2d[o] = d(A) + d(B) 

(17) 

(18) 

(19) 

Thus the degree of singularity is determined by the difference 

dF1=d(F;j...on)-; r l (20) 

between dimension and spin, of the operator. 23 The smaller dn” the more stronger the singularity near the 

light cone. 

When the operator product B(y) A(x) is considered, we have 

W.9 A(x) = fi Sl”] 0~) c 
5 

(x.-y) . . . (x-y+ FF;. . . o1 (X8 Y) 
01 n n 

where - 

s[“] (x) = (-x2 - it- x~)~@] I’ (-&I) (22) 

(21) 

Note that apart from the sign change of E in Eq. (21) as compared with Eq. (17), everything is the same. 

This follows from locality and analyticity of the bilocal operators. Thus, in order for [A(x), I] to vanish 

at space-like separations, the bilocal operators in Eq, (17) and Eq. (21) have to be the same for (x-y) space- 

like, and by the assumed analyticity have to be the same operator everywhere. 

For the commutator the singularity is 

-x2 + ic x 
0 
)d’al- (-x2 _ ic x 

0 
)d[al] 

which for d[O”]-n, n=O, 1,2, . . . is 

dble~ n! 2ir E (x0) 8 (x2) (x2)” 

For the time ordered product7 the singularity is 

(23) 

(24) 

The simplest example of light cone expansions is provided within the framework of free field theory, and 

so far the only example with canonical singularities. Thus taking Jp(x) = i :$+T,, $J:, where $I is a free scalar 



where 

J 
,.j4p e-lPx c(pO) 6 (p2-M2) N - & axe, 6(x2) near x2 = 0 

and 

A,(x) = + J d4p e-iPx s(p2.mM2) s.. -i- p’ . 
(2~) 21r2 X2 

The leading c-number singularities in Eq. (26) are proportional to 

2XPXV b”‘(x2, + 3 gpv 6”(x2) (27) 

Note that the leading term, namely the first one, is not separately conserved. The sum of the leading 6”’ 

and next to leading 6” are conserved. As for the operator term, the leading singularity is a x x 

k++(x) NY):+:@+Q m:]. 

cc v P(x2) with 

the scalar bilocal The divergence for the leading singularity has no P1$(x2) term, 

and the P(x2) term is cancelled by a corresponding term of a next to leading singularity. Terms of the order 

of a’(x2) in the divergence are cancelled only after use of the equations of motion for 4. Since we are going 

to generalize to the case of the full currents, where we have no equations of motion, current conservation 

will be ensured only after adding more terms in Eq. (26). An explicitly current conserving form is given in 

Eq. (36). 

It is interesting to comment, that anomalous dimensions appear in the study of solutions of the Dirac 

equation in a Coulomb potential Ze2/r. Thus the behaviour near the origin, r-0, of the wave function with 

a given angular momentum is 

JI, _ .-l+[(j++f - (Za)2]1’2 

1 
which depends on the coupling constant. A similar situationappears in the Schrijdinger equation with a l/r2 

potential. In both cases, anomalous dimensions appear when the potential has the same dimension as the 

kinetic energy term. _ 

B. The Thirring Model * 

Investigations in the Thirring model showed that anomalous dimensions appear there. 1,6,30 Recently, 

an operator solution of the Thirring model was exhibited in terms of the full light cone expansion for products 

of Fermion fields. 6 Recall that the Thirring model has a massless spinor field in one space dimension inter- 

acting through LI= -g : jG jP: . Define 

u =t*x 

v =t-x 

Since both the axial current $ and the vector current jP are conserved, and since ji = 6PV jv , it turns 

out that j+= j,+j, depends on u only and j-= j, - I j depends on v only. Since jP has no divergence and no curl, 

we may be tempted to write j = d 
CI cc 

#, where 9 is a massless scalar field. However, in one space dimension 

a massless scalar field does not exist, since the Fourier transform of the propagator l/p2 does not exist. 

One can introduce regularization procedures. 31 However, it is possible to avoid all these problems and also 

others related to singular products in equations of motion and in defining currents. 32 Our way of obtaining 

the solution is essentially algebraic, through commutation rules and consistency requirements. 6 The com- 

mutation rules are 
r -3 
k+(u), j+(u’)j = 2i c c5’(u - u’) 

[i-(v), j-(yl)] = 2i c al(v - vl) 
(28) 
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c is a number, which servss to normalize the current. Also 

[ 
j+(u), $(u’v’) 1 = - (a+&5) $~(u’v’) 6&-u’) 

[ 1 j-(v), $J(u’v’) = - (a-ay5) $(u’v’) 6(v-v’) 
(29) 

Equations (28) and (29) result from equal-time commutators and conservation of j . However, “au and “gV1 
32 cc 

cannot be equal to their canonical value 1 unless g = 0. We take these commutation rules as a starting point. 

The resulting expansion is 
_ (a+ZQ2 

$~l(uv) rJi(u”v3 = f. [i(u-u3 + e] 4’c 

[i (v-v’) + 61 
Aki$ 

(30) 

+ (a-a) 
f 

V 

For $, $i replace a+ -a. 

The normal ordering in Eq. (30) is with respect to the frequencies in the decomposition of the current. 

Comparing with the equations of motion we get 

a-a=gc (314 
while from locality 

aZ=nlrc (3 lb) 
where l/2 n is the spin of the field, implying n=l for spin l/2. We thus obtain 

(32) 

Also, for the scalar and pseudoscalar densities, properly defined6 

d($J, = d (sr/,JI) =(I) (33) 

The,generator of scale transformations is 

1 D== u : j:(u): du + 
/ v:jf(v): dv 1 

Its commutation rules with +, as calculated by use of Eqs. (29), give us directly d[JI] through33 

(34) 

(35) 

The main conclusions we can draw from this model are: 
I 

(a) Currents are more regular than the respective products of fields and obey simple commutation 

rules. 

(b) Scalar and pseudoscalar densities, which have no algebraic reason to have canonical dimensions, 

indeed have anomalous dimensions. Their dimensions are canonical only for g = 0. 34 

C. Products of Electromagnetic Currents 

In the case of electromagnetic currents, we write the light cone expansion as5 

(39) 
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The other terms do not contribute to forward spin averaged matrix elements. Forward matrix elements are 

analyzed as in the previous section, with 

x2=0 
= pQpP f,@x) + . . . (37) 

The other contributions are less leading in the scaling limit. Note that when the longitudinal cross section 
has no scaling contribution, namely CL has no 6(x2) and a leading 0 (x2) singularity only, then the extra 

terms in (37) of the form p”xp + p6x” are as important in their contribution to VD. 7a 35A x”xp term in 

Eq. (37) has an extra l/v suppression as compared with @“x@ + p@x”) (we exclude g w terms, since those 

are identical in Eq. (36) to the VLterm). 

