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Abstract 

We present a simple form for the vector and axial-vector 

charges, transformed so that their matrix elements between 

(constituent) quark model states correspond to measurable trans- 

itions between physical states. A comparison with experiment 

of predictions for pionic transitions is made. 
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The algebra of vector and axial-vector currents proposed by Gell-Mann’ 

has, for some time now, been one of the accepted “truths” of hadron physics. 

Given the correctness of the algebra, one is immediately led to consider how 

the observed particle and resonance states transform under this algebra. From 

the Adler-Weisberger relation2 itself, it is already clear that the observed ha- 

dron states at infinite momentum3 do not fall into irreducible representations 

of the chiral SU(2) X SU(2) algebra of charges. The axial-vector charge connects 

the nucleon to many higher mass N* states which contribute to the sum rule and 

must then share the same irreducible representation of SU(2) x SU(2) with the 

nucleon. Correspondingly, the nucleon must have components in several irre- 

ducible representations of the algebra. 

Although some progress and understanding have been achieved, 4 the prob- 

lem of a complete classification of hadron states under the SU(2) X SU(2) charge 

algebra is unsolved. Furthermore, up to this point, much of the work on clas- 

sifying the states has been on a case-by-case basis. For a systematic approach, 

one wants a transformation from the irreducible representations characteristic 

of the quark model to the reducible representations of the physical states. vll 

this paper, we assume such a transformation exists and choose to act with it on 

the charges rather than the states. Although the details of the transformation 

are unknown, we suggest that the transformed charges have a simple algebraic 

structure, allowing us to systematically relate many hadronic matrix elements. 

We start by defining the chiral SU(2) x SU(2) algebra of charges at equal 

times, 6 . . c I Q1, Q’ = i.e ijkQk, [Q;, Qj;l = i EijkQ”,, [Q;, Q;] = ic ‘jkQk, 

where i, j, k run from 1 to 3 and Q and Qs are the space integrals of the time 

component of the vector and axial-vector currents respectively. The operators 
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Qi+ Q; and Q’ - Qk then form two commuting SU(2) algebras. Irreducible 

representations of hadrons moving at infinite momentum in the z direction are 

labeled as {(*1* ‘zi, ’ Lz 1 
. 

where II and I2 are the “isospin” under Q’ + Q; and 

Qi - Q;, respectiveli; Sz is the eigenvalue of Qi, the singlet axial charge which 

corresponds to the intrinsic quark spin in a quark model of hadrons. The quan- 

tity Lz is defined then as Lz = Jz - Sz , Jz being the z-component of the total 

angular momentum of the state. The isospin content of (II, 12) ranges from 

I II - I2 I to II + 12. 

Now consider the transformation Vwhich takes one from the set of irreducible 

representations characteristic of quark constituents (q?j for mesons, qqq for baryons) 

to the physical states which form complicated reducible representations of SU(2)xSU(2): 

Iphysical) = V[constituents> 

The operator V, which contains the dynamics of the world, may be roughly 

thought of as, among other things, adding infinite numbers of qq pairs to the 

constituent qij or qqq state to form the physical meson or baryon. Then, assuming 

V is a unitary operator, the measurable matrix elements we wish to study are, 

for example, 

<physical’ IQ, I physical > 

which may be rewritten as 

<physical’ IQ,\ physical> = <constituents’ IV-‘&~ VI constituents> (2) 

The operator V and its properties have been studied in some detail in the 

free quark model by Melosh. 7 Most interestingly, he finds that while V, acting 

on a single irreducible representation, I constituents > , generates a compli- 

cated infinite sequence of representations with increasing angular momentum 
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and quark spin, the quantity V-l Q5 V is quite simple. 8 It transforms as a sum 

of the 
-i 
(I, O)09 0 (0, l)o, 0 (Ii& Q,) and (3, &),, -1 (9, &)-,, 1 

> 
rep- 

resentations of SU(2) X SU(2), respectively. We shall assume that the remark- 

able property of V-‘Q5 V in the free quark model of terminating in only two 

terms is generally true. Furthermore, in order to have a very simple and el- 

egant form, we will assume, in addition, that the 
1 
(1, O)o, 0 

> { 
- (0, l)o, 0 

1 
operator is to be identified entirely with a multiple of Q,, something which is 

not true in the free quark model. We thus write 

+Qiv = Q’ 
Pa) 