D. Generalized Cornwall-Norton Sum Rules 

The Cornwall-Norton sum rules 36 express integrals over moments of the scaling functions in terms of 

commutators of corresponding numbers of time derivatives of a space component of the current with a space 

component, at infinite momentum. They are, 

lim 
2 

I-q2l ,2np W2tq2w’W2 
M2n 1 w,2n+2 = lim J,t% Jz(z$~7 

q --co IFI-Q 

Pa) 

22n+2 
lim (-) 7 

00 W1(q2w’)dw’2 
= lim 

d3y .- - 
- e’q* x <PI WW 

2 J &2n+4 1s I 2n+2 
J,(q, J,(s) Ip7 

1 ICI-m 
I, 

q --co 

where we choose 5 in the z direction and < in the y direction. Thus the existence of the scaling limit implies 

the existence of the spin -(2x1+2) operator coefficient of S(3)(z) in <pi 
t 
d iM1 Ji(z), Jj(c) 

3 
Ip7. However, if 

we have a non-leading singularity which is not an integer power of’ (x2), we may get infinite contributions 

from lower spin operatora25 (This does not happen for half-odd integer powers. For details see Ref. 25.) 

The general results for the moments of WI and W2 for q2 -(-Q) can be obtained from Wilson’s short 

distance expansion. We ds not assume the existence of a light cone expansion and bilocal operators, and 
therefore write, instead of C,(x-y) Fi@(x, y) in Eq. (36), the form 

v;qx, 0) - Cn(x) xa . . . xa 
q3cYl... cY2n 

F2 (0); 
1 2n 

- (-x2-icxo)dn F(-d,) 1 (39) 

The terms we omitted have less singular Cn. Taldng the singularity structure of the time ordered product, 
and going to the limit of q 

cc 
-00 for all components, with q2- -m (namely 

space-like vector), and then taking p. - 03, we obtain 
9c(= 

A?$, with A-r03 and G any fixed 

m 

Tl 

-d -2n-1 

T2 - n= J$.$P*@~” t-s21 n 

The first limit of X- = implies that for each n it is the smallest dn that is leading, and the second limit 

of P6 - m justifies in keeping only the spin (n+2) part for the F 
‘YB “1 . ..ol2n 

(0). We could have 
taken simultaneously h -00 and p. - m such that p,/X - 0, to obtain the same result. 

Writing an unsubtracted dispersion relation for T2 and taking the same limits we obtain, 
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Comparing the two expressions we get, for q2--=, 

= 
t-s21 1 P 

W2(q2w’) w2 -d 

U,2n+2 = Bn (-q2) n Wa) 

Scaling means that dn=9 for all n. In that case the infinite sum of local operators in Eq. (39) defines a 

bilocal operator. 

Studies of infinite sums of ladder graphs in perturbation theory show that in general the right hand side 
2 37 of Eq. (40) is not a power of q . Thus the notion of dimensionality of operators in Eq. (39) is non- 

existant. However, for simple ladder sums the right hand side is a power, but then dn does depend on n. 

For example, for the infinite sum of simple ladders in a theory of a charged spinor interacting with a 

pseudoscalar through a y5 coupling, we have 12 

dnd- 1 
I6 r2 (2n+2) (2n+3) NOW 

This also serves to show, that Bjorken scaling cannot be derived from Wilsonls expansion and the assump- 

tion of unsubtracted dispersion relations for T2. 38 

From the theoretical point of view, since 

d F2 [ 

One can argue that do=0 in Eq. (40a), as observed at SLAC. 
aP “1.. .“.& 1 = 4 + 2n + 2d,, and since FiP presumably has a part which is the energy-momentum 

tensor3’ and therefore dimension 4, we expect do=O. 

which VW 2 
If dI is anomalous, dI7 0, we have a situation in 

2 goes to zero for q --m at each fixed w. We thus see that for n=d there is non-uniformity of 

the left hand side, in the sense that the limit (rq2)-m cannot be put inside the integral. In fact, this non- 

uniformity is there for any n. The reason is the following. We must have an infinite series of increasing 

d, in Eq. (40a), since if there is only a finite number of different dn there would not be an unsubtracted 

dispersion relation for T2 unless all dn are equal (since any single term’ in the expansion Eq. (39) contrib- 

utes to T2 but not W2 for q2< 0 5). Thus, for any given dn there is a dn, with n’ 7 n and dn, 7 dn. If we can 
interchange the limits q2-m with the integration in Eq. (4Oa) for a certain n, this would imply that 

2 dn+l 
t-q 1 W2(q2, ~1) scales, which would then violate the sum rule Eq. (40a) for n’. The conclusion is that 
either all dn are equal, in which case we get scaling, or that there is an infinite number of different dn. 

This also shows that one cannot prove Bjorken scaling from Wilson’s expansion and unsubtracted dispersion 

relation for T2. 38 All one can show is that it is impossible to have all but a certain finite number of dn 

equal. 

E. Fixed Poles 

It was demonstrated in various works that a J=O fixed pole exists in the amplitude T2, either using a 

light cone approach4’ or a parton type %oft’* field theory. 41,42 It has been argued that in l/q2 T2, the , 
2 43 I 

residue of the fixed pole is independent of q . 

Let us return to V2 of Eq. (7). For the leading light cone contribution we have 

T2 u 161r2M2(-q2) 
/ 

1 dQ2(h) 

-1 l-s2 - 2AMv +iQ2 
(41) 

Subtracting all Regge contributions with ~70 (assume no contributions to g2 at o=O), then 

Thus, for v-00, 

“T2(q2v 1 (42) 

T2(s2v 1 ---c ,,5p 
v-m -1 ;;” 22@) (43) 
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and the integral is convergent since g2(h) vanishes faster than IAl at h -0 (see Eq. (12) for o!(O) < 0). But 

are we justified in taking only the leading singularity near the light cone, if we deal with fixed q2? It turns 

out that this is alright for F2. For suppose we take a less leading singularity. Then its contribution to T2 

is of the form 

~@(AJ 

TF1 - (-q2’f t-q2 _ 2AMv + p2 + i,#2+d (44) 

where d7 0 and where we also introduce an “effectiveV1 p2, which represents less leading contributions. In 

the scaling limit 

Ttdl 
2 - (-s2) v-2-d-l1 J 

/ A Regge pole with intercept a! will be generated by a term I A I l-o in g2d (h) for h-c 0, as in Eq. (12). This 

is so since Regge behaviour is obtained from the small h or high (p-x) behaviour of the matrix elements of 

the bilocal operators, and is therefore independent of the type of singularity near the light cone. 5’7 Thus, 

for v-00 and (d+iL)70 

T[dl 
2 

- (-q2) v-2-d Y 
d+a! 

( > -q2+ p2 

where o! is the leading singularity with negative intercept. Thus considering (v 2/(-q2)) !?, = R2(t), we see that 

the sum of contributions of the leading light cone singularity and a representative of the non-leading singu- 

larities is, 

R2(t) w 47r2 (45) 

where we now look in a non-forward direction and allow for momentum transfer t dependence ,(the first term 

can also be rewritten as 

thus making contact with Eq. (9)). For g(t) < 0 only the first term survives, which shows the appearance of 

a fixed pole in l/(-42) T2 at J=O with a residue that is independent of q2. However, when G(O) is very close 
to zero, it may not be able to separate its contribution by present data through finite energy sum rules. 

Since we expect d=l for the next to leading singularity (as mass term corrections, for example), we see that 

the second term is especially important near q2=0, while for q2 - -00 only the first term obviously survives. 
An effective change in the value of the residue of the fixed pole around (-q2) .+ l2 in a phenomenological analy- 

sis may therefore not be surprising. 

t-s2). 

The value of ).I~ should be around that value where scaling begins in 

One can of course separate the first term in Eq. (45) by looking at Compton scattering for t#O, since for 

RL=O, a J=O fixed pole in T2 implies a kronecker delta singularity at J=O in TI, which is q2 independent and 

survives at q2=0. One may also detect the t-dependence in amplitudes with one real photon and one off-shell, 

like bremsstrahlung in electron-nucleon scattering, 44 since the residue of the fixed singularity does not 
depend on the photon masses (see below). Our assumption is that s(t) changes with t, since it comes from the 
matrix element of the bilocal, and there is no reason for that to be fixed. (Anything that can move - moves!) 

The fact, that the fixed pole term is dominated by the light cone singularity even at low (q2) follows from 

the standard phase variation argument in Eq. (5) defining W 
W’ 

For choose the proton at rest and 

q= (v,O,O,~) 
> 

. 
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Thus most contributions come from Ix,-x,1 5 l/v and Ix,1 5 w/M. It is thus x2 6 2w/M = 4/(-q2) that arc 

important in deep inelastic. However, if one subtracts all Regge contributions first, namely the behaviour 

in Ix,1 z lx31 is damped for high values, then it is sufficient to have v -coo to get to the light cone. In the 

analysis for non-forward direction and different photon *‘masses” in Compton scattering one has matrix 

elements of the bilocal operator between different momentum states, 

C <p I F;‘(x, 0) Ip’> 1 x2=0 
= pop& 

/ 
da, dp e WP+x+ W-x) g2ta, @, t) (46) 

where P= pi-p’. The spectral conditions restrict the integration variables to a finite region which, in the 

variables CY I = cu+p and a2 =cr-6, turns out to be the area within the lines connecting the four points (aI= &l, 

cu2=O) and (ol=O, ~~=lam).~~ One can thus rewrite Eq. (46) as 
, n 

[<P I FiP (ix, - f+’ >],2=o = P”@x $ alaa h2(,Q2t) eihf+sx 3J1+ Fsx 
(46a) 

with AI, X2 bounded by four lines connecting the points (zt 1,O) and (0, f 1). Thus in Eq. (42) we now have a 
double integration and a denominator of the form (-q2 - 2cuMv - 2PMv I + i~)~, where Mvl = 9-p’. To arrive 

at Eq. (45) is now straightforward g2 there is an integral over X2 of F2). One also see #at there is no 
dependence of the residue on any of the “photon” masses. The full analysis in the non-forward direction 

shows that there is also an additional fixed pole in a spin-flip amplitude. 44 

Finally, we would like to comment that there may be a fixed pole at J=O in the T2 amplitude coming 

from non-leading singularities, of the form 
-- 

A< 
cc-q v 

which is non-polynomial in q2. However, such a term will show up also as a fixed pole in electro- 

production of the hadronic states with the mass 12, 2 that give rise to the discontinuity at q2 = p . 

One may of course replace l/(q2-p2) byJ dm2p(m2)/(q2- m2), with /p(m2) dm2 = 1, to get the same’ effect 

as before for the J=O singularity, but now with a continuum contribution for the discontinuity in q2. The 
quantum numbers of these hadronic states are those of the electromagnetic current. One can of course also -~ _.--- . ..- 
have a fixed singularity (kronkcker delta) at J=O in the TL amplitude, which from the leading light cone singu- 

larity implies a tL term in the Schwinger term sum rule Eq. (14). Such a singularity also implies J=O fixed 

singularities in electroproduction of hadronic states, and also changes the relation between Tl and T2 fixed 

singularities. It also ruins the polynomial dependence, since it may be of the form q2/(q2+2). It may be 

argued in this case that such terms are absent, since they are not produced by dispersion integrals over the 

imaginary part, but by real subtractions only. (The dispersion integral has no J=O fixed behaviour once the 

o>O Regge contributions are subtracted.) However, for RL =O such terms appear in Tl. 

Note, that from a general light cone singularity d we get a fixed pole at a=-d in T2, with a residue 

(-q2) f(t) for all q2. This follows from Eq. (44) by arguments similar to the above. Note that now it will 

appear also in W2 46 (for non-integer d). 
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IV. The Fritzsch-Gell-Mann Algebra 

A. Quark Algebra on the Light Cone 

A very important step forward in the study of deep inelastic processeswas the hypothesis of Fritzsch and 

Gell-Mann, 18 that not only is the leading light cone singularity given by a free field of spin-l/2 constituents, 

but that so is also the whole SU(3) @ SU(3) structure of the bilocals of the leading singularity. 
47 This implied 

many relations, and it thus became clear which results of the parton model are a consequence of the 

SU(3) 8 SU(3) structure on the light cone and which depend on specific assumptions of that model. 

To obtain the commutation relations, one writes the electromagnetic and weak currents in terms of quark 

fields, 

JF = [IsypU--t5)n] .- cos ec + 
[ 
PYp-Y5)~ 1 sin ec = 

(47a) 

+ ih2) COB ec + h4+ih5) sin ec 1 II) (47b) 
and then computes the commutators as for free fields. One then postulates that the type of singularities and 

the SU(3) Q SU(3) structure are the same for nature. The space dependence of the bilocal operators is 

unknown - it is measured in deep-inelastic electron and neutrino scattering experiments. One should 

emphasize, that only the light cone singularities are of a free field nature. The matcti’elements include all 

the complications of strong interactions and may not have any resemblance with a scale invariant limit of 

setting all mass parameters to zero. Defining 

(48) 

where 

*c 
WPa’ 

‘AC*p(x, y) 8 D(x-y) + dab’ (S-A 1 

D(z) = - $ c (z,) S(z2) 

(49) 

q%,Y) = 40Yp(1fY5) ($ ^“) JltY): + (x-y) 

$%,Y) = :h4v,t,W5)(~ Aa) qty): - (x--y) 
(50) ’ 

The commutators [c’(x), e-(yd are less singular near the light cone by one power of x2, namely have a 

leading ~((x-Y)~) singularity rather than the ~‘((x-Y)~) as in Eq. (49). They are also proportional to mass 
terms. 

We now adopt the structure of Eq. (49) to hold in nature for the leading light cone singularity. 

One can try and argue that the leading light cone singularity is not going to be modified in renormalizable 

field theories, proceeding as if canonical considerations are valid and “subtleties” of renormalization of 

infinities can be ignored. 29,48 One then discovers, that the leading bilocal 1.s not changed for interactions 

with scalars or pseudoscalars, while for neutral vector mesons, “gluon&‘, it gets multiplied by a line 
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integral 

:ij(x) p(y): d :71(x) e Jw3): 
where v,(x) is the gluon field and g is the gluon-quark coupling constant. One does not have to worry about 

ordering problems in the definition of the exponential since (x-y) is almost light-like and the Gupta-Bleuler 

commutation rules are taken for the gluon field, and thus any two parts of the line integral commute. 