V-‘&k V = cosa Qk + sino! K’ , t3b) 

where 01 is a constant and K transforms as ($, &)I, -1 (4, &)-,, 1 under 

SU(2) x SU(2). Equations (1) and (3) then imply a second SU(2) X SU(2) algebra: 

ijk$, [Ki, Qj] = i E ijkKk, lKi, Kjl = i EijkQk . (4) 

Furthermore, the transformation properties (as ($, 4)) of K1 imply that 

[ 1 Ki, Qi = iijij s, (5) 
where S is an isoscalar, so that 

[ 1 S, Qi = 0. (6) 
By the Jacobi identity, 

= iKi and Ki, S = iQ5, c 1 

closing the algebra of Qi, Qk, K1 and S on that of Sp(4) or 0 (5). *, The operator 

V is then e -icxS icwS i -ia!S , for it can be readily checked that e Q e =Q’ and 

,iaS i 
Q5e 

-icxS = COSQ Qi + sina! K1. 
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Equation (3), even if only an approximation to a more complicated form, may 

be of great use phenomenologically as it correlates many otherwise unrelated 

quantities. The power of Eq. (3) in making many predictions results because: 

(a) Q,, as a generator of SU(2) x SU(2), has known matrix elements and in par- 

ticular can only connect a given irreducible representation with itself; (b) K can 

only connect different representations with different values of Ls and Ss. 

We now proceed to explore these predictions, considering first the results 

which follow from matrix elements where K cannot contribute, and which, there- 

fore, depend on Q5 and its property of being a generator. For example, since 

the nucleon and N*(1236) with Jz = l/2 lie in the representation 

quark constituents, their constituent states can only be connected by the first 

term in Eq. (3b). Using Eq. (2), we immediately obtain from taking the one- 

nucleon matrix element of Q5 that 

gA = $- cosa (8) 

which gives’ cosol = 0.745 f 0.005. This value fixes the relative scale of Q5 

and K for all processes. All matrix elements due to Q5 will now be reduced by 

the factor cost from their “quark constituent” values. 

To proceed further with experimental comparisons, we must use PCAC 10 

to relate matrix elements of QA to those of the pion. 11 For example, from 

<N IQ,\ N* (1236)) we obtain 12 

g” = ;,,,a = 0.98 , (9) 

which is in satisfactory agreement4 with experiment if we use PCAC to relate 

g* to the N* (1236) +N 7~ amplitude. Extended to the &+ octet, we obtain the 

standard value of F/D = 2/3. 

Since Eq. (3) is an operator statement, we can also take its matrix elements 

between me son states. For the qq states with L = 0, the Jz = 0, p and r are in 
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(1, O). f (0, l). and connected by Q5. Equation (3) plus PCAC immediately gives 

us 

gp,, = Jz 7 cosa!, 
T 

and therefore r (p - r 7~) N 150 MeV, in excellent agreement with experiment. 9 

Similarly, for Jz = 1 the p and o are in (g, ;)I, 0 , and Eq. (3) plus PCAC 

gives 

a 
gpwn = f, cos a . 

Within the large uncertainties in extracting g 
PUT 

from w-r0 y using vector 

dominance, Eq. (11) is also in very adequate agreement with experiment. 13 

Encouraged by these results for matrix elements of the Q5coso! term in 

Eq. (3), we consider the L = 1 meson states of the quark model. We label the 

I = 1 states with JPC = l+-, 2’+, l*, and 0 
-I+ 

as B, AZ, AI, and 6 , respect- 

ively, while their I = 0 counterparts composed of non-strange quarks are labeled 

as H, f, D, and 0. Besides untestable relations involving pionic transitions be- 

tween L = 1 states, we arrive at a number of relations for transitions of L = 1 to 

L = 0 mesonic states which proceed only through K (Q, being a generator does 

14. not contribute) . 

1. ForJZ=O, gB, = 0 since both B and w have Lz = 0 and K has Lz = * 1. 

Similarly, gHp = 0 for Jz = 0. 

2. For Jz = 1, gBw/gA2p = & . Using experimental values’ for 

r(A2 -pi) and masses, yields r(B -wr) = 75 MeV with a purely 

transverse decay. The width agrees with experiment, 9 where the 

decay also appears to be dominantly transverse. 15 

(11) 
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- 
3. In W)w, the pion transforms like Q,, while no term like K is present. 