One can go further and postulate closed commutation rules among bilocal operators, 18 which yield light 

cone singularities multiplying the same set of bilocal operators. For two bilocals Fl(xIyl) and F2(x2y2), 

this is assumed to hold when all four points are near to one light ray (all six distances are almost light like), 

as indicated from canonical considerations of quarks with gluon interactions. 29 

B. Results for Beep Inelastic Scattering 

The analysis of deep inelastic processes proceeds as in our discussion in section II. One takes 

[ 
<PIs;(x)IP> 1 x2=0 

= Pk fZ@*x) + xpg;o.x, 

x2=0 
= PL( f$.x) + x&@.x, 

(5 14 

where the subscripts S and A mean symmetric or antisymmetric in p-x, respectively. The terms that go with 

xc( do not contribute to the leading terms which give scaling. However, since in an approach with underlying 
fermion fields the longitudinal cross sections are zero 26 

to WL = 1 - G W2 - Wl terms proportional to ; 
( 1 

in the scaling limit, these terms contribute 

contribution rom next to leading E(z2) terms starts as l/v ). 8 
’ 35 (the p 

p2 
terms contribute a WL = W2,= $ F2 part, and the 

For neutrino-nucleon scattering, 49,50 the matrix elements that enter are 

WFi(q,p)=f F/d4xeiqx<pslkF(x), Jr(O)llps>=, 

and 

W($l,p) = - w(v+-q,p) . 
PV VP 

T invariance sets Wr’- -0. Since we have SU(3) QD SU(3) symmetry on the light cone, with all currents con- 

served, the scaling limit for VW 
4 and VW 5 is zero. If the next to leading singularities are given by a struc- 

ture like mass term corrections,then it is rather v2W4 and v2W5 that scale. The latter also do not contribute 
to the scattering cross sections in the limit of zero lepton masses. As for W3, 

vW3c12v) - F3b) (53) 
in the scaling limit. The positivity conditions here are 

t4i- w2~w&-+-- IW,l 

The algebra Eq. (49) implies 

wF2b) = 2M F+) (54) 
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51 
for all processes. Setting 6c=O, we get 

6 w F;‘(w) - 
[L 

Fezn,w;l = [F?(w) - Fr(w)] 

One obviously also has the Adler sum rule52 in the ‘scaling limit, 

= -2 

and the Gross-Llewellyn Smith sum rule53 

+ Ff;“(w) = -6 1 

(55) 

(56) 

(57) 

The first follows from the equal time commutation relations between time components, while the second 

follows from the d coupling part of the commutator between space components of vector and axial-vector 

currents. Note that the Adler sum rule can be derived by the p -00 method, and holds for any q2 < 0 fixed in 

the form52’ 54 
03 

J- [ 
dv WT(v,q2) - Wp(v,q2) 1 = -2 

0 

Equation (56) is the q2 --CO limit of it. The Gross-Llewellyn Smith sum rule cannot be derived by the p -00 

method, since it involves a commutator between space components where z-diagram contributions are 

important. However in some 

null-plane SoImmutator s. 55 

cases, one can include z-diagram contributions in fixed q2 sum rules using 

This is not the case for the sum rule Eq. (57), since in null plane commutators 

one deals with ,dq-[W&q,p)lq+=o , where q*= q” i q3, and therefore the only combination that can come 

out is 0 

dd F3(w q2) . 

One would then get that the integral on the right hand side is q2 independent (it is actually infinite). We thus 

see that light cone expansions put all current components on the same footing as far as sum rules at q2 -c-m 

are concerned. Bjorken’s sum rule for WI 56 coincides here with the Adler sum rule, since the longitudinal 

cross section vanishes. 

So far the scaling phenomena and all other relations following from the algebra Eq. (49) are consistent 

with experiments. 899 For spin dependent amplitudes and sum rules see Ref. 57. 

Note that other sum rules, derived within the parton model with extra specific assumptions regarding 

the *‘sea” of pairs, 58 

*dw l 2 [F;'(w) - F;n(w)] = + Wal 

*&d 
.f 

2 2 Fy=S (58b 
lw 

cannot be derived here. The first one is not related tc any local commutator; rather, the left band side is 

proportional to c w $(psx) , namely an integration over a line on the light wne running to infinity. 58r 

The left hand side of Eq. (58b) is related to a commutator of a time derivative of a space component with a 

space wmponent (n=O in Eq. (38a)), the value of which between neutron states does not follow from any alge- 

braic structure. 

When considering the combination ’ 
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one gets that the leading light cone singularity contributes a term which is the part of the kinetic energy 

carried by the quark fields, namely a <p I $J (y;Tj + rj7i)$lp7. Since only the kinetic energy part of BP,, con- 

tributes to the pPpv part of the matrix element, we get a sum rule, 
18 

(59) 

where E is the fraction of energy carried by constituents that do not couple to the currents, like neutral 

gluons. Recent experiments indicate that E =0.46 *0.21, 
9 namely about half of the energy is carried by 

neutrals. 

All the results of the light cone algebra depend on the hypothesis that the current constituents have free 

field leading singularities. The relation between current quarks and constituent quarks, the latter appearing 

in quark model spectroscopy considerations, is a subject of recent activity. 
59,60 

Other implications result from the internal group structure and positivity, and are in the form of 

inequalities which hold for all W. These were first discovered within the parton model,61 and then shown 

to hold from general light cone considerations. 62.63 We mention here the bounds on the ratio between en 

and ep structure functions 

PWQ SymmeW 4 Fy(w) 1 
1. 

(SU(3) symmetry) 3 
-1 z 
F;’ (4 

(60) 

and the bound 

Fiw’ (w) W(2)) 

4 F!“)(w) - F?)(w) 
(61) 

(SH(3)) 

The latter being severe for those w where the ratio in Eq. (60) is.close to the lower limit. 

There have been recently discussions regarding the rate of convergence of the Adler sum rule. It is 
64 argued tha.t either the convergence is very slow (w - 1007) or that Fy/FT is large for 3 < 5. However, 

it can be shown65 that the ratio is going to be large whenever Fy/Fip is near to a l/4. It may be possible 

tosaturatethesumruleupto’w-30-40witharatio Fin/FFof3-4for wc.5. 
65 

C. Further Implications - Non-forward Matrix Elements 

Since the singularity structure near the light wne is a c-number, the scaling laws will be the same for 

all processes in which the bilocals of the leading singularity have non-vanishing matrix elements. In particu- 

lar, varying the momenta of the states in the matrix elements of bilocal operators constitute a severe test 

of the idea of c-number singularities. Such matrix elements occur in amplitudes with two currents, and to 

get to the light cone we need both 9nasses7~ of the two currents to become large, in either space like or 

time like directions. 

One can consider e+e- annihilation into a pip- pair and a given hadronic state. 
66 We are interested in 

the part of the amplitude which is the diagram 

\ -x(P) 
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Here the hadronic state is with charge conjugation C=l. With P=P-k and Q = $ (l+k) , the matrix element is 

One can consider here the BJL limit of Q. - m with c fixed, which is in the physical region. The scaling 

limit here is v =Q.P- m with w = 2Q.P/Q2 fixed (w < 1). In this limit one can use the light cone expansion 

for the time ordered product in Eq. (62). Moreover, by squaring the matrix element and summing over X, 

and then letting Mx -m (first v -00 with P and w fixed), one can check the assumption that the bilocals obey 

a closed algebra when all distances are light like!8*2g If correct, one obtains an explicit expression for the 

cross section as a function of u in the above limit. One has to separate the contribution of the diagrams 

where the hadrons are in C= -1 states, 

These can be calculated in terms of e+e- - all. For more details see Ref. 66. 

Other processes which involve two high off shell currents are inclusive electroproduction of c(+p- pairs 67 

and e*e- - e’e-X. 68 In the former one can relate the inclusive cross section, again assuming the algebra 

of bilocals, to total electroproduction. In the latter process of colliding beams one has the advantage that in 

certain regions the diagrams where both exchanged photons are space like dominate, thus simplifying the 

analysis of connection with experiments. 68 

All these processes have cross sections smaller by 2 -4 orders of magnitude than present day experi- 

mental techniques. The colliding beam processes have the largest cross sections for near future study (SLAC, DESY). 

D. Current Conservation ’ 

The form Eq. (49) for the commutation relations near the light wne for vector currents is consistent 

with current conservation to leading.order, namely when applying pfx) we do not get a”(x2) terms because 

0 D(x)=O. However, we do get terms with 61(x2) singularities in general. These should be cancelled by the 

corresponding contributions of the next to leading singularities near the light cone, which in the current 

commutators involve 6(x2) singularities, and therefore a’(x2) terms when a divergence is taken. 

Note that if we try and write the general terms contributing to $b and w”;” in an explicitly conserved 
/ 

way like for ihe case of the electromagnetic currents Eq. (36), we get that this gives 

local functions VLb and Vib, a result known long ago. 6g 
[ 
j:(z), j!(y) 

I 
= 0 for 

We can write the next term in Eq. (49) as Ci: (x, y) D(x-y). Also, we do not want <p 1 C!L’a (x, y) Ip> to 

have a pnpv term, since such a term contributes to the leading scaling behaviour. Let us demonstrate our 

results for the fabc part of the commutator. 70 Introducing 2 =x+y and A=x-y, we get from the conservation 
conditions 

(daxSo) Av + (dzSv - a;Sti + ectvpcr #AA;) A@ + (Cav - Cvo) Ao = A2gv 

(fhsly) Av + (a& - 83, + szpctvpa, #‘A;) AU + (Coy + C,,o) Ay = A2hv 

(634 

t6W 
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where gv and hV are new bilocals, which do not contribute to the next to leading light cone singularity. Since 

pa (x* yqxzy = 25,!(x) which is conserved, it follows that 

daZSa(x,y) = Aa$$x,y) (64) 

Therefore, 

and Eq. (63a) implies 

(aQZSa) Av = AaAvga = A*(AVga - Aagv) + A2$ 

c QV -cV(Y = AUsv - Ayga - (aZS - d;Scy + ePvp” d.‘AAg)+ (c” CYV (YV 
- Eva) Wa) 

where A”$ 
_ av 

- evcy) = A2(gv-sv). Since we do not include in C or E terms proportional tc A2, it follows 

that gV = Sv and 

“, - zvLy = ~~~~~ AA Dub, Y) WW 

As for solving (63b), we observe that 

a2sv -&+E /WpcY W) 

since each term on the left hand side vanishes for A-O. Thus, observing that F 
[01’Y2]a3 

is antisymmetric 

in the first two indices, 

and hence, from (63b), 

C +C 
OJV vo! = AA F[Aa] v + F[h+Y] - (apy %v + (L + %*) C 

where again, excluding A2 terms in 5, we have 

(674 

%v + TlY = A& @x,Y) WW 

Note that only in the free field case, neglecting masses, can we have Colv =O. This is so since in any inter- 

acting theory gv# 0, since xv= 0 means an infinite number of local conserved quantities through 9 CrZ se (x, y)=O.7l 

The same is true for the left hand side of Eq. (66). which vanishes only for free fields. 
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V. Total Annihilation e+e- --all, and no-- 2y 

The total electron-positron annihilation cross section into hadrons is given by 

where q is the total momentum and s = q2, and the function p(s) is related to the commutator of electromag- 

netic currents by 

d[Jp(x), Jv (OIllO> =* Id4qe‘lqx(qliqv -qPvq2)p(q2) (69) 

Here we are dealing with a vacuum expectation value of a commutator, and therefore the short distance 

and light-cone structure coincide. The asymptotic behavior of (r(s) is therefore given by the short distance 

structure of the left-hand side of Eq. (69). Using free-field singularities near the light cone, we obtain that 
1 

U(S) cf g for s-co. 72,73 However, the coefficient cannot be determined unless we also assume’that the 

unrenormalized fields from which the current is constructed satisfy canonical commutation relations. In 

such a case, we obtain 

P(S) = 
oe+e-- all ( ‘) _ 
ue+,--p+p-(s) 

c Q; + ; c if 
$C$ s=o I 

(70) 

Note that when one calculates the short distance structure for free fields using j, = : $ y,, @:, one ob- 

tains for the vacuum expectation value near x2 = 0, 

and thus one obtains for the time-space commutators, for x0- 0, 

(72) 

Note that the Infinite Schwinger term 74 is here obtained without any point-splitting in defining the current. 

This shows the advantage of short-distance expansions over direct use of equal-time commutators. Mass 
corrections introduce terms # m2ak b f3)(Z). 

The prediction for the ratio in Eq. (70) depends now on the constituent scheme used. From oL z 0 in 
deep inelastic electron scattering, we assume no spin-zero constituents. For the Gell-Mann-Zweig (GMZ) 

fractional charge quarks, one obtains p(s) - R= $. When an extra SU(3) quantum number is introduced, 60,75 

l’color,” then R = 2. “Color” quarks (“red, ” “white, ” and “blue”) obey ordinary Fermi-Dirac sMistics. . . 
All physical states are singlets under the t’color” group. . . 
baryons as eabc qigqt, 

Thus mesons are constructed as aabqi 6; and 

where ab c are “colorl’ indices and i j k usual SU(3) ones. 

Recent experiments at CEA 76 indicate thatR = $ is excluded, and are consistent with R = 2, as for the 

“color” quarks. (One should remember, however, that the i law has not yet been verified.) The latter 
scheme also is in agreement wlth the observed no -+2y decay rate, as given by the Adler-Bell-Jackiw anom- 

0, 
75 

while the GMZ quarks give a value smaller by a factor of 9. For a discussion of the various quark 
schemes, see ref. 75. Note that the Hahn-Nambu quarks 77 of integral charge yield the same value for the 

r”--c2y decay as “color” quarks while they predict R = 4 for annihilation. When “charm” states do not con- 
tribute, one gets R = 2 for Hnhn-Nambu quarks, too. The “charm” quarks do not contribute to 7r”--c2y be- 
cause of their quantum numbers. In the Hahn-Nsmbu scheme, 78,79 the current can be written as 
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(73) 

where Q’ = . ( g, - f, - i as in GM2 and 8, = 1 1 -, -, - g . 
3 sz, > The first. term, JF), is a singlet under [SU(3&,charm,, 

and an octet in the usual SU(3), and the second, Jn is an octet under [SU(3)],,charm,, and a singlet under SU(3). 