The Jz = 1 decays of the B and H are then forbidden and the Jz = 0 decays 

allowed 16; our scheme predicts the opposite. 

4. For Jz = 1, gAIP /gA,P = 1, and for Jz = 0, gAlp /gfn = 6. Assuming 

MAI = 1070 MeV and using experimental data’ we obtain T(A1-+pr) 2: 

85 MeV and a dominantly longitudinal decay. 
17 This relatively narrow 

resonance is presumably not to he identified with the wide non-resonance 

observed 18 in “p -+(3n)p. 

5. 
gs&$2Tj = fi l 

Identifying the 6 with the proposed state’ near 975 

MeV, we calculate from r (A2-t ~77) that r( 6 -+nr)) = 35 MeV. This 

disagrees with a very narrow state, but agrees with experiments observing 

the AT] mode of the 8. 
19 

6. g,J!zf* = 4% If we assign, somewhat arbitrarily, the non-strange quark 

CT meson to have m, = m p, then r(f --+ nn) yield sg r(a--+m) 2 250MeV. , 

. The width depends strongly on ma. A transition through an operator trans- 

forming like Q5 as in SU(6)w results in an unacceptable r (g---t 1~) of 
. 

- 60 MeV. 

I In trying to extend the results to L = 2 mesons, we find many relations, but 

almost no presently testable ones.. One relation which is of interest is that 

<I = l,Jpc = l--IQAJ n>/<I = 1, JR. = 3-- IQ,1 a> = a. Identifying the 

Jpc = 3:: state with the g meson9 and assuming a mass of 1500 MeV for the 

Jpc = I-- state .( p’) yields a sizable width ( Y 150 MeV) into two pions for the 

P’s However, if the pt was a radial excitation’ in the quark model, then its decay 

into two pions is forbidden by Eq. (3b) and the fact that Q5 is a generator. Thus 

if the Pt state observe a2 ’ at 1500-1600 MeV is a mixture of the L = 2 state with 

a dominant L = 0 radial excitation, its two-pion decay is suppressed. In this 

case the PX decay mode of its isoscalar companion, w’, is also suppressed. 



-.-. 
We may use our results to investigate the contributions to the Adler- 

Weisberger sum rules for meson targets. For each of the 11 sum rules for 

I = 1 meson targets with L = 0 and 1, cos2cr (55%) of the total sum rule is fixed 

in a known way as arising from the Q 5 term in Eq. (3b), while each non-exotic 

intermediate state contributes positively to the remaining sin2cr (45%) of the 

total sum. It is entirely non-trivial that the sum of the remaining identifiable 

contributions to each of the sum rules does not exceed the 457~ limit. For ex- 

ample, the 7mr sum rule gives us an upper bound for the contribution of the f-meson, 

yielding T(f -m) s 180 MeV. 

For the L = 1 baryons, it is difficult to find simple testable predictions be- 

cause several of the physical states are presumably mixtures 21 of constituent 

quark spin doublet or quartet states, each with its own matrix element for decay 

to xN or nN*(1236). There still is one relation, <S 31 (Q51N)/<D33 IQ51 N> = x’% 

between the presumably unmixed spin doublet I = 3/2 states, S31 and D33. Present 

data on the elastic widths 9,22 are on the borderline of disagreement with this re- 
. 

lation, but the errors are fairly large and can accommodate it. 
23 

A possibly more serious difficulty with the simple form in Eq. (3) is that any 

classification of the Roper resonance, P11(1470), as a radial excitation in the 

quark model, results in its nN and nN*(1236) decay modes being forbidden. These 

.- 
transitions are not large on the scale of N*(1236) -+Nx or p e nn. Their presence 

indicates either an unpleasant classification of the Pll or the presence of additional ). 

terms in the transformed Q5 which were neglected in Eq. (3). 

Taken all together, our results are encouraging, there being no great con- 
I 

tradictions and several predictions which are in good agreement with experiment. 
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The success of our predictions indicates that Eq. (3) may be an excellent first 

approximation to the actual case, with a rather elegant form, simple properties, 

and easily derivable consequences. We hope to report on the details of the above 

results as well as on considerations of mass formulae and the extension of the 

scheme to current densities (e. g., magnetic moments) elsewhere. 
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