Thus, if one asserts that “charm” hadron states have very high mass, then when considering matrix elements 

between usual hadrons, the relations are as for GMZ quarks. 
78 

However, for total annihilation, we have an 

extra factor 3, as compared with GMZ, since each index “a” in J (1) 
P 

contributes equally to the vacuum expec- 

tation value of the commutator, thus yielding R = 2. For 71’ --2y, all quarks contribute to the triangle 

anomaly, since they are virtual. 

bination Jr) JL2) 

However, since the matrix element involved is <r”\T Jp Jv\O> , the com- 

does not contribute since it is an octet in “charm” and JF) 5:‘) does not contribute since it 

is a singlet in SU(3). Thus only J,, (l)Jtl) y contributes. Here again the amplitude is 3 times the GMZ value. 

Note that when “charm” states contribute, the Hahn-Nambu scheme predicts k 

by present experiments. a aeP 
2 $ , which is excluded 

Crewther 80 showed that a relation exists between total annihilation, x0 decay, and a space-space com- 

mutator [vi(z), vj(r)j.= i cijkAdQ2) (3) d (sf) which appears in Bjorken’s polarization sum rule. 81 Here dQ2)= 
I+IJ r5ykQ2$, and only the isovector part enters into the relation. Also, only the isovector contribution of 

total annihilation enters. Denoting the coefficient of the isovector part of Ak by K (which can be measured by 

the difference between proton and neutron for polarized electron on polarized target scattering), and RI the 

isovector contribution to total annihilation, the relation is 

s=KR1, (74) 

where S appears in the no - 2y amplitude as 82.83 

s = - & r2 p”@ d4xd4yxpyv <@IT* Ja (xl J#W’J;W~o> (75) 

For GMZ quarks, SI=8j, I ’ R = $, andK = 5. For the “color” quarks, S and RI are multiplied by 3. 

From experiment, S = 2. 

Crewther 80 derives this’relation by a consistency consideration, first using a short-distance expansion 

in x--O and then in y -0 in Eq. (75), and the free field form for the three-pofnt function at short dis- 

tances. 85 This relation is of great importance, since it connects no decay to other processes so that we can 

get the decay amplitude without any need for renormalized perturbation theory methods. This is relevant 
since our light-cone expansions do not hold in the latter approaches. In fact, the form for the three-point 

function for all points near one light ray was demonstrated by Bardeen, Fritzsch and Gell-Mann 75 to follow 

from consistency considerations in comparing the different ways of reducing that function by light-cone ex- i 

pansions of pairs of currents. 

An interesting problem is that of constraints imposed on operator product expansions from the free field 

form for the three-point function, namely, from the existence of an anomaly. It turns out that one gets con- 

straints on Wilson’s short-distance expansion, namely, that line integrals of local operators appear in an ex- 

pansion of a product of two currents. 86 Light-cone expansions with bilocal operators are not implied. 



22 

VI. Single Particle Inclusive e+e- Annihilation 

Light-cone expansions were generalized to include products of more than 

single-particle inclusive experiments in e+e- annihflation and eN scattering. 

two operators 87,88 to discuss 

Recently, it was pointed out 

that certain regularity assumptions of the terms multiplying the light-cone singularity lead to finite multi- 

plicities in e+e- annihilation. 8g It was also pointed out that introducing singularities to get logarithmic in- 

crease in multiplicity ruins scaling. 90 Moreover, such a behavior is inconsistent with the spectral 

! conditions, 

A careful examination of the singularity structure reveals that one can get a consistent formulation which 

yields both scaling and logarithmic multiplicities from the leading light-cone singularity. 91 The logarithmic 

multiplicity is obtained by a certain singularity structure at short distances of the term multiplying the light- 

cone singularity. It does not affect the scaling because the relation between this singularity and the light- 

cone singularity has to be changed (as compared with that in ref. 89). 

We consider e+e---cH + x, where the four-momentum p of H is observed, and p2 = M2. Define” 

wpv (9,P) - 2x - Ljd4x eiqax c <O[Jn(x)jH(p)X> 

<H(p)XIJv (O)jO> = %,(v t &(_gp”+y) 

+aiqvq2) p lvI2 2 ’ ~(~-~qp)(Pv -7 ?) (76) 

where we also km over the spin of particle H and Mu = q . p. Assuming a one-photon exchange amplitude, 

we get 

2 
da Act! 2 

‘(cos) = - uT(1+cos2e)+uL(1-cos2 0) 
q2F3 C I 

92 where 4 = 2Mv , 0 is the scattering angle of H in the e+e- center-of-mass frame, and 

(77) 

(78) 

m2 M( 
where in Eq. (77) terms of order + or -2- were ignored. (Note that here E2 need not be positive. It 

is, in fact, negative for o L= 0.) Q q 

da 4*(Y2 
q-= - 

3s2t3 
2a,(e. S2) + UL (ess2) 

3 (79) 

We have 

WW 

(8W J dd& da 

1 
24 q- = gtot(q2) 
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where ii(q2) is the average multiplicity of hadrons H and atot (q2) is the total e+e- annihilation cross section 

(in (80b) we assume for simplicity one type of hadrons present). Assuming ctot(q2) - 4 , 
_.~ 

we get 
q 

q’2M”dJ 

/ t3 
f((, q2) = A%q2) (814 

1 

q/2M 

/ 
5% 
c4 

f( 4, q2) = 2A 

1 

(81W 

A is related to the rate of decrease of utot (q2). In coordinate space 

<~~~~*(Jp(x)J~(o))l [T*(Jv (y)JH(zg/O> (82) 

where JH is the source of H (suppressing spin indices) and TX denotes a covariant anti-time-ordered product 

(operators with earlier times are to the left). Defining 

?p”(u2,p.u)= d yd ze 4 4 ipz <+* Jp(u+~bJ; (04 [T* Jv(y)JH(z)]@ (83) 

we have 

wpy (q9P) - d4ueiqu TllY (u2, p. u) (84) 

and standard arguments imply light-cone dominance u 1 21 SGforq2-coandffxed e. These arguments 

hold also for ,$--GO as long as %--,Ol-. Thus we may ge? light-cone dominance terms also for large 4, 

where one may get an increase of ii with q2. For f(t,q2)-F(e) as q2 ---do, with F( 4) - (2 for 

large e, we get a logarithmic multiplicity.. Since from Zg; 
?!L 

< ,$ (with fl > M) the contribution to ii is finite, 

most of the contribution comes from 
9 

-0, in which case light-cone dominance applies. We should 

remember, however, that a logarithmic increase in li may come from a non-scaling term altogether, like, 

for example, 

withfl([) - 43 aat---mand 

J *L.k 1 63 f,(S) finite. 

One then gets that only f2 contributes to the energy sum rule, Eq. (80b), and only fl to the logarithmic in- 

crease in ii, as q2-+co. 

We define, in analogy with Eq. (7), 
-, w = Cc” ( - gpv q2 + q&) VL (S2”) 

f (q’P)(qpP” +qvP~)-PpPvq2-g~v(q*P)2 [ 1 T2(S2”) (86) 

and take TL = 0, as follows from the fact that the tensor structure of ? 
P” 

(~2, p. u) is taken to be the same 
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as that for deep inelastic electron scattering. Namely, the light-cone expansion for the product of two currents andtwo 

hadronfc sources, as in Eq. (83)‘ is taken to have the same tensor structure as the product of two currents, when the 

space-time distance between the coordinates of the two currents in the above two cases approaches the light 

cone. A discussion similar to what follows can be applied to VT, # 0. 

We expect 

v2 (q2v) -fd4ueiqu[;np2(-u2 + ie u,)lf(p. u) (87) 

where ).I is some mass parameter. The singularity structure is that of the next to leading part in a two-point 

function, 

6 (qO)b(q2 +-p ’ 2 2 16x2 1nl.c ( -u2+iru 0 1 + . . . . 

0 
(88) 

This is dictated by the fact that in Eq. (83), Jcc(x) is alw.ays to the left of Jv (y), and for scaling the singularity 

in V2 in u2 is of zero order. Writing 

i(p. u) = do g(o) emicupSu (89) 

we obtain 

Iv2(q24 N .I I dag(cr) 4 d ue i(qap)en~2(-u2 + i E uo) 

- 
/ 

dog(o) s(v - aM) d’(& - Q pj2 1 (90) 

Note that 0 (kO) 6’ (k2) has no Fourier transform due to an infrared divergence, as is obvious from Eq. (88). 

However, for calculating F2’for q2 -coo, the last two expressions in Eq. (90) are equivalent. We obtain 

v,(S2”) ‘c Y2g’ (4) (91) 

The other root IY+ - g of (4 - aP)2 = 0 does not contribute due to the 0(v - aM) factor. The spectral 

conditions also imply g( 4) = 0 for < I 1. To get logarithmic increase in multiplicity, we need g’(t) - t2 

for large 4, which means ?(p. u) - 1 

(P 
for small p. u. 

If one starts with the Fourier transform of a commutator, one gets an e(x0) 0 (x2) light-cone singularity ! 

for T2. The procedure in ref. 89 is to take over this singularity but modify the bilocal such as to pick up 

the part relevant to the annihilation process. However, as pointed out in ref. 90, in such a case the root 

a+ - $ also contributes, and in case g( 4 ) grows as 4 - co, we get a violation of scaling. Moreover, 

the spectral conditions are not maintained. One can argue that these g(g) terms are cancelled by less 

leading singularities with more singular pm u behavior. However, the t2 

term in f(t , q2) does not survive in the leading light-cone singularity, and the non-leading singularities do 

not produce such a term. Thus one cannot just modify the function multiplying the light-cone singularity 

when starting from a commutator; one also has to modify the structure of the light-cone singularity. 

If we subtract, in Eq. (83), the expression with u - -u, we obtain that the integrand for v2 of Eq. (87) is 

[ ( Pn p2 2 -u -blEU o 
il 

f(p. u) - Pnp2 -u2 
[ ( 

- ie u. 
Y 

t(-p . u) (92) 



25 

However, unlike the case of deep inelastic scattering, here f(p. u) is definitely not purely symmetric, 

and therefore we do not have a 

[ ( fnp2 -u2+isu 0 il[ ( 
- Pnp2 -u2 -iElI 

,I 0 
= E uo2ise(u2) 

light -cone singularity only. 

It is instructive to examine the above structure in lowest order perturbation theory for a C#J~ type inter- 

action, which yields Bjorken scaling for all ladder graphs. 
13 Taking a scalar current 

Jp (x) = : $+(x)‘i?; 9 (x) : 

we have a light-cone expansion for the connected part (denoted by subscript c), 

1 Jcc W Jv (Y) 1 c = 
1 

-u2+icuo 
T;y?~~+(x)O(Y)], + [+(x)$+IY)lc 

Consider now 

ld4x eiqx [<P[J~(x) Jo (O)~P>]~ 

WV 

in the Bjorken limit, with lp) being a state created as $+lO>. Take a $+ $I B interaction, where B is a 

neutral scalar field. Define 

g,(a) = 
I 

d(p. x)efaPSx Epl~+(x)+(O)l~>] 
C 
x2=0 

g2(cr) = d(p. x)elap’x 

x2=0 

Evaluating g1 and g2 by intraducing intermediate states, ‘we get 

X 
P 

X- 

z-+ 

+ 

P 0 P 

( 99 

(9W 
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I + II give g,(o), and III + IV give g,(a). Note that II, III, and IV contribute to q2 > 0 only, since for 

example II means, for the Compton amplitude, the contribution 

Defining 

G((Y) = 1+a, 

cY2+a 2- 
( > 

f,+1 

where ~1 is the mass of the quantum of B, we get for the various graphs 

I : B (l+ a)G(cr) 

II : -0 @‘)G@) 
III : -e (cv)G(-U) 

IV : e (a - l)G(-(Y) 

(95) 

(96) 

where an overall proportionality constant is omitted. Thusg3 

g,(0q = e (--a) e (I+ (Y)G ((u) 

1 ( g2 (01) = e (w e (1 - w G l-(y) 
(97) 

and g,(o) + g,(o) appears in deep inelastic scattering. However, for our process of single-particle in- 
clusive annihilation, only IV contributes. Here g(ol) m i for large o! , which means a .Pn(p. u) singularity 
for small (p. u). 94 To get a logarithmic multiplicity in this case of scalar constituents, one needs here a 

as follows from the structure in Eq. (93). 1 “Soft” field theories yield at most a - 
(P* u) 

and thus a finite’multiplicity. 
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VII. Other Problems and Approaches 

Let us mention here other problems and other approaches that we have not discussed. 

A. The Parton Model 

It has been discussed in many papers. 
15,96 It has also been applied to inclusive single particle 

97 electroproduction in the parton fragmentation region, and tc large angle hadron-hadron scattering. g8 In 

both cases the light cone dominance does not directly apply. 

B. One Photon Amplitudes 

These include exclusive electroproduction, 
95 and considerations regarding form factors. 100 For a 

review and criticism see Ref. 101. One may argue that in the case of electroproduction of pions the contri- 

bution of the light cone singularity of pp(x), JH(0)], w h ere JR(O) is the source of the pion field,is that of a 

fixed pole and therefore important also when the mass associated with JR is finite. 
102 

c. Ep -p+/ix 

The theoretical analysis of this process is still controversial. 
103 The prediction of Drell and Yan, lo4 

from arguments of parton-antiparton annihilation dominance, is a simple scaling law 

-=L& f(Z) du 
dq2 (s) s 

(98) 

where q2 is the mass of the p’p- pair and s = (~~+p~)~. Here the leading light cone singularity, the 1/x2 

term, does not appear, but only the next one, which is regular on the light cone. Writing 

dcr -zz 
ds2 

We need <pIp21 j,lx)P(O) IpIp,> near the light cone. Using a form as in Eq. (36), with CL=0 and 

C2 = Pn(-x2+iexo), as indicated from the scaling at SLAC, we obtain 

&. -s-. 

a2 J J 

fi d4x e-iqx 

40 
ln(-x2+ kxo) f(pI’x’P2’x’s) 

= !&i JJ 90 
da@ g@,P,S) J d4x e 

i(QPI+pP2-9)‘x i x h(-x + icxo) 

_ & J J 
=J!LJ 

da dP r&y, P, s) 0 WI + PE2 - qo) 6’ (UPI + ,6p2 ( 
- 42) 

3- 
90 

da@ g@,P,S) WE1 + DE2 - qo) 
X6’ q? 

( 
2aPI.q - 2pp2.q - o@ 

1 
The spectral conditions imply that 

OlcrZl 

and then the contribution comes from either 

(100) 

(101) 

(102a) 
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2q*p1 
Al =s 

24’P2 
A* = 7 

(102b) 

(103) 

We thus see that a choice like 

g(~,81s)=6(~)~(P,s)+s(P)~(~,s) 

does not contribute at all (this was the form taken in Ref. 105). The procedure of Drell and Yan amounts to 

setting g@, p, S) = 0 for the leading singularity and considering only the contribution of the next to leading as 

<P~P~IJ?~) Jct(0)I~,~,> -<p,l $(x)yc, ,[$(O)], IPL> x [ 1 

So that 

Brandt and Preparata 106 take the form Eq. (100). with g&z, 8, S) exponentially damped in S or in power 

thereof. Thus du/dq2. decreases faster than any power in q2 for fixed W. 

D. Can Quarks Escape? 

In deep inelastic scattering, the bilocal operators that appear have quantum numbers of a quark at one 

point and of an antiquark at the other. The distance between the two points is light like, with the space 

distance of order u/M. Thus it appears that, although light like, the space distance may be arbitrary 

large. The fact that one does not have asymptotic quark states is no doubt due to a complicated dynamic. 

Possible infinite potential wells may provide the answer, as argued by Johnson. 107 For a discussion 

of this problem in the various quark schemes see Ref. 75. 

E. Studies in Perturbation Theory 

The studies of Drell, Levy and Yan 16 demonstrated the emerging of scaling by introducing transverse 

momentum cutoff. If one does not introduce such a cutoff, perturbation diagrams do not scale, but lead to 

violations by powers of lg q2/m2. l2 Summation of infinite sets of ladders without self-energy correc- 

tions leads to power singularities in Wilson’s expansions, but no bilocal structure (as we discussed in 

Section III. D). The Callan-Symanzyk equation 108 shows that Green’s functions may have power type be- 

haviour at most for certain values of the coupling constant. This in general does not lead to Bjorken scaling 
unless one has canonical dimensionality. 
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F. Conformal Symmetry 

Wilson’s V’skeleton” limit, 1,109 is the limit when strong interactions become conformally invariant. 

This limit has been studied recently by many authors. 
110,111 In particular, an interesting bootstrap 

scheme for the two and three point functions was studied. Such an approach originates from the fact that 

the two and three point functions are determined by conformal invariance (up to proportionality constants) 

from the dimension of the field, and the higher point functions can be computed by skeleton graph expansions. 

The integral Schwinger-Dyson equations then turn, by use of conformal invariance, into algebraic equations 

for the dimension of the field and the coupling constant. ‘12 We should mention again, as in Section IV, that 

one should take results of scale invariance only for the singularities, since matrix elements of bilocal oper- 

ators involve mass parameters (like Regge trajectory slopes, etc). 

G. Null Plane Quantization and Sum Rules 

Quantization on a null plane instead of an equal time surface was investigated by several authors. 
113,47 

When considering sum rules, 55 one has here an advantage over the infinite momentum approach 54 in that 

z-diagrams are taken into account (as verified for the cases of free fields, where the p um appx oath already 

leads to problems for space-space commutators). See also our discussion in Section lY.B. How to take 

class H diagrams into account is discussed in Ref. 114. 

H. Relation Between Scattering and Annihilation Scaling Functions 

It has been arguedg2 that the F&W) defined for single particle inclusive annihilation be analytic continu- 

ations in w of the deep inelastic functions according to 

Fl(w) = r Fl(w) F21w) = f F2tw) (104) 

where the upper sign is for fermions and lower for bosons. 

Such a relation is in general not expected, since the scaling functions are cross sections which have no 

simple analyticity properties. Even when Fi(w) can be continued analytically, Eq. (104) need not hold. 
Equation (104) was shown to hold in ladder models with stable particle exchanges. When propagators are 

modified to include self-energy cuts, Eq. (104) does not hold any more. ll5 It is instructive to consider the 
relation implied by a box diagram (with scalar currents and particles), 

W ( Ml 

where the exchange 

iS 

represents some spectral function. Here F(w) is continuable, but the relation now 

where 

T(w)=-ReF(w)+ing2 p2(m2) dm2 (105) 

Lb) 

L(w)=M9(w+$ f) . 

Note that for w near I the continuation is expected to hold, since L(W) --c 00 and there is essentially no con- 
tribution from the spectral function term. (Im F(w) is also vanishingly small there.) For w = 1+ F/M we have 
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the minimal value for L(W), which is (M+P)~. Note that parametrizing F2 = C (~-l/w)~ with FI=(w/2M) F2 
the analytic continuation relations to annihilation lead to structure functions which yield a logarithmic 

multiplicity (see our Section VI). However, the continuation should not be believed for w -0. 

The Gribov-Lipatov relations 
37 between the scattering and annihilation, as derived in perturbation 

theory for g2 << 1 and g2 &i q2/m2 - 1, are 

F2($, = -w3 F ,b,?) 

7+g 1Lpp~ 
[ 

2 -1 

127r2 1 m2 

This also yields a logarithmic growth in multiplicity for F2 F-(const). 

I. Early Scaling 

Light cone dominance does not account for the early scaling observed at SLAC,* namely for 

(-q2) 2 1 BeV2. Any attempt to explain this result must involve dynamics, since non-leading light cone 

singularities are involved. 116,117 We should mention that the Bloom-Gilman variable 118 0’ = w + M2/(-q2) 

extends the scaling to lower q2. It was also suggested ‘lg that the variable (AMY + M2)h-q2) + a2 , 1 with 

a - O. 4, is the only variable for all q2. 2 

J. Finite QED 

It was recently argued by Adler 120 that the Baker-Johnson-Willey condition ’ 12’ for a finite photon 

propagator, which is an eigenvalue equation for the bare coupling constant ao, should be changed to be the 

same condition but for the physical coupling constant (Y. 122 A finite photon propagator yields a finite QED 

for an appropriate choice of gauge, when the bare electron mass vanishes. 
121,123 Their condition is 

F[ll ((Y,) = 0, where FII1 

nFl(-q2/m2, 

((Ye) is defined as the coefficient of I!n (-q2/m2) in the single fermion loop part 

oo) of the renormalized photon proper self energy, 

7 ‘VV\XS)/VV\ +“o [=I m +.... (107) 

= G”](a 0 ) + F+Y 0 + (vanishing terms as q2- m) . 

Their condition is a consequence of the Gell-Mann-Low condition 24 da,) =o, which however involves all 

self-energy diagrams (coefficient of logarithmic divergences). Adler shows 120,122 

that F [ll 
that $(QO) = 0 implies 

(01~) = 0 is an infinite order zero. He furthermore argues, that in such a case one has an extra 

sc$tion for finite QED, which is F[I]@) = 0, coming from a different order of summation. The condition 

F ((u,) = o comes from summing first all photon self-energy parts, thus obtaining an asymptotic photon 

wmgator ao/q2, and then inserting those into the vacuum polarization graphs Eq. (107). One can, how- 

ever, first sum all single fermion loop vacuum polarizations, then all two loops, etc. 
condition ELI1 

One then gets the 

(a) -0, since the single loop sum now involves o?/q2 for the photon propagator. Adler argues, - 

that this is the condition chosen in nature. The fact that the zero is of infinite order has implications on 

attempts 0“ evaluating it. 122 For speculations on experimental implications see Ref. 125. 
